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Abstract—The National Airborne Field Experiment 20056
(NAFE’05) and the Campaign for validating the Operation of7
Soil Moisture and Ocean Salinity (CoSMOS) were undertaken in8
November 2005 in the Goulburn River catchment, which is located9
in southeastern Australia. The objective of the joint campaign was10
to provide simulated Soil Moisture and Ocean Salinity (SMOS)11
observations using airborne L-band radiometers supported by12
soil moisture and other relevant ground data for the following:13
1) the development of SMOS soil moisture retrieval algorithms;14
2) developing approaches for downscaling the low-resolution data15
from SMOS; and 3) testing its assimilation into land surface16
models for root zone soil moisture retrieval. This paper describes17
the NAFE’05 and CoSMOS airborne data sets together with the18
ground data collected in support of both aircraft campaigns. The19
airborne L-band acquisitions included 40 km × 40 km coverage20
flights at 500-m and 1-km resolution for the simulation of an21
SMOS pixel, multiresolution flights with ground resolution rang-22
ing from 1 km to 62.5 m, multiangle observations, and specific23
flights that targeted the vegetation dew and sun glint effect on24
L-band soil moisture retrieval. The L-band data were accom-25
panied by airborne thermal infrared and optical measurements.26
The ground data consisted of continuous soil moisture profile27
measurements at 18 monitoring sites throughout the 40 km ×28
40 km study area and extensive spatial near-surface soil moisture29
measurements concurrent with airborne monitoring. Additionally,30
data were collected on rock coverage and temperature, surface31
roughness, skin and soil temperatures, dew amount, and vege-32
tation water content and biomass. These data are available at33
www.nafe.unimelb.edu.au.34

Index Terms—Microwave radiometry, National Airborne Field35
Experiment (NAFE), passive microwave, soil moisture, Soil Mois-36
ture and Ocean Salinity (SMOS).37
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I. INTRODUCTION 38

KNOWLEDGE of the soil moisture variability at a range of 39

spatial and temporal scales is a constraining factor for the 40

accurate simulation and prediction of environmental processes. 41

Event-based hydrological modeling and flood forecasting, for 42

example, require correct definition of the antecedent soil mois- 43

ture condition [1]. At larger scales, the spatial distribution 44

of soil wetness state is an important boundary condition to 45

general circulation model predictions [2] both acting as a forc- 46

ing and reacting to the forcing of meteorological phenomena 47

[3]. The European Space Agency’s (ESA’s) Soil Moisture and 48

Ocean Salinity (SMOS) mission will provide the first-ever 49

dedicated global near-surface soil moisture data, which will 50

provide the data needed to improve the environmental predic- 51

tion. Moreover, the mission will carry the first-ever spaceborne 52

2-D interferometric radiometer operating at 1.4 GHz (L-band) 53

with V- and H-polarized observations at a range of incidence 54

angles [4], [5]. 55

The utilization of this novel technique on a spaceborne 56

platform poses several scientific questions yet to be answered. 57

First, the implications of applying the L-band soil moisture 58

retrieval algorithms developed from high-resolution or point 59

measurements to large-scale heterogeneous scenes need to be 60

assessed. Second, the theoretically demonstrated potential of 61

the SMOS multiangle configuration for the retrieval of multiple 62

land surface parameters needs verification and development. 63

Third, methods need to be developed to overcome the mismatch 64

between the spatial scale and the vertical depth at which the 65

SMOS soil moisture information will be derived, and those 66

at which this information is needed for many hydrological 67

applications [6], [7]. Consequently, the utilization of data from 68

the SMOS mission requires coordinated airborne and ground 69

data collection campaigns to verify and refine the soil moisture 70

retrieval algorithms. Moreover, the approaches for downscaling 71

the low-resolution SMOS data and the assimilation techniques 72

for root zone soil moisture retrieval need to be developed and 73

verified to make optimal use of the SMOS data when they 74

become available. 75

This paper describes the data collected during the joint 76

National Airborne Field Experiment 2005 (NAFE’05) and the 77

Campaign for validating the Operation of SMOS (CoSMOS), 78

which were undertaken in the Goulburn River experimental 79

catchment of southeastern Australia in November 2005. These 80

coordinated airborne campaigns were specifically designed to 81
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address the key science questions outlined above. To this end,82

