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Abstract—This paper develops two alternative approaches for4
downscaling a passive-microwave-derived soil moisture. Ground5
and airborne data collected over the Walnut Gulch experimental6
watershed during the Monsoon’90 experiment were used to test7
these approaches. These data consisted of eight micrometeoro-8
logical stations (METFLUX) and six flights of the L-band Push9
Broom Microwave Radiometer (PBMR). For each PBMR flight,10
the 180-m-resolution L-band pixels covering the eight METFLUX11
sites were first aggregated to generate a 500-m “coarse-scale”12
passive-microwave pixel. The coarse-scale-derived soil moisture13
was then downscaled to the 180-m resolution using two different14
surface soil moisture indexes (SMIs): 1) the evaporative fraction15
(EF), which is the ratio of the evapotranspiration to the total16
energy available at the surface; and 2) the actual EF (AEF), which17
is defined as the ratio of the actual-to-potential evapotranspira-18
tion. It is well known that both SMIs depend on the surface19
soil moisture. However, they are also influenced by other factors20
such as vegetation cover, soil type, root-zone soil moisture, and21
atmospheric conditions. In order to decouple the influence of soil22
moisture from the other factors, a land surface model was used23
to account for the heterogeneity of vegetation cover, soil type, and24
atmospheric conditions. The overall accuracy in the downscaled25
values was evaluated to 3% (vol.) for EF and 2% (vol.) for AEF26
under cloud-free conditions. These results illustrate the potential27
use of satellite-based estimates of instantaneous evapotranspi-28
ration on clear-sky days for downscaling the coarse-resolution29
passive-microwave soil moisture.30

Index Terms—Downscaling, evaporative fraction (EF), evapo-31
transpiration, passive microwave, surface soil moisture.32

I. INTRODUCTION33

SOIL MOISTURE is a one state variable that controls sev-34

eral Earth-surface-related processes, including hydrology,35

meteorology, climate modeling, and agricultural management.36

It controls the partitioning of rainfall into infiltration and runoff,37

influencing strongly the response of stream discharge to rainfall38

events, thus playing a key role in the prediction of erosion39

and sediment loads in watershed streams and ponds [1]. Soil40

moisture also controls the partitioning of available energy at41

the land surface into sensible and latent heat fluxes, influencing42

the development of an atmospheric boundary layer. Moreover,43

soil moisture is a key variable for a sustainable management of44

irrigation water, which consumes about 85% of the total avail-45
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able surface water in arid and semiarid regions [2]. In moisture- 46

limited regions, the soil moisture content has also been used 47

as an indicator of the spatial distribution of precipitation and 48

general plant health [3]. 49

The spatial and temporal dynamics of soil moisture are 50

very complex since they depend on several factors. Besides 51

rainfall and evapotranspiration, they also depend on a variety 52

of surface features such as land cover/land use, topography, and 53

soil type. One way of monitoring this variability is through a 54

dense network of continuous soil moisture observations. While 55

this is possible for a confined experimental area during short 56

periods, the establishment of a continuous in situ soil moisture 57

monitoring program worldwide is not practical or economically 58

feasible. Consequently, the only possibility for deriving the spa- 59

tially distributed soil moisture data required for the applications 60

mentioned above is through the use of satellite observations. 61

Satellite-based soil moisture can be obtained from passive or 62

active microwave sensors through the large contrast between 63

the dielectric properties of liquid water (≈ 80) and that of dry 64

soil (≈ 4), and the resulting variability on dielectric properties 65

of soil–water mixtures as they go from dry to wet (≈ 4 − 30). 66

Active microwave sensors such as the European satel- 67

lites ERS-1/2 C-band Synthetic Aperture Radar (SAR), 68

ENVISAT C-band Advanced SAR, and the Canadian C-band 69

RADARSAT-1/2 can provide resolutions from 10 to 100 m 70

over a swath width of 50–500 km. While these meet the spa- 71

tial requirement for most basin-scale hydrological applications 72

[4], they are significantly affected by surface roughness and 73

vegetation biomass, making the soil moisture retrieval difficult. 74

To date, no operational algorithm is available for soil mois- 75

ture retrieval from the SAR data with the existing spaceborne 76

sensors [5]. 77

Passive-microwave sensors represent an interesