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Sensitivity of L-Band Radar Backscatter to Forest
Biomass in Semiarid Environments: A Comparative
Analysis of Parametric and Nonparametric Models
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Abstract—This paper investigated the effectiveness of fre-
quently used parametric and nonparametric models for biomass
retrieval from L-band radar backscatter. Two areas, one in Spain
and one in Australia, characterized by different tree species, forest
structure, and field sampling designs were selected to demon-
strate that retrieval error metrics are similar for different local
conditions and sampling characteristics. A mixed-model retrieval
strategy was proposed to reduce the overall (i.e., across the entire
biomass range) as well as by-biomass-interval errors. Significant
relationships were found between aboveground biomass and radar
backscatter with most of the backscatter dynamic range being
limited to a fairly low range of biomass values (< 30 t/ha) in
both study areas. Biomass retrieval errors were largely similar
for all parametric and nonparametric models tested. However,
some parametric models consistently provided lower correlation
between the observed and the predicted biomass while non-
parametric models generally provided an unbiased estimation. A
mixed-model retrieval strategy was shown to reduce biomass esti-
mation errors by up to 15%. Biomass retrieval errors were highly
variable within the L-band sensitivity interval, suggesting that
overall accuracy estimates should be used with care, particularly
for low biomass intervals (< 30 t/ha) where surface scattering
could dominate the total backscatter. Despite exhibiting the high-
est dynamic range, low biomass areas were characterized by the
highest estimation errors (in excess of 80%). Conversely, relative
estimation errors were as low as 20%–35% for the 30–75 t/ha
biomass intervals, while at higher biomass levels, the estimation
error increased due to signal saturation.

Index Terms—ALOS PALSAR, backscatter, forest biomass,
L-band, parametric and non-parametric modeling.

I. INTRODUCTION

THE retrieval of forest characteristics is currently one of
the main research topics of the remote sensing commu-

nity with the accurate estimation of carbon emissions from
deforestation and forest degradation being a major challenge.
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Forest carbon stock estimation is a sensitive research topic since
information on forest spatial distribution, biomass levels, and
dynamics is needed for greenhouse gases flux estimation and,
thus, policy development and implementation [1].

The last two decades have been strongly focused on the
extraction of biomass estimates from synthetic aperture radar
(SAR) sensors after relationships between forest biomass and
radar backscatter coefficients were demonstrated more than
three decades ago [2]. Global coverage, high temporal and spa-
tial resolutions, and independence from cloud cover were the
main attractive features of spaceborne SAR sensors. The sen-
sitivity of SAR backscatter to biomass levels depends mostly
on system wavelength, with P-band (around 64-cm wavelength)
recognized early on as the most sensitive due to its greater pene-
tration of the vegetation [3]–[6]. However, most recent research
was focused on L-band due to the availability of such data from
the Japanese Earth Resources Satellite (JERS) and Advanced
Land Observing Satellite (ALOS) Phased Array type L-band
Synthetic Aperture Radar (PALSAR). The potential for using
L-band radar backscatter to estimate aboveground biomass
(AGB) has been studied for most forest types, ranging from
boreal to tropical regions using airborne and/or spaceborne
sensors [6]–[14]. The consensus among such studies is that
backscatter coefficients increase with biomass until a saturation
point is reached which is influenced by forest type/structure
and environmental conditions (i.e., rainfall, freeze/thaw cycles,
etc.) as well as sensor characteristics such as wavelength and
polarization. The observed saturation point is usually between
30 and 100 t/ha across most forest types and radar polar-
izations [3], [5], [9], [15]. Previous studies also showed that
L-band cross-polarized radar backscatter was more sensitive
to variations in biomass [3], [16], [17], whereas copolarized
backscatter showed greater sensitivity to differences in forest
cover fraction. The dynamic range (i.e., the difference between
maximum and minimum backscatter values recorded for dif-
ferent vegetation densities) has been seen to vary between 4
and 10 dB for L-band cross-polarized data [11], [17]. Most
of this dynamic range, however, covers only a relatively small
biomass span, usually below 50 t/ha. For the remaining biomass
range up to the saturation point, the backscatter increase is
modest, frequently within 2–3 dB, which could hinder retrieval
algorithms [9], [11], [15], [18]–[21]. A number of biomass
retrieval strategies have emerged, the majority of which were
based on parametric (i.e, empirical and semiempirical) models.
Relating radar backscatter to AGB using empirical models was
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achieved with a range of functional forms, including linear
[8], [17], [20], [22], logarithmic [23], exponential [18], [23],
and higher degree polynomials [3]. In addition, some empirical
models were parameterized for backscatter estimation as a
function of biomass through sigmoid type functions [12], [24]
and subsequently inverted to recover AGB. The semiempirical
models [14], [25], [26] were frequently based on the water
cloud model [27] and the radiative transfer theory. Finally,
some authors have used numerical [28], [29] or nonparametric
models [30] to estimate biomass levels.

Past studies have demonstrated the high variability of error
in radar predicted biomass with respect to the actual (i.e., field
assessed) values. In [5], errors between 39% and 75% were
found in boreal forests, depending on the exclusion/inclusion
of older stands. In pine forest, stands [8] obtained an average
error on the order of 59 t/ha which translates into an error
of approximately 80% for forests with an average biomass
of 75 t/ha; the inclusion of all stands further increased the
error. Sandberg et al. [17] estimated biomass in a boreal forest
with errors reaching 36%–46% of the mean biomass values.
In contrast, relatively low errors (25%) were obtained by
Santoro et al. [14] in boreal forests, but only when highly
homogeneous stands were used. Such studies have reported
extensively on the relationship between radar backscatter and
forests biomass, but typically for forests with biomass levels
well above the L-band saturation point [12], [13], [31] and
only occasionally within the sensitivity interval [11], [22].
Consequently, the retrieved biomass intervals were usually
much larger than the acknowledged L-band range for biomass
sensitivity, making it difficult to assess the retrieval accuracy
within those limits. Moreover, limited information is available
on the variability of retrieval errors by biomass intervals, which
can greatly influence model selection, depending on the specific
application and forest biomass distribution frequency.

While many studies have been conducted in boreal, temper-
ate, and tropical environments, fewer studies have focused their
attention on low biomass forests in semiarid environments. All
studies carried out in semiarid forests used empirical models
with no author using more physically based modeling ap-
proaches [32]–[35]. Dry conditions are known to enhance wave
penetration depth due to decreased vegetation water content,
allowing for higher interaction of radar waves with the ground
surface and, thus, different scattering mechanisms. In addition,
the rate of backscatter increase with biomass is lower in open
forests (often the case of semiarid forests) when compared to
that in closed canopy forests [36]. Although, semiarid forests
frequently present lower biomass levels, which should theoreti-
cally yield an increase in the overall estimation accuracy, varia-
tions of the surface scattering component (through soil moisture
and roughness) could result in similar backscatter levels for
a variety of biomass/surface conditions, particularly for copo-
larized waves [28], [36], which could hinder biomass retrieval.