relevant aircraft measurements were concurrently made with83

the ground observations of soil moisture and other related84

data. This data set is complementary with others around the85

world, including the series of the Southern Great Plains and86

the Soil Moisture Experiment campaigns in the United States87

(http://hydrolab.arsusda.gov) [8]–[10] and the European Sur-88

face Monitoring Of the Soil Reservoir Experiment [11], which89

add to the global soil moisture remote-sensing database.90

The airborne data were collected by two microwave ra-91

diometers, i.e., the Polarimetric L-band Multibeam Radiometer92

(PLMR) operated by the NAFE team and the EMIRAD L-bandAQ1 93

polarimetric radiometer [12] operated by the CoSMOS team.94

The NAFE ground sampling and aircraft monitoring activities95

were undertaken across a four-week period, which started on96

October 31 and ended on November 25. The CoSMOS flights97

started on November 12, which overlaps with the NAFE opera-98

tions for two weeks, and continued until December 9. Favorable99

meteorological conditions during the campaign period allowed100

the monitoring of a long drying period that followed a heavy101

rainfall on October 31 and November 1. Further scattered102

rainfall occurred toward the end of the campaign. The observed103

near-surface soil moisture contents ranged from full saturation104

to very dry conditions.105

The analysis of this data set is currently underway at various106

institutions around the globe and includes the following: the107

investigation of the scaling properties of L-band soil moisture108

retrieval schemes for the operational downscaling of SMOS109

information to relevant hydrological and agricultural scales110

[13]; the testing of multisensor approaches (thermal, optical,111

and passive microwave) for soil moisture retrieval from the112

L-band [14]; and the analysis of the effect of sun glint on113

L-band observations and its effect on future SMOS soil mois-114

ture retrieval [15]. The data are being made available to inter-115

ested parties to ensure that this extensive and unique data set is116

fully exploited in preparation for the SMOS data stream.117

This paper is structured as follows. First, the general char-118

acteristics of the catchment and the study area are described.119

A summary of the data set is then presented starting with the120

ground data and ending with both NAFE and CoSMOS airborne121

data descriptions.122

II. STUDY SITE DESCRIPTION123

The Goulburn River experimental catchment has been heav-124

ily instrumented for soil moisture, rainfall, and runoff since125

2001, and a complete description of the catchment and associ-126

ated long-term monitoring is given in [16]. Consequently, only127

the most pertinent catchment and long-term monitoring infor-128

mation is given here, with an emphasis on the study site and129

data collection descriptions that are specific to the campaigns130

described herein.131

The Goulburn River is a tributary to the Hunter River in132

New South Wales, Australia. This 6540-km2 experimental133

catchment extends from 31◦46′S to 32◦51′S and 149◦40′E to134

150◦36′E with elevations ranging from 106 m in the flood-135

plains to 1257 m in the northern and southern mountain ranges136

(Fig. 1). The terrain slope has a median of 8% and a maximum137

Fig. 1. Overview of the Goulburn catchment and permanent monitoring sites,
the NAFE’05/CoSMOS study area, focus farms, campaign monitoring, and
flight regions.

of 71%. The Goulburn River generally runs from west to east 138

with tributaries in a predominantly north–south orientation. 139

Much of the original vegetation has been cleared to the north 140

of the Goulburn River, where grazing and cropping are the 141

dominant land uses. In contrast, the southern portion of the 142

catchment is largely uncleared (with extensive areas covered 143

by forest). The soils in the area are primarily basalt-derived 144

clays in the north, whereas the south is dominated by sandstone- 145

derived sandy soils. The general climate within the region can 146

be described as subhumid or temperate, with an average annual 147

rainfall of approximately 650 mm and temperatures varying 148

from a monthly mean maximum of 30 ◦C in summer to a 149

monthly mean minimum of 2 ◦C in winter [16]. 150

The aircraft and ground operations were concentrated on a 151

40 km × 40 km area in the northern part of the catchment 152

(see Fig. 1). This area was chosen to represent a single SMOS 153

pixel and is located in the mostly cleared northern part of 154

the catchment for its moderate-to-low vegetation cover and 155

concentration of soil moisture monitoring stations, which make 156

it a candidate SMOS verification site. The area is characterized 157

by a gently rolling landscape with mixed grazing and cropping 158

land use. 159

There are two weather stations and 18 soil moisture profile 160

stations within the area, with seven of the soil moisture stations 161

concentrated in a 150-ha study catchment at the Stanley farm 162

and the remainder uniformly distributed across the area. The 163

area was logistically divided into two subareas, i.e., the Krui 164

and Merriwa study areas, which are defined by the bound- 165

aries of two subcatchments formed by the Krui and Merriwa 166

Rivers. Moreover, the farms that host eight of the soil moisture 167
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Fig. 2. Example of ground-sampled near-surface soil moisture maps (vol/vol). (a) Regional sampling on November 7, 2005. (b) Cullingral focus farm on
November 4, 2005. The boundaries of the focus farms are in bold black lines, the high-resolution sampling area is outlined with white dashed lines, and the
NAFE’05 study area is shown in black dashed lines.

monitoring stations were selected as focus farms for ground168

sampling and high-resolution aircraft monitoring. These farms169

were selected as characteristic of the land cover and soil types170

present in the study area, and are indicated in Fig. 1. These171

farms range in size from 200 ha to nearly 7 km2.172

III. GROUND DATA173

The Goulburn River experimental catchment has been instru-174

mented with long-term soil moisture profile, rainfall, and runoff175

monitoring infrastructure since 2001 [16]. These sites were176

upgraded for near-surface soil moisture, temperature, and more177

extensive rainfall monitoring in preparation for the campaign.178

Moreover, eight of these monitoring sites were temporarily179

upgraded with thermal infrared (TIR) towers, near-surface soil180

temperature profiles, and leaf wetness sensors for the period of181

October 21 to November 27, 2005.182

Spatial ground sampling was concentrated in the 40 km ×183

40 km region and eight focus farms, with the near-surface soil184

moisture data collected across the region and the farms at a185

range of spatial scales from 6.25 m to 2 km. Additionally, data186

were collected on land cover, rock coverage and temperature,187

surface roughness, skin and soil temperature, dew amount, and188

vegetation water content.189

A. Near-Surface Soil Moisture Monitoring190

The soil moisture within the top 5 cm of the soil profile191

was monitored coincident with each aircraft flight either across192

the entire area or across the focus farms, which depends193

on the specific flight type. Additionally, the measurements194

were continuously made at individual monitoring sites (see195

Section III-B).196

On days when the entire 40 km × 40 km area was covered197

by aircraft measurements, the ground teams sampled the soil198

moisture on a grid of approximately 2 km, which was adapted to199

the network of accessible roads in the area. The measurements200

were made at a sufficient distance from the road in representa-201

tive locations so as to avoid anomalous readings. Measurements202

of the top 5-cm soil moisture content were undertaken using203

an innovative Hydraprobe Data Acquisition System developed204

by The University of Melbourne that integrates a Global Po-205

sitioning System and soil moisture sensor with a Geographic206

Information System [17]. A site-independent calibration of the 207

Stevens Water Hydraprobe sensor used by this system was 208

developed using gravimetric samples in the field and laboratory, 209

and indicated that the data are accurate to within ±3.5% vol/vol 210

[18]. An example of the resulting regional soil moisture map is 211

shown in Fig. 2. 212

On all the other dates, the sampling was focused on two 213

of the focus farms in the respective subcatchment of the 214

40 km × 40 km area being covered by multiresolution flights, 215

with each farm mapped one to two times every week. The 216

very high resolution sampling was concentrated on a 150 m × 217

150 m area, where the soil moisture was measured at 12.5-m 218

(outer section) and 6.25-m (75-m inner square) spacing. The 219

high-resolution areas on each farm were selected to capture 220

the local spatial variability of the near-surface soil moisture 221

associated with changes in vegetation cover, soil type, or mi- 222

crotopography. The area surrounding the very high resolution 223

sampling areas was sampled at intermediate resolutions (125- 224

to 250-m spacing). The remaining extent of the farm area was 225

sampled at coarser resolution (500-m and/or 1-km spacing). 226

The relative extent of the areas sampled at each resolution 227

was optimized by maximizing the coverage at a finer scale 228

while providing that the entire farm area was covered within 229

a daily time window. This nested grid system provided very 230

fine resolution soil moisture measurements for the validation of 231

the high-resolution PLMR pixels, as well as characterizing the 232

spatial variability of near-surface soil moisture from the very 233

local scale, out to the paddock and farm scale. 234

B. Long-Term Soil Moisture Profile Stations 235

The continuous logging of near-surface and root zone soil 236

moisture to 90-cm depth, together with the soil temperature, 237

was ensured during the campaign by the existing Goulburn 238

River experimental catchment monitoring network (see Fig. 1), 239

which provides verification data for root zone soil moisture 240

retrieval from the assimilation of remotely sensed data. A total 241

of 26 monitoring sites were operating during the campaign. Of 242

those, 18 were distributed across the study area at locations 243

chosen for typical vegetation, soil, and topographic aspect so 244

that they represented catchment average soil moisture loca- 245

tions. Note that seven of these sites were concentrated in a 246

150-ha study catchment at the Stanley farm, whereas the others 247
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Fig. 3. Schematic of the Goulburn River experimental catchment weather and
soil moisture stations. The large box includes the instrumentation typically
installed at weather stations, whereas the smaller internal box shows the
instruments typically installed at soil moisture monitoring sites. The additional
NAFE instrumentation is shown in the left box.