The aim of this paper was to evaluate the accuracy of
different parametric and nonparametric models for biomass
retrieval from L-band ALOS PALSAR backscatter data and to
demonstrate that by-biomass-interval estimation errors depend
little on species composition, forest structure, or field sampling
design. The specific objectives were as follows: 1) to assess

the backscatter/biomass relationships for forests characterized
by average biomass levels well below the L-band saturation
point; 2) to observe the effectiveness of a range of parametric
and nonparametric models for biomass retrieval; 3) to study
the influence of biomass levels on the retrieval accuracy; and
4) to propose a retrieval strategy that reduces the overall
biomass retrieval error (i.e., across the entire biomass range)
as well as the error for individual biomass intervals.

II. STUDY AREAS AND DATA SETS

A. Field Data Sets

Field data were available for two study areas corresponding
to regional and local forest inventories. At the regional level,
the analysis was focused on semiarid pine forests located in
the central sector of the Iberian range, Teruel, Spain. The pine
species present in the Teruel region were Pinus sylvestris, Pinus
halepensis, Pinus nigra, and Pinus pinaster. The field work
was conducted between December 2004 and April 2005 within
the framework of the third Spanish Forest National Inventory
(FNI). The sampling grid followed a regular pattern with one
sample plot every kilometer within forested areas. All trees with
a diameter at breast height (DBH) greater than 7.5 cm were
recorded for their DBH and height. The plot radius depended
on the maximal DBH at each location: a 5-m radius when the
maximum DBH was below 12.5 cm, a 10-m radius when the
maximum DBH was between 12.5 and 25.5 cm, a 15-m radius
when the maximum DBH was between 25.5 and 42.5 cm, and
a 25-m radius when the maximum DBH was above 42.5 cm.
The radius of 50% of the 134 plots used in this paper (see
Fig. 1) was 15 m, with approximately 25% of the plots having
a smaller radius (i.e., 10 m) and 25% of the plots having a
larger radius (i.e., 25 m). Only plots located on flat or near
flat areas (slope ≤ 5◦) were selected so that results could be
easily compared with those from the second study area which
is characterized by a nearly flat topography. Moreover, working
on flat areas avoided the effect of sloped terrain on biomass
retrieval [37] which, according to recent tomographical exper-
iments [38], could enhance the double bounce effect, partic-
ularly for copolarized waves [i.e., horizontal transmit/receive
(HH)]. The total AGB was calculated for each tree using
species-specific allometric equations [39] and aggregated for
each plot. The AGB for the selected plots varied between 2.2
and 127.2 t/ha with over 95% of them having an AGB below
100 t/ha. The mean plot biomass was 32.0 t/ha with a standard
deviation of ±26.6 t/ha. The mean tree height was 8.4 m ±
2.6 m with individual heights varying between 2 and 20 m.

At the local level, the analysis was focused on the Gillenbah
forest (1600 ha) located in New South Wales, Australia, where
the dominant forest species is white cypress pine (Calitris
glucophylla) while gray box (Eucalyptus microcarpa) is dis-
seminated throughout the forest and accounts for only 10% of
the trees. In September 2011, a biometric survey was conducted
using 60 plots (500 m2 each) clustered in 12 sites (see Fig. 1).
A cluster site consisted of a center plot with four surrounding
plots spaced at a distance of 35 m in the cardinal directions.
The circumference and height of all trees with DBH greater
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Fig. 1. Location of forest inventory plots for (left) Spanish and (right) Australian study areas, with background of ALOS PALSAR images acquired on (left)
July 19, 2008 and (right) May 20, 2010. The insert in the left panel shows the general location of the Spanish study area. The inserts in the right panel show (left)
the general location of the Australian study area, (center) the reference biomass levels obtained from lidar data with the random plots used for data extraction, and
(right) a typical sampling site with the sampled tree distribution by forest layer. Only plots located on flat or near flat areas are shown for the Spanish study area.

TABLE I
SAR DATA CHARACTERISTICS, PROCESSING PARAMETERS, AND MAIN WEATHER PARAMETERS. FOR THE SPANISH REGION, THE PRECIPITATION

RECORDED AT THREE METEOROLOGICAL STATIONS (LOCATED NEAR THE NORTH, THE CENTER, AND THE SOUTH OF THE STUDY AREA,
RESPECTIVELY) IS SHOWN, WHEREAS THE MINIMUM AND THE MAXIMUM TEMPERATURE ARE THE AVERAGE FOR THE THREE STATIONS

than 5 cm were recorded, whereas smaller trees were counted
and their height was estimated plotwise as being the most
frequent height (i.e., smaller trees were largely even-aged).
Information on grass surface cover and average height from
10 sparsely vegetated plots was also collected. The total AGB
was calculated for each tree using species-specific allometric
equations [40], [41] and aggregated at plot level.

The forest type over the two study areas was comparable (i.e.,
largely coniferous species) with average biomass levels well
inside the established sensitivity interval for the L-band radar
backscatter. However, some differences were noted mostly
with respect to the higher biomass levels over the Australian
study area and the larger variety of tree species present in the
Spanish study area which was not surprising given the latter’s
much larger extent. Such differences were not viewed as an
impediment but rather as an enhancement of this study since

our goal was to assess if similar trends and biomass estimation
accuracies are obtained regardless of field sampling design and
forest structure. It is also noted that, for the Spanish study area,
the minimum DBH recorded was slightly higher (i.e., 7.5 versus
5 cm) and no information on regrowth was available, thereby
suggesting a certain underestimation of the actual biomass
values.