Fig. 4. Example of the soil moisture and rainfall time series data collected at
the soil moisture monitoring sites during the campaign.

were uniformly distributed across the area. Additionally, two248

automatic weather stations located in the area recorded meteo-249

rological data during the campaign [16].250

Each of the soil moisture sites had up to three vertically251

inserted Campbell Scientific CS616 water content reflectome-252

ters over depths of 0–30, 30–60, and 60–90 cm, respectively,253

together with a Stevens Water Hydraprobe, which measures254

the soil temperature at 2.5 cm and the soil moisture in the255

0- to 5-cm layer of soil. A typical installation for these sites256

is shown in Fig. 3, whereas Fig. 4 displays an example of the257

soil moisture and rainfall time series collected at one of the258

sites during the campaign period. The CS616 reflectometers259

were calibrated against both laboratory and field measurements260

(Rüdiger et al., manuscript in preparation, 2007).261

C. Additional NAFE Monitoring Stations262

Eight of the existing monitoring stations were supplemented263

with additional sensors for the duration of NAFE’05 (see264

Fig. 5). The primary purpose of this supplementary monitoring265

was to provide information on leaf wetness in response to266

dew and precipitation, and develop relationships between TIR267

observations and near-surface soil temperature. Consequently,268

Fig. 5. Additional instrumentation installed during NAFE’05. The map shows
the Goulburn River experimental catchment locations at which TIR, soil
temperature sensors at 1, 2.5, and 4 cm (temperature profile), and leaf wetness
sensors were temporarily installed during November 2005.

the eight stations were all supplemented with soil temperature 269

profile measurements with sensors at 1, 2.5, and 4 cm (Unidata 270

6507A/10 sensors), which are duplicated in most cases. At four 271

of these stations, TIR radiometers (Ahlborn Thermalert TX or 272

Everest Interscience Inc. Infrared Temp Transducers, Model 273

4000) were installed on 2-m-high towers (schematic of the 274

setup is shown in Fig. 3). One of these was located at a bare soil 275

site, whereas the other three were distributed among dominant 276

vegetation types in the area (lucerne, wheat, and native grass). 277

The leaf wetness sensors (Measurement Engineering Australia 278

2040) were installed at the four monitoring stations located 279

at focus farms in the Merriwa area, where a dew-effect flight 280

was undertaken, and at two focus farms in the Krui study area 281

(Pembroke and Stanley) to check the spatial variability of dew 282

across the entire area. 283

A specific station was set up for rock temperature monitoring 284

to provide data for the analysis of the effect of surface rock 285

on L-band passive microwave emission. The station had four 286

Unidata 6507A/10 thermocouples embedded in the surface 287

layer of the rock at different locations and was installed at the 288

Stanley focus farm. 289

D. Vegetation Data 290

On each farm, the spatial variability of vegetation biomass 291

and water content was characterized by collecting between four 292

and sixteen 0.5 m × 0.5 m quadrant samples across the high- 293

resolution soil moisture sampling area that is supported by a 294

minimum of five quadrant samples of the dominant vegetation 295

types across the farm. This was undertaken once a week at 296

fixed locations to monitor the temporal changes in vegetation 297
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biomass and water content. On all the other days, the vegetation298

water content samples were collected from two corners of the299

high-resolution areas as a check on the temporal changes of the300

farm vegetation water content. On the two dates when an early301

morning dew flight was undertaken, two further vegetation302

water content samples were collected for the farm reference303

vegetation at first light to estimate the amount of vegetation dew304

by comparison with the samples taken later during the day.305

The vegetation reflectance and the leaf area index were also306

measured for the high-resolution areas of each focus farm307

with the objective to develop relationships for vegetation water308

content and biomass estimation. An Exotech Inc. LAI-2000309

and an Exotech Inc. Hand Held Radiometer 100BX were310

used to measure, respectively, the leaf area index and the311

normalized difference vegetation index at 50-m spacing within312

the 150 m × 150 m high-resolution soil moisture sampling313

areas. This was done at least once during the campaign at314

each farm.315

E. Other Data316

The supporting ground data that were collected during the317

campaign included volumetric soil samples, surface roughness318

measurements, vegetation type and land use classification, sur-319

face rock cover, and leaf wetness estimates. The top 5-cm320

volumetric samples of soil were collected across the study area321

for both soil textural analysis and calibration of the Stevens322

Water Hydraprobe. A total of 20 samples were collected at323

each focus farm, which are aimed at characterizing the different324

soil types and wetness conditions across the farm. On two325

dates, further soil samples were collected across the entire326

study area, which makes a total of 120 samples. The soils were327

oven dried for 24 h to calculate the thermogravimetric water328

content.329

The surface roughness was estimated once during the cam-330

paign at a minimum of four locations on each focus farm to331

capture the different roughness characteristics according to land332

cover type. Two 1-m-long roughness profiles were recorded333

for each measurement location, i.e., one north–south and one334

east–west oriented.335

The dominant vegetation type, land use, and surface rock336

cover were recorded at each soil moisture sampling location.337

This was undertaken for both regional and farm sampling grids.338

The presence of dew was visually estimated and daily recorded339

as no dew, moderately wet, or very wet to support the leaf340

wetness measurement made at the monitoring stations.341

IV. AIRCRAFT DATA342

The NAFE and CoSMOS aircraft flights were carried out by343

the following two concurrently operating aircraft: 1) a Diamond344

ECO-Dimona from Airborne Research Australia national facil-345

ity, which is equipped with the NAFE team-operated PLMR (an346

imaging instrument) developed by ProSensing, and 2) an Aero-347

Commander 500S Shrike also operated by Airborne Research348

Australia, which carries the CoSMOS team-operated EMIRAD349

(a line instrument) developed by the Technical University of350

Denmark.351

TABLE I
PLMR AND EMIRAD CHARACTERISTICS

A. Instrument Characteristics 352

The two microwave radiometers operate at the same fre- 353

quency. The main difference between the two is in the aperture, 354

which results in different ground spatial resolutions, swath cov- 355

erage, and measurement characteristics. The key characteristics 356

of these two radiometers are compared in Table I. 357

1) PLMR: The PLMR is a dual-polarized L-band radiome- 358

ter. The small instrument size and weight enabled the use of a 359

light aircraft as the observing platform, which makes it a suit- 360

able low-cost and flexible tool for environmental monitoring. 361

PLMR uses six pushbroom patch array receivers with incidence 362

angles of ±7◦, ±21.5◦, and ±38.5, and measures both V- and 363

H-polarized brightness temperatures (TB) for each beam using 364

a polarization switch. The six beams can be oriented either 365

across track (image) or along track (multiangle). The change 366

between these configurations was achieved in NAFE’05 by 367

manually rotating the instrument through 90◦ prior to multi- 368

angle flights so that the beams pointed forward/backward with 369

respect to the aircraft axis. The reduced antenna beamwidth 370

coupled with an ability to fly low and slow allowed unprece- 371

dented ground spatial resolution with a footprint size of ap- 372

proximately 50 m for a 150-m flying height (3-dB beamwidth). 373

The aircraft payload also included an FLIR S60 thermal imager 374

with 80◦ field-of-view lens carried on all flights and a Canon 375

EOS 1Ds 11 megapixel digital camera specifically installed for 376

a single aerial photography flight. 377

The calibration of the radiometer was performed daily during 378

the campaign against warm (ambient blackbody) and cold 379

(sky) observations before and after every flight. Apart from the 380

sun, galactic background noise was not considered during sky 381

observations as it is generally estimated to be less than 1 K 382

even when exactly pointing to the galactic plane. The effect 383

of this assumption on the calibration accuracy in the range 384

considered is estimated to be less than one-tenth of a kelvin, 385
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which is negligible in the context of soil moisture remote386