B. Radar Data Sets

Several dual-polarized (HH and HV) ALOS PALSAR scenes
were available for each study area (see Table I). The satellite
images, acquired within one to three years of the ground data
collection, were multilooked in both range (4) and azimuth (16)
to obtain similar ground pixel spacing (50 m). The intensity
was transformed to the radar backscatter coefficient (σ◦) after
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applying the absolute calibration factors [42]. To further reduce
speckle noise, the multilooked images were filtered using a
3 × 3 window [43]. Due to the rough topography, in the
Spanish study area, the backscatter intensity was normalized
for the varying incidence angle and the effective pixel area
[44] using a 20-m spatial resolution digital elevation model
(DEM) obtained from the regional government of Aragón. This
DEM was assessed as accurate within ±2.5 m horizontally
and ±5 m vertically. After correction, the gamma nought (γ◦)
images only included variations of the scattering properties of
the target. Note that, for a flat topography, as was the case for
the Australian study site, sigma and gamma nought are equal.
Therefore, backscatter normalization was not carried out for the
Australian data set. All images were geocoded to the Universal
Transverse Mercator (UTM) coordinate system using a lookup
table that described the transformation between the radar and
the map geometry [45]. The lookup table was generated using
the DEM and the orbital information of the radar data. To
correct for possible inaccuracies in the input data, a refinement
of the lookup table was applied, in the form of offsets between
each SAR image and a reference image (e.g., a DEM-based
simulated SAR image) transformed to the radar geometry.

Although there was a certain interval between field data
collection and satellite image acquisition, no correction was
applied to compensate for tree growth. For the Australian study
area, the acquisition gap was less than 18 months which meant
negligible growth, particularly in such semiarid environments.
For the Spanish study area, the acquisition gap was 30 to
42 months. However, according to the third Spanish FNI, the
annual average net change in timber volume for pine species
in the Teruel region over the past decade was 2.1 m3 · ha−1

(i.e., approximately 1 t/ha). Although timber volume is not
equivalent to total biomass, such small changes suggest either
low annual AGB increments or quasi-equilibrium between tree
growth and tree mortality.

C. Data Extraction

For the Spanish data set, the backscatter coefficient was
extracted for the pixel containing the center of each ground
sampling plot (0.25 ha) which corresponds to the location of
the 1-km UTM grid nodes. Such relatively small areas were
used to restrain the extraction to the area actually sampled on
the ground since no ancillary data were available for the highly
fragmented Spanish landscape.

For comparability reasons (i.e., similar speckle noise), the
same plot size had to be used to extract the backscatter at
the Australian study area. However, the field-assessed plots
were much smaller (i.e., 0.05 ha) while forest spatial variability
was high. Assigning the field-assessed biomass to a 0.25-ha
area centered at each plot would have resulted in a noisier
backscatter/biomass relationship. In addition, due to the close
proximity of the plots within each cluster site, the 0.25-ha
areas would have overlapped. To circumvent such limitations, a
reference biomass map was produced using a high point density
(40 p · m−1) lidar data set from a concurrent with the ground
sampling flight. The relationship between field plots (i.e.,
60 forests and 10 sparse vegetation) and gridded lidar met-

rics (i.e., pulse density of the 1–12-m height stratum, canopy
percent cover in the 6–8-m height stratum, and the volume
under the forest canopy surface) was used within multiple linear
regressions to model AGB as a function of the lidar metrics.
The parameterized model was subsequently applied to obtain
a spatially explicit biomass map for the Australian study area.
More details on biomass modeling from lidar data are given in
[46]. At plot level (i.e., 0.05 ha), the AGB retrieval from lidar
point cloud data was accurate within 17.2 t/ha (28% relative).
However, when analyzed by cluster site (i.e., 0.25 ha), the re-
trieval error was significantly lower, i.e., as small as 14% rela-
tive to the ground estimates. Biomass values extracted from this
biomass reference map were subsequently used for modeling.

A random grid of 131 plots (0.25 ha) was used to extract the
radar backscatter and the lidar-based reference biomass over the
Australian study area (see Fig. 1). The AGB for the selected
random plots varied between 1.5 and 145.6 t/ha with over 95%
of them being below 100 t/ha. The mean plot biomass was
50.1 t/ha with a standard deviation of ±26.5 t/ha. The mean
tree height over the Australian study site was 7.2 m ± 2.5 m
with individual heights varying between 2 and 32.5 m.

III. METHODS

A number of modeling approaches can be used to study the
relationships between biomass and radar backscatter and to
retrieve biomass (i.e., numerical, parametric, and nonparamet-
ric modeling). Since numerical modeling requires the detailed
description of surface properties (soil roughness and moisture)
and vegetation characteristics (leaf/branch orientation, thick-
ness, water content, etc.) to estimate backscatter and such infor-
mation was not collected during the forest inventory campaigns,
the analysis was restricted to parametric and nonparametric
models. Although previous studies showed that using multiple
polarizations does not significantly improve biomass estimation
error [17], [35], it was decided to test not only single-polarized
but also multipolarized parametric and nonparametric models
to corroborate such results over semiarid low biomass forests.

A. Analysis of the Backscatter–Biomass Relationship

The relationship between radar backscatter was studied as a
function of biomass levels using descriptive statistics (i.e., mean
and standard deviation of the mean). In addition, the backscatter
saturation point with increasing biomass as well as the biomass
density below saturation was computed as an average for all
available data sets at each study area as proposed in [12]. The
backscatter saturation point (linear units) corresponds exactly to
the coefficient a of the model (see model 2 in the next section).
A 1 dB below the saturation point was considered by Luckman
[12] as indicative of the maximum retrievable biomass, taking
into account uncertainties in sensor calibration and sample size.
In this paper, however, the maximum retrievable biomass was
computed for 0.5 dB below saturation since the uncertainty of
PALSAR backscatter measurements is smaller and the spatial
resolution is higher (i.e., lower speckle noise for the same
ground resolution) when compared to JERS data.
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B. Biomass Retrieval From Parametric and
Nonparametric Models

Six parametric and three nonparametric models were used
to retrieve biomass and evaluate the estimation errors. In this
paper, the parametric models were further categorized into
forward and backward models to distinguish between model
parameterization/biomass retrieval strategies. Forward mod-
els parameterize the response in backscatter with increasing
biomass, hence minimizing the errors of the response variable
backscatter. After parameterization, the biomass is estimated
using an inverse function. Conversely, in backward models, the
AGB is expressed as a function of backscatter without the need
of additional functions.

1) Forward Parametric Models: The three forward paramet-
ric models used [(1)–(3)] were based on the radiative transfer
theory and the water cloud model which essentially represents
the extinction of microwave radiation as it passes through a
layer of vegetation made up of elements containing water [27].
The first model [see (1)] was a semiempirical radiative transfer
model of wave propagation through horizontal scattering and
attenuating layer [14], [47]

σ◦
for = σ◦

gre
−βAGB + σ◦

veg(1− e−βAGB) (1)

where
σ◦

for total forest backscatter;
σ◦

veg backscatter from vegetation;
σ◦

gr backscatter from ground.
Although the parameterization of such models is based on

experimental data, the models do take into account (to a certain
extent) the physical phenomena (e.g., scattering mechanisms,
signal saturation, etc.). This first model, proposed in [14],
has the advantage of allowing a straightforward inversion to
estimate forest parameters [see (1)]. The total forest backscat-
ter (σ◦

for) is modeled as the incoherent sum of direct and
vegetation-attenuated ground scattering (σ◦

gr) and the direct
scattering of the vegetation (σ◦

veg). The model takes into
account the gaps in the canopy by weighing each term by the
area fill factor expressed as a function of the stem-volume-
dependent two-way forest transmissivity (e−βAGB). The model
does not take into account double bounce and higher order
reflections, assuming that attenuation through the forest canopy
is relevant (which might not be true for low biomass levels) and
the forest floor is not perfectly flat. A more thorough description
of model assumptions, parameterization, and inversion is given
in [14].