sensing. However, extreme care was taken to avoid sun or other387

terrestrial interferences in any of the six beams.388

In-flight calibration checks included flights over Lake Glen-389

bawn and sky-looks with the outermost beams through a series390

of steep turns. Lake Glenbawn is located 100 km east of the391

Goulburn catchment and was instrumented for the monitoring392

of surface water temperature and salinity. Weekly water tem-393

perature and salinity transects over the lake were also under-394

taken to check for spatial gradients. Beam-specific calibration395

coefficients were derived and applied for each day of the396

campaign by averaging the preflight and postflight coefficients397

for each beam. The calibration drift during the flight (i.e., the398

difference between the coefficients calculated for preflight and399

postflight calibration) was not found to be serious given the400

accuracy needed for soil moisture. The calibrated radiometer401

data have been geolocated by taking into consideration the402

aircraft position, pitch, roll, and yaw information recorded for403

each measurement, with the beam centers projected onto a404

250-m digital elevation model of the study area. The effective405

footprint size and the ground incidence angle have also been406

calculated by taking into consideration the aircraft attitude and407

terrain slope.408

The accuracy in the full calibration range (10–300 K) was409

found to be better than 1.1 K for H polarization, whereas at V410

polarization it varied from 1.5 K for inner beams to 2.5 K for411

outer beams. When considering the measurement range over412

land during the campaign (150–300 K), the accuracy was better413

than 0.7 K at H polarization and 2 K for V polarization.414

2) EMIRAD: The EMIRAD is a fully polarimetric L-band415

radiometer system that employs two antennas installed in the416

aircraft such that the ground is viewed at along-track incidence417

angles of 0◦ (nadir) and 40◦ in the aft direction. The antennas418

are Potter horns with no sidelobes. The two horns were de-419

signed such that they have approximately the same footprint on420

the ground. A nadir-looking Heiltronics KT15 TIR radiometer421

was also operated on all flights. This IR instrument has a 4◦AQ2 422

beamwidth, which thus produces a footprint that is almost ten423

times smaller than the L-band sensor.424

The EMIRAD was calibrated in the laboratory at a normal425

ambient temperature before the CoSMOS campaign. This basic426

calibration uses a hot load and a liquid-nitrogen-cooled load.427

The liquid nitrogen calibration was repeated on several occa-428

sions during the campaign. An excellent instrument stability429

was achieved (better than 1 K). During flights, the internal430

calibration was achieved by means of an internal load and a431

noise diode. During normal operating conditions, the radiome-432

ter was temperature stabilized to 40 ◦C with a stability to433

better than 0.02◦ for a 15◦ change in ambient temperature.434

This, together with the internal calibration, ensured very good435

stability of the measured TB. Due to the higher than expected436

ambient operating temperatures, the laboratory calibration was437

extended after the campaign to temperatures of 48 ◦C. The cali-438

bration accuracy was confirmed by flights over Lake Glenbawn.439

Comparing the EMIRAD readings with the modeled predicted440

values of the lake revealed an accuracy of better that 1 K for441

V and H polarization at both incidence angles. The EMIRAD442

L-band data have also been geolocated by taking into consider-443

ation the aircraft position and the attitude information obtained 444

during flights. More details about EMIRAD data calibration 445

and validation are given in [15]. 446

The lake calibration flights were normally independently 447

performed by the CoSMOS and NAFE teams. However, a 448

number of coordinated cross-calibration flights were performed 449

for comparison between the two sensors. The comparison be- 450

tween the EMIRAD and PLMR observations for flights over 451

Lake Glenbawn revealed an up to 2 K average difference for 452

H polarization and up to 6 K average difference for V polar- 453

ization [15]. It should be noted however that the flight timing 454

differed by up to 45 min and that the EMIRAD footprint size 455

was approximately 120 m while that for the PLMR was down 456

to 30 m. 457

B. NAFE Flights 458

A total of approximately 100 h of NAFE mission flights 459

were conducted during the campaign. All flight lines were 460

north–south oriented to be parallel to the geomorphology of 461

the area and to avoid the strong variation in terrain elevation, 462

as well as direct sun glint in the outermost beams. Moreover, 463

this orientation is similar to the planned SMOS flight path. Full 464

coverage of the same ground area was guaranteed by allowing 465

a full PLMR pixel overlap between adjacent flight lines for 466

the median ground altitude of the area. The following five 467

flight types were conducted: 1) regional; 2) multiresolution; 468

3) multiangle; 4) dew; and 5) aerial photography. These are 469

summarized in Table II. 470

The regional flights were performed over the entire 471

40 km × 40 km study area. These flights were scheduled ac- 472

cording to the local overpasses of the Aqua platform to provide 473

supporting fine-scale passive microwave data for comparison 474

with this C-band AMSR-E mission. The flight altitude was 475

3000 m Above Ground Level (AGL) with the data generally 476

acquired between 6:00 AM. and 10:00 AM. These flights were 477

undertaken every Monday and provided four maps of L-band 478

microwave emissions at a nominal ground resolution of 1 km. 479

Due to the rough terrain, the effective pixel size varied between 480

approximately 860 and 1070 m, which results from flying at a 481

constant altitude above the median elevation of the study area. 482

The regional maps acquired are shown in Fig. 6. 483

The two multiresolution flight types were specifically de- 484

signed to address the L-band scaling issues by acquiring ob- 485

servations of the same area at various resolutions. This required 486

the subsequent mapping of the same focus area with different 487

altitude flights. Due to the long flight time required, the entire 488

study area could not be covered during these flights; therefore, 489

two focus areas of approximately 10 km × 30 km were selected 490

for the alternate multiresolution flights. These areas were the 491

Merriwa and Krui study areas (see Fig. 1). The multiresolution 492

flights were undertaken four times per week, i.e., alternating 493

between the two focus areas. For each flight, the focus area 494

was covered at four different altitudes in descending order 495

(3000, 1500, ∼750, and ∼200 m AGL), which results in 496

L-band maps at approximately 1-km, 500-m, 250-m, and 497

62.5-m spatial resolutions, and TIR maps at approximately 498

20-, 10-, 5-, and 1.25-m resolution. The flights generally started 499
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TABLE II
NAFE/CoSMOS

Fig. 6. PLMR L-band passive microwave H-polarized observations (K) for
the four regional mapping flights. (a) October 31. (b) November 7. (c) Novem-
ber 14. (d) November 21. The boundaries of the eight focus farms for ground
sampling are displayed for reference.

at 6:00 AM. and finished at 11:00 AM. To avoid gaps in the 500

data due to the reduction in pixel size in the northern part of 501

the study area caused by terrain elevation, which is particularly 502

important for the two lower flights, the flights were conducted 503

with a variable flight altitude for the various farms. An example 504

of multiresolution mapping over the Krui subarea is shown in 505

Fig. 7. An important issue to be considered in comparing these 506

acquisitions at different resolutions is the temporal change in 507

the ground land surface conditions throughout the flight. The 508

ground monitoring of these variables and the comparison of 509

overlapping pixels from adjacent flight lines can be used to 510

correct for this effect. 511

A total of six multiangle flights were performed for the 512

specific purpose of answering the science question of multi- 513

incidence angle retrieval of soil moisture. During these flights, 514

the PLMR was mounted on the aircraft in the along-track 515

configuration, which yields three forward and three backward 516

looking beams. These flights were flown at a nominal altitude 517

of 750 m (AGL), which results in a pixel size of approximately 518

250 m, over three focus farms in the Merriwa study area, i.e., 519

Merriwa Park, Cullingral, and Midlothian (see Fig. 1). The 520

farms were selected to have reasonably flat areas of uniform 521
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Fig. 7. Example of the multiresolution PLMR L-band H-polarized passive microwave observations (K) in the Krui area for November 1, 2005. Nominal
resolutions displayed are (a) 62.5 m, (b) 250 m, (c) 500 m, and (d) 1000 m. The boundaries of the focus farms for ground sampling are displayed for reference.