In contrast to the original formulation, in this paper, the
two-way forest transmissivity was expressed as a function of
biomass. Since stem volume can be transformed to biomass by
multiplying with species-dependent wood density, for the same
moisture content, such a transformation would not affect the
two-way forest transmissivity estimates. Furthermore, the total
AGB includes the biomass of leaves, branches, and twigs (i.e.,
the main tree elements interacting with L-band microwaves),
therefore providing a better approximation of the total forest
transmissivity [i.e., e−βAGB where β is an empirically defined
coefficient in (1)]. Although the model was initially developed
and tested for copolarized waves, it should be applicable to

cross-polarized waves since the total backscatter is still a mix-
ture of surface and volume scattering but of different mag-
nitudes. The empirically derived forest transmissivity should
compensate for differences in scattering mechanisms.

The other two forward models used [see (2) and (3)] were
proposed by Luckman [12] and Lucas et al. [24], respectively,
and are loosely based on the water cloud approach

σ◦ = a− e(−bAGB+c) (2)

σ◦
(dB) = a+

(
σ◦

gr(dB) − a
)
∗ e−(bAGB) (3)

where

σ◦
gr(dB) backscatter from ground;

σ◦ backscatter coefficient (linear or decibel units);
a, b, c model coefficients.

The parameter a (i.e., the model asymptote) corresponds to
the backscatter saturation point, whereas parameter b describes
the gradient of the low biomass density part of the curve.
Parameter c and the constant value σ◦

gr(dB) describe the resid-
ual backscatter at zero biomass (i.e., the nominal backscatter
from bare soil). The models are fitted using calibration data
such that the sum of squared deviation from the theoretical
curve is minimal. The advantage of such forward models is their
robustness when limited samples are available and the potential
for allowing residual backscatter at zero biomass density (i.e.,
allowing for soil surface scattering at low biomass levels) [12].
Model (3) assumes a fixed value for the ground backscatter
(σ◦

gr) which, in this paper, was estimated as the average of
all samples with biomass levels below 10 t/ha. Such sigmoid
functions were often used to study the biomass–backscatter
relationships, determine the dynamic range of the data, and
calculate the level of signal saturation [11], [12], [15], [24].

After model parameterization, biomass was retrieved by
analytically inverting models (1)–(3) as in

AGB=− 1

β
ln

(
σ◦
veg − σ◦

for

σ◦
veg − σ◦

gr

)
inversion function for (1)

AGB=
[− ln(a− σ◦)− c]

b
inversion function for (2)

AGB=− ln
σ◦

(dB) − a

σ◦
gr(dB)

× 1

b
inversion function for (3).

When inverting, rules need to be defined for validation plots
having backscatter values that fall outside of the modeled
interval. The direct assignment of the minimum and maximum
biomass values measured in the area of interest was proposed in
[14] when the backscatter intensity values fall below or above
the modeled intervals, respectively. In this paper, however, such
values were simply discarded from inversion since our objective
was not to produce a spatially explicit biomass map but rather
to analyze the errors of different retrieval models. Retaining
such values would have defeated the purpose of the study
since the estimation error would have been a function of the
number and distribution of such outliers for each particular
parameterization. The models were applied to all data sets and
polarizations.
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2) Backward Parametric Models: Three backward paramet-
ric models [see (4)–(6)] were also used to retrieve biomass
levels, and their accuracy was estimated for each available study
area and SAR image at both HH and horizontal transmit and
vertical receive (HV) polarizations. A dual-polarization model
form was also used [see (6b)] to assess the potential advantages
of jointly using copolarized and cross-polarized information.
Backward models have the advantage that regression coefficient
estimation is straightforward and the statistical properties of the
estimates are well understood

AGBλ = a+ bσ◦
(dB) (4)

AGB = aebσ
◦

(5)
log (AGB) = a+ bσ◦

(dB) + cσ◦2
dB (6)

log (AGB) = a+ bσ◦
xx + cσ◦2

xx + dσ◦
xy(dB) + eσ◦2

xy(dB) (6b)

where
σ◦ backscatter coefficient (linear or decibel units);
σ◦

xy backscatter coefficient (decibel units) for xy
transmit/receive combination;

a, b, c, d, e model coefficients;
λ = 0.5.
The linear model relating the squared root (or similar power)

transformation of the biomass and the backscatter coefficient
[see (4)] was proposed in [17]. The model form and the in-
dependent variables included were obtained after an iterative
optimization process (see [17] for more details on model pa-
rameterization). For this paper, the parameter λ proposed in
[17] is used for single-polarized data. The next model [see (5)]
is an exponential type function. Such functions are frequently
used to model biomass change with increasing backscatter [18],
[23]. The model in (6) was proposed by Saatchi et al. [48]
and is based on backscattering information from fully polar-
ized systems that provide independent measurements of for-
est structure and biomass. The quadratic form of the model
reproduces the loss of radar backscatter sensitivity in higher
biomass forests. The model has been adapted to work with
single- and dual-polarized data sets by stripping out terms
related to polarizations not acquired by the ALOS PALSAR
sensor [see (6) and (6b)]. These modified models represent
roughly one or two scattering mechanisms, depending on the
polarization/s used (i.e., stem-surface/crown volume and crown
volume scattering for HH and HV polarizations, respectively).

The backward models were parameterized using least
squares optimization, and biomass retrieval was carried out over
the entire validation data set. It is noted that such models do not
limit biomass retrieval based on defined backscatter thresholds,
which results in a biomass value being computed for each
sample regardless of its backscatter.