vegetation cover to avoid topographic effects on the microwave522

signal and facilitate the multiparameter retrieval of both soil523

moisture and vegetation water content. The multiangle flights524

took place in the early afternoon immediately following the525

multiresolution flights, i.e., approximately between 12:00 PM.526

and 2:00 PM. To increase the range of incidence angles at which527

observations were taken, each multiangle flight was followed528

by a “dive” flight that involves successive steep ascents and529

descents in altitude.530

To assess the effect of vegetation dew on the soil microwave531

signal, two early morning flights were undertaken in the532

30 km × 20 km focus area of the Merriwa catchment, i.e., on533

a day when regular multiresolution flights were scheduled for534

the same area later during the day. This was done to allow the535

comparison of the microwave signal before and after the drying536

off of the dew. The dew effect flights consisted of a circuit537

through the four soil moisture and dew monitoring stations (see538

Fig. 1). One single loop was flown at first light. The nominal539

altitude for this flight was 1500 m AGL, which results in a540

ground resolution of approximately between 400 and 550 m.541

C. CoSMOS Flights542

A total of 13 EMIRAD flights were performed over the543

Goulburn catchment with approximately 30 h of CoSMOS544

mission flight time [15]. The following four flight types were545

conducted: 1) assimilation; 2) scaling and heterogeneity; 3) sun546

glint and topography; and 4) vegetation water content and dew.547

All flights started at approximately 6:00 AM. to match the land548

surface conditions corresponding to the SMOS local overpass549

time of 6:00 AM./6:00 PM. The characteristics of these flights550

are summarized in Table II.551

The greatest amount of flight time was dedicated to the552

assimilation flights. The aim of these flights was to provide553

L-band observations at sites where the soil moisture profile554

was continuously monitored to develop root zone soil moisture555

retrieval from the assimilation of SMOS soil moisture observa-556

tions. The flight altitude was 550 m AGL with a nominal ground557

resolution of 375 m, and the route included the eight Goulburn558

River experimental catchment monitoring sites of the NAFE559

focus farms, as shown in Fig. 1. These flights were performed 560

three times during the first week but were then reduced to two 561

times a week in the following two weeks and only one flight 562

was performed in the fourth week. 563

The scaling and subpixel heterogeneity issues were ad- 564

dressed through a single 1300-m nominal resolution (1900 m 565

AGL altitude) mapping flight across a 50 km × 50 km area cen- 566

tered on the NAFE’05 study area. Because of EMIRAD being 567

a line instrument, the full coverage of the area took three days 568

to be completed, i.e., November 21 and 23 and December 9. 569

The sun glint and topography effect flights were performed 570

once during the campaign over the Roscommon farm (including 571

grass and forest). The sun is a strong L-band source, and the 572

effect of its reflection on the land surfaces to the surface TB 573

has hardly been studied. These flights consisted of successive 574

ascents and descents in altitude first toward and then away from 575

the sun position, which was normally performed between 7 AM. 576

and 10 AM. local time, which at the time of the experiment 577

corresponded to solar zenith angles of approximately 45◦ and 578

higher. The range of observation angles achieved through the 579

dives overlapped the solar zenith angle, which therefore makes 580

it possible to investigate the contribution of the sun’s L-band 581

reflection to the surface TB in the direction of the highest 582

reflection. 583

The effect of vegetation water content and dew was inves- 584

tigated by two flights during the campaign, i.e., overpassing 585

two of the focus farms (Illogan and Roscommon) where the 586

concurrent ground sampling of vegetation water content and 587

dew was undertaken. The altitude chosen for these flights was 588

500 m, with a 340-m nominal ground resolution. The circuit 589

over the two focus farms was repeated from sunrise from 590

midmorning to observe the effect of dew dry off. 591

V. DATA AVAILABILITY 592

The NAFE’05/CoSMOS data described in this paper are 593

available at http://www.nafe.unimelb.edu.au. The web site pro- 594

vides all the information needed for the interpretation of these 595

data, along with general information on the Goulburn catch- 596

ment, photographs of the landscape, sampling methods, and a 597
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full experiment plan. Due acknowledgment in any publication598

or presentation arising from the use of these data is required.599

VI. SUMMARY600

This paper has presented the airborne and ground data set601

of the joint NAFE’05/CoSMOS campaign. This extensive field602

campaign was the result of the collaborative efforts of a number603

of Australian, European, and American institutions, including604

The University of Melbourne, University of Newcastle, Na-605

tional Aeronautics and Space Administration (NASA), ESA,606

Airborne Research Australia, the Free University of Amster-607

dam, Centre d’Etudes Spatiales de la Biosphère (CESBIO),608

the University of Valencia, and the Technical University of609

Denmark.610

The airborne observations included concurrent L-band ac-611

quisitions at different incidence angles (0◦–40◦) and ground612

resolution (1 km to 62.5 m) over a moderately vegetated613

40 km × 40 km area, which corresponds to an SMOS pixel.614

The airborne data were supported by ground observations of615

near-surface soil moisture spatial variability and soil moisture616

profile temporal change. The data set has a great potential617

for addressing the important science question related to the618

SMOS mission, including the following: 1) development of619

the SMOS retrieval algorithms; 2) developing approaches for620

downscaling the low-resolution data from SMOS; and 3) test-621

ing its assimilation into land surface models for root zone622

soil moisture retrieval. Furthermore, the very high resolution623

L-band data (down to 62.5 m) collected for the first time during624

NAFE’05 will allow the development of the PLMR radiometer625

soil moisture product for future aircraft-based SMOS calibra-626

tion studies. An important potential use of these data is to627

also test the suitability of the soil moisture monitoring network628

operating in the Goulburn catchment area for SMOS validation.629
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