3) Nonparametric Models: Three nonparametric models
(i.e., ensemble regression (ER), random forest (RF) regression,
and support vector machine (SVM) regression) were used to
estimate the biomass retrieval accuracy. Ensemble learning
techniques use multiple models to improve the predictive power
with respect to any of the constituent models by aggregating
their predictions. Multiple models are generated based on the
training data set and subsequently pruned and integrated. The
least square boost ensemble was used to incrementally build

the ensemble by training new model instances using weak
learners. The returned model structure was adjusted through
100 learning cycles and used in predicting responses to data.
RF regression [49] uses similar ensemble learning methods by
constructing a large number of decision trees from the training
data which are subsequently used to derive overall predictions
as the average response from all individually trained trees.
Compared with ER and RF regression, data sets used for SVM
regression [50] need to be rescaled and modified to achieve
accurate predictions. The produced model is also sensitive to
the SVM regression parameters. In this paper, SVM regression
was based on a radial basis kernel function (i.e., able to handle
nonlinear relationships), and the related parameters were opti-
mized by grid search. The values were scaled to the 0–1 in-
terval prior to model construction. The nonparametric models
were trained using single- or dual-polarization data as predictor
variables and the observed AGB as the corresponding response.
All models were parameterized using the entire biomass range
and applied to the validation data sets to compute the biomass
retrieval accuracy metrics.

C. Combined Parametric Models

To increase biomass estimation accuracy within the biomass
intervals of interest (0–100 t/ha) while retaining the overall
accuracy, a combination of backward and forward parametric
models was proposed. In the first instance, both forward (e.g.,
model 1) and backward (e.g., model 6) models are parameter-
ized, and the biomass is estimated independently. The biomass
values obtained from the backward model are retained only
within the physically realistic retrieval interval as parameterized
by the forward model (e.g., σ◦

veg and σ◦
gr). A backscatter

threshold corresponding to a user-defined biomass level (e.g.,
5, 10, and 30 t/ha) is calculated based on the parameterized for-
ward model. This backscatter threshold is subsequently used to
retain the final biomass values: 1) For backscatter values above
the threshold, the biomass estimates from the backward model
are retained, and 2) for backscatter values below the threshold,
the biomass estimates from the forward model are retained. By
changing the backscatter threshold, the relative importance of
the backward and the forward model, respectively, for the final
biomass estimation is controlled.

D. Error Analysis

Cross-validation techniques are often used to compare the
performance of different predictive models. Repeat random
subsampling with cross-validation was used to assess biomass
retrieval accuracy. To reduce the variability due to random
sampling effects, 25 rounds were performed by splitting the
data sets into training (60%) and validation (40%) samples.
During each round, the models were parameterized based on
the training samples and subsequently used to estimate the
biomass of the validation samples. Biomass retrieval accuracy
was described using four error metrics: the root-mean-squared
error (RMSE), the relative RMSE, the average error (bias), and
the correlation coefficient (r) between the measured and the
retrieved AGB. In addition, a relative estimation error (RE%)
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Fig. 2. Average L-band radar backscatter by biomass intervals for (left panel) Australian and (right panel) Spanish study areas. The vertical bars represent the
standard deviation of the mean.

was calculated for each validation sample [see (7)] and aver-
aged by biomass intervals

RE%=100∗|AGBobserved−AGBpredicted|/AGBobserved. (7)

Although the relative error metric suffers from insta-
bility when approaching zero biomass values (i.e., as the
denominator approaches zero the relative error approaches in-
finity), we consider its use valuable, particularly when assessing
the biomass error by retrieval intervals where other metrics (i.e.,
absolute error) are less meaningful. For example, an absolute
estimation error of 5 t/ha could be considered as acceptable for
higher biomass intervals (e.g., 50–100 t/ha) but would represent
a significant deviation from the true value at lower biomass
intervals (e.g., 0–10 t/ha).

The error metrics for biomass estimation were computed
for each SAR acquisition date and polarization from predicted
values and their corresponding observed values accumulated
over the 25 iterations. Such averages provided a measure of
model sensitivity to random sampling effects (i.e., the input
training data set). The standard deviation of the errors provided
a measure of random sampling effects on the retrieval accuracy.
In addition, the error metrics were averaged by study area (i.e.,
using all SAR acquisition dates) for the same polarization to
provide a synopsis of the expected retrieval accuracy for each
model. The standard deviation of the multitemporal averages
provided a measure of the temporal stability of the error metrics
(i.e., a measure of changing environmental condition effects).

IV. RESULTS

In semiarid environments, a large part of the scattering comes
from the forest floor (due to the open canopy structure and rel-
atively low biomass levels), and the environmental conditions
could strongly influence the scattering mechanisms. In this
paper, images acquired during dry and wet periods were used
to study the potential influence of such effects on the retrieval
accuracy. The smaller extent (16 km2) of the Australian study
site and the almost flat topography guaranteed little spatial
variations in the environmental conditions for each acquisi-
tion date. For the Spanish study site, however, such spatial

variation could be present due to the considerably larger area
(10 000 km2).

A. Analysis of the Backscatter–Biomass Relationship

The relationship between radar backscatter and biomass den-
sity was assessed using six biomass intervals. The first interval
(i.e., 0–10 t/ha) corresponds to sparsely vegetated areas where
the ground contribution is large. The second and third intervals
(i.e., 10–30 and 30–50 t/ha) correspond to an increasing pro-
portion of the volume scattering and a reduction of the ground
component due to signal attenuation, whereas for the re-
maining intervals (i.e., 50–75, 75–100, and > 100 t/ha), the
volume scattering component dominates and signal saturation
appears. The AGB levels for the sites used in this paper ranged
between 1.5 and 145.6 t/ha, with most of the plots being below
the maximum saturation limit of L-band estimated at 100 t/ha
[3]. Fig. 2 reports the mean value and standard deviation of
the backscatter for each biomass interval (in decibels) calcu-
lated for each data set and polarization in both study areas.
The spread of the measurements around the mean indicates
backscatter heterogeneity due to surface characteristics (i.e.,
soil moisture and surface roughness), forest structure, vege-
tation water content, and the sensitivity of the backscatter to
AGB. The total dynamic range was between 4 and 6 dB for
HH and HV polarizations, respectively. However, the dynamic
range between adjacent biomass intervals was significantly
lower. The highest value, 2–3 dB, was recorded between the
two lowest biomass intervals (0–10 and 10–30 t/ha). With
increasing biomass, the mean backscatter difference between
subsequent classes decreases with the highest biomass classes
being separated by less than 1 dB. The highest standard devia-
tion (2.5 dB) was recorded for the lowest biomass interval for
both polarizations which could be explained by a significant
influence of the underlying surface properties. With increasing
AGB, the backscatter variability decreased to less than 0.5 dB
for the highest biomass interval.

After rainfall events, backscatter increases by up to 3 dB
for the HH polarization and 1 dB for the HV polarization for
the Australian study area (see left panel of Fig. 2 for July 05,
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TABLE II
SATURATION POINT AND BIOMASS DENSITY BELOW SATURATION POINT

FOR AUSTRALIAN AND SPANISH STUDY AREAS. THE VALUES WERE

COMPUTED AS IN [12] AND REPRESENT AVERAGES FOR

ALL SAR ACQUISITION DATES

2010 with Acc.Pp. = 4.6 mm and August 20, 2010 with
Acc.Pp. of = 4.6 mm). For the Spanish study area, backscatter
levels after rainfall events increased by only 1 dB (see right
panel of Fig. 2 for June 03, 2008 with Acc.Pp. = 20.6 mm).
The smaller increase was likely caused by the spatial patterns
of rainfall due to the much larger area analyzed. Notably,
rainfall events did not affect backscatter dynamic range and
by-biomass-interval variability which was reflected in similar
biomass retrieval accuracies regardless of the environmental
conditions as demonstrated in the next sections. The estimated
saturation point and biomass density below saturation com-
puted as in [12] are presented in Table II. Different saturation
points were observed for the two study areas with higher values
being recorded for the Spanish data set. Such differences were
explained by the generally higher backscatter levels at both
polarizations observed for the Spanish data sets over forest
or other land cover types. The biomass density below satura-
tion was higher for the Australian study area by an average
of 18 t/ha.

B. Error Analysis for the Entire Biomass Range

Daily RMSE for all SAR data sets is presented in Fig. 3 for
single-polarized models. For each day, the RMSE was averaged
over the 25 independent iterations. The standard deviation was
calculated to provide a measure of result variability on the
samples selected for model parameterization. The RMSE varied
around 24 ± 1.9 t/ha and 21 ± 2.2 t/ha for the Australian
and Spanish study areas, respectively, at both polarizations.
When analyzed by model, the day-to-day change in RMSE was
usually below 2 t/ha, suggesting fairly stable retrieval accuracy
regardless of the environmental conditions for both study ar-
eas. Small daily changes of the standard deviation (< 2 t/ha)
also suggested that environmental conditions had little ef-
fect on biomass retrieval metrics. It is noted that similar re-
sults were obtained for the dual-polarization models (data not
shown).

The low sensitivity of the RMSE to environmental effects
suggested that overall error metrics could be computed for each
area, taking into account all SAR acquisition dates. Therefore,
average values for RMSE, relative RMSE, r, and estimation
bias were computed for each study area to provide a synopsis
of the expected retrieval accuracy for each model (see Fig. 4).
No consistent trend was observed among different models for
the RMSE and relative RMSE metrics. One model (model 3)
appeared to consistently outperform all remaining models, al-
though by small margins (3–4 t/ha and 7%–10% lower for

RMSE and relative RMSE, respectively), in both study areas
and for both polarizations. In general, the average relative
RMSEs were between 40% and 80%, which is comparable to
previously reported results [8], [16]. More interesting trends
were observed when analyzing the correlation between the
observed and the predicted biomass (r). Forward models con-
sistently provided the lowest r values in both study areas and
for both polarizations. Average r values over both study areas
and polarizations were 0.48 for the forward models, 0.61 for
the backward models, and 0.58 for the nonparametric models.
Similar trends were observed for the estimation bias with the
forward models having the highest bias. One model in partic-
ular, model 3, underestimated the biomass by an average of
10 t/ha. The smallest bias (< 1.5 t/ha) was observed for the
two nonparametric models based on ensemble regression (i.e.,
ER and RF). Using two polarizations consistently improved all
error metrics, although only by small margins. These results
support previous findings [17], [35] which found no significant
improvement in biomass estimation when using two polarized
models. However, two polarized nonparametric models (i.e.,
ER and RF) provided almost unbiased biomass estimates.

C. Error Analysis by Biomass Intervals

The relative estimation error (RE%) was further studied by
biomass intervals (see Fig. 5). The highest estimation error
was consistently associated with the lowest biomass interval
(0–10 t/ha), despite its higher dynamic range. With increasing
biomass, the errors decreased significantly for biomass intervals
around the saturation point after which the estimation error
starts increasing. Similar results were obtained when simulta-
neously using two polarizations (see Fig. 6). The higher relative
estimation error observed for the lowest biomass interval could
be the result of two factors: the high signal variability due to
the influence of local surface conditions (i.e., roughness and
moisture) and the instability of the RE% metric as explained
in the previous section. Modeling studies showed that, in low
biomass areas, direct scattering from the ground dominates
the signal [51] with the volume scattering having a much
lesser role. The higher backscatter standard deviation for the
lowest biomass interval (i.e., 0–10 t/ha) observed for our study
areas (see Fig. 2) supports previous findings, suggesting that
biomass estimation errors in this interval depend mostly on the
local surface conditions. Note that forward models provided
lower estimation errors for the lowest biomass interval, partially
due to the model inversion constraints which limit retrieval
below a certain backscatter threshold (e.g., σ◦

gr(dB) and σ◦
gr).

When using backward and nonparametric models, however, no
constraints are imposed with biomass retrieval being carried out
for all validation plots.

D. Error Analysis for Combined Model Retrieval

Fig. 7 presents the results of a combined retrieval method
using initial estimates from forward (model 1) and backward
(model 6) models. Similar results, not shown, were obtained
when using other combinations of forward and backward mod-
els. A backscatter threshold corresponding to 10 t/ha was used
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Fig. 3. Biomass estimation error (RMSE) for each SAR data set for (left panels) Australian and (right panels) Spanish study areas. Upper panels show HH
polarization while bottom panels show HV polarization.

to separate the backscatter values and retain the corresponding
biomass estimates: For backscatter below the threshold, the
biomass estimated from the forward model was retained, while
for backscatter above the threshold, the biomass estimated
by the backward model was retained. The improvement in
retrieval accuracy was evident when compared to initial models,
particularly when looking at specific intervals. Using the com-
bined approach, the higher accuracy of the model proposed
in [14] was largely retained for the lowest biomass levels
(0–30 t/ha) while increasing the estimation accuracy for the
higher biomass levels (30–100 t/ha) by around 10%–20% with
respect to the forward models. In addition, the overall error in
the 10–100 t/ha interval was typically improved with respect to
the forward model by 5%–15%, depending on the study area
and polarization. One should notice, however, that such im-
provements come at the cost of discarding some of the backscat-
ter values before retrieval. Therefore, such retrieval strategies
would imply labeling pixels outside the modeled interval (as
estimated by forward models) as nonretrievable, which would
result in patchy biomass maps. For our study areas, the num-
ber of values discarded varied up to 25% of the total num-
ber of samples.

V. DISCUSSIONS

Study areas with different species composition were selected
to assess if similar trends and estimation errors are obtained
for a variety of situations and independently of the ground
sampling strategy. Analyzing a relatively small forest (16 km2)
with limited species variability (i.e., Australian site) allowed
the exclusion of potential errors due to spatial variability in
environmental conditions. The Spanish study area was instead
characterized by species heterogeneity and spatial variability
since a regional sized data set was used (10 000 km2).

The backscatter dynamic range for both study areas was
lower when compared to values reported in [11] while it was

close to the values reported in [17]. Note that backscatter
dynamic range is significantly influenced by the selection of the
low biomass sample plots. Frequently, such plots are located in
nonforested areas such as bare agricultural fields which could
present significantly lower backscatter due to reduced surface
roughness which favors specular scattering. For both study
areas, more than two-thirds of the dynamic range corresponded
to the lowest biomass interval (0–30 t/ha), while for the re-
maining interval (30–100 t/ha), the dynamic range was around
1–2 dB, depending on polarization, which could explain, to a
certain extent, the difficulties encountered by many stud-
ies when retrieving biomass using L-band backscatter. The
backscatter range at which signal saturation occurs was within
previously reported intervals [11], [12], although such values
are likely to fluctuate with sensor calibration and local condi-
tions. The biomass density below saturation point was higher
for the Australian study area (57 t/ha) when compared to the
Spanish study area (39 t/ha). Nevertheless, both values were
within previously observed ranges [11], [12], [24].

Reported biomass retrieval accuracy metrics are frequently
limited to RMSE with fewer authors providing information
on the relative RMSE, the estimation bias, or the correlation
between predicted and observed values. Although RMSE is an
important metric, by itself, it is not sufficient for a comprehen-
sive error characterization. Relative RMSE provides additional
information of estimation precision since the performances of
models applied over variable biomass ranges could be more
easily compared. Additional metrics such as the estimation bias
and the correlation between predicted and observed values (r)
could be useful for selecting the most appropriate model since
different models could present similar RMSE or relative RMSE
values (see Section IV). In this paper, the observed RMSE was
around 20 t/ha regardless of the study area with the relative
RMSE varying around 40%–50% for the Australian study area
and 60%–80% for the Spanish study area. The difference in rel-
ative RMSE values between the two study areas was attributed
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Fig. 4. Model-dependent estimation error metrics (RMSE, relative RMSE, r, and bias). The metrics are given for each model and polarization for the
(left) Australian and (right) Spanish study areas. The values represent averages of all SAR acquisition dates. The vertical bars represent the standard deviation
among individual days. Two equations were used to produce the result labeled Model 6: Single-polarized models were based on (6) while dual-polarized models
were based on (6b), which adds two terms corresponding to the second polarization.

to the larger sample variability at the Spanish study site due
to the increased number of species and the much larger area
covered by the forest inventory (i.e., spatial variability of the
environmental conditions). The correlation between observed
and predicted values (r) was between 0.4 and 0.7, depending
mostly on polarization and retrieval model. The estimation
bias was generally below 5 t/ha except for model 3 which
underestimated the biomass level by an average of 10 t/ha.

This paper also showed that forest biomass retrieval accuracy
from radar backscatter observations is highly variable within
the L-band sensitivity range. In particular, considerably larger
errors were observed for all models at both ends of the sensitiv-
ity interval, i.e., when approaching 0 and 100 t/ha. Despite the
high backscatter dynamic range, forest biomass retrieval was

most likely hindered by surface properties for the low biomass
levels (i.e., < 30 t/ha). If surface properties are not taken
into account, incorrect estimation is expected in low biomass
areas, particularly for long wavelengths. For midrange biomass
intervals (30–75 t/ha), better retrieval accuracy (20%–35%) was
achieved by using backward parametric models with nonpara-
metric and forward models providing slightly higher estimation
errors (i.e., 30%–40% and 40%–50%, respectively). At higher
biomass levels (i.e., > 100 t/ha), signal saturation could be
overcome by using longer wavelengths. The use of P-band data
could increase the saturation point to about 200 t/ha [3], [5]
and thus increase the retrievable biomass interval. However, the
higher penetration at P-band would also increase the surface
scattering contribution to the total backscatter at midrange
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Fig. 5. Relative biomass estimation error (RE%) by biomass intervals for single-polarized (HH polarization) models for the (left panel) Australian and (right
panel) Spanish study areas. The values represent averages of all SAR acquisition dates.

Fig. 6. Relative biomass estimation error (RE%) by biomass intervals for dual-polarized models. (Left panel) Australian study area and (right panel) Spanish
study area. The values represent averages of all SAR acquisition dates. The results labeled Model 6 were based on (6b).

Fig. 7. Relative biomass estimation error (RE%) using a combined model for the Australian study area. Left panel represents HH polarization, and right panel
represents HV polarization. The values represent averages of all SAR acquisition dates.

biomass densities. Without information on surface character-
istics from SAR or ancillary sensors, forest biomass retrieval in
degraded or regenerating forests could bear significant errors.

Using forward semiempirical models (e.g., model 1), the
main scattering components can be estimated as well as the sig-
nal attenuation through the forest canopy which allows the
examination of the relative importance of ground and volume
scattering components. A further advantage of such methods
resides in the opportunity to limit the biomass retrieval to
a physically valid backscatter interval which decreases the
estimation error at low biomass levels. The main drawback of
the semiempirical and empirical forward models is the need for
inverse relationships to retrieve biomass values. This has a
significant influence on the retrieval errors since the model
parameterization is based on least squares regression which
minimizes the sum of squared distances from each observation
to the fitted line. Forward models parameterize the response
in backscatter with increasing biomass, hence minimizing the
errors of the response variable backscatter. For the backward

models, however, this distance corresponds to the response
variable AGB, which explains the generally higher estimation
accuracies (with the exception of the lowest biomass intervals).
However, none of the studied models consistently outperformed
the remaining ones when considering overall values for each
error metric. Nonetheless, some general conclusions could be
drawn since backward and nonparametric models consistently
outperformed forward models when analyzing the correlation
between predicted and observed values, while two of the
nonparametric models (i.e., ER and RF) presented almost no
estimation bias. When analyzing retrieval errors by biomass
intervals, it was evident that forward models were more ac-
curate at low biomass levels while backward models showed
considerably better results for intermediate biomass levels. The
combined retrieval strategy proposed in this paper has taken
advantage of the different model strengths to decrease the
overall and by-biomass-interval RMSEs by up to 5%–15%
and 10%–20%, respectively. Such a retrieval strategy can be
used to gear the retrieval toward obtaining the most accurate
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biomass estimate at either ends of the sensitivity spectrum,
depending on the specific application. For example, given a pre-
existing classification, one could gear the algorithm for higher
accuracies at low biomass intervals in regrowth areas while
maintaining high retrieval accuracies for the higher biomass
levels in mature forests.

Parametric and nonparametric models implicitly incorporate
the dielectric properties of the vegetation and the underlying
surface [52]. Since these properties are known to vary in space
and time, relationships derived for a specific data set are not eas-
ily transferable—one of the major drawbacks of such retrieval
methods. Even for similar environmental conditions (i.e., dry),
significantly different model parameters were found between
study areas, acquisition dates, and polarizations, which suggests
that estimation errors would increase when applying models
parameterized for different satellite data sets or regions. Nu-
merical models [28], [29] have the potential to improve model
transferability between areas by taking into account additional
parameters such as surface properties and vegetation structural
parameters (e.g., water content, leaf/branch orientation, etc.).
Unfortunately, such detailed information is not readily avail-
able from existing field campaigns or forest inventories and
so has to be retrieved from independent sources. In addition,
interactions between microwaves and media depend not only
on the easier-to-generalize vegetation structural properties (e.g.,
length and orientation of branches, leaf shape and size, etc.) but
also on the vegetation water content which changes along the
canopy, thereby partly explaining the relatively low prediction
accuracy (RMSE of 1.5 to 8 dB for HH and HV polarizations,
respectively) obtained from such approaches. With a dynamic
range for dense vegetation (i.e., > 30 t/ha) of only 2–3 dB, the
numerical models lack the accuracy needed for forest biomass
retrieval, making parametric and nonparametric models still
relevant for the remote sensing community.

When compared to previous studies, the results were often
divergent. For example, in [14], the first model (model 1) was
used to retrieve biomass from L-band HH data over conifer-
ous dominated boreal forests with estimation accuracy metrics
ranging between 36–102 t/ha (RMSE), 25%–51% (relative
RMSE), and 0.56–0.87 (r). While the RMSE observed in this
paper was considerably lower, most likely due to the lower
biomass levels, the relative RMSE and r metrics were slightly
worse. The reduced accuracy could be related to the smaller
sample size (i.e., 0.25 ha) used in this paper when comparing to
the significantly larger sample plots (i.e., 0.5 to 20 ha or larger)
used in [14]. Smaller sampling plots are related to an increased
forest variability which, in turn, negatively affects biomass
retrieval accuracy since similar backscatter values could stem
largely from different forest structures. In [17], a linear model
(model 4) was used to retrieve biomass over hemiboreal conif-
erous forests, while in [18], an exponential model (model 5)
was used over tropical forests. The RMSE and relative RMSE
observed were around 70–80 t/ha and 40%–45% (HH and
HV polarizations) for the hemiboreal forests. For the tropical
forests, the RMSE ranged from 100 to 150 t/ha with a negative
bias around 50 t/ha. Again, the much higher RMSE observed
in these studies was most likely related to mean biomass values
in excess of 150 t/ha. It is noted that it is difficult to pinpoint

the origin of result incongruence even when applying the same
model since previous studies were carried out over forests
greatly exceeding the widely acknowledged L-band biomass
sensitivity interval (i.e., < 100 t/ha), using plots of varying size
and with reference data of variable accuracies (i.e., up to 95-t/ha
estimation error for reference biomass values [18]). In addition,
for the forward models, rules have to be decided for backscatter
values outside of the retrievable interval which further distort
the error metrics and, thus, any comparison.

In earlier studies, radar backscatter was shown to provide
better relationships with biomass levels at coarser spatial res-
olution and/or within a multitemporal approach [53], [54].
Such studies demonstrated that SAR-based biomass retrieval
could achieve the precision required for global, continental, or
regional scale (i.e., boreal or tropical region) applications. The
relatively high accuracy obtained in such studies was related
to the low spatial resolutions at which such regional maps
are produced (1–10-km pixel spacing), which dramatically im-
proves the accuracy of both the backscatter coefficient estimates
(i.e., high number of looks) and field biomass sampling (i.e.,
decreased forest variability). The approach described in [54]
could be applied to the wealth of SCANSAR data available
from ALOS PALSAR, but such an approach would produce
appropriate results only when estimates at coarse spatial reso-
lution are required. However, for forest management purposes,
high spatial resolution (i.e., 100-m pixel spacing or better)
products are necessary since forest stands can be as small as
1 ha in highly fragmented areas. The results here have shown
that relatively high estimation accuracy (down to 20%) can be
achieved at plot level at least for some biomass intervals. At
stand level, improvements of the estimation errors are expected
since such analysis would benefit from the smaller errors as-
sociated to lower forest spatial variability, decreased speckle,
and more accurate field estimates since larger areas proved to
be less prone to errors due to the expansion of field-measured
forest parameters.

VI. CONCLUSION

This paper has analyzed the SAR backscatter response from
two forested areas located in semiarid environments and studied
overall and by-biomass-interval retrieval errors using a range
of parametric and nonparametric models. The sensitivity of
L-band radar backscatter to variations in AGB over areas
of similar environmental conditions but with different forest
species composition and field sampling strategies was explored,
demonstrating that our findings were not of random nature
but genuine trends independent of the local conditions. For
both study areas, the backscatter coefficient increased asymp-
totically with biomass from the minimum values associated
with sparsely vegetated areas. Although overall dynamic ranges
varied within expected values, different trends were observed
when analyzing by biomass intervals, with most of the dynamic
range corresponding to low biomass intervals. For the remain-
ing biomass intervals up to the L-band saturation point, the
backscatter dynamic range was considerably smaller.

This paper also showed that the retrieval accuracy of forest
biomass from L-band radar backscatter observations is highly
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variable when different biomass intervals are considered. In
particular, larger errors were observed at both ends of the
L-band biomass sensitivity interval. At very low biomass levels,
information on surface properties is needed to increase the
estimation accuracy, whereas at higher biomass levels, signal
saturation dominates and the estimation accuracy starts to de-
grade.

Overall, biomass retrieval errors were largely similar for the
entire range of parametric and nonparametric models studied.
However, forward models consistently provided the lowest
correlation between the observed and the predicted biomass
while nonparametric models generally provided unbiased esti-
mation. When analyzing by biomass intervals, forward models
consistently outperformed backward and nonparametric models
at low biomass levels (i.e., < 30 t/ha), while at intermediate
biomass levels (30–75 t/ha), backward models were the most
accurate (relative RMSE of 20%–35%), closely followed by
nonparametric models. To increase biomass retrieval accuracy,
a strategy based on combining different model types was pro-
posed. Such a retrieval strategy had the potential to reduce both
overall and by-biomass-interval errors by up to 15%–20%.
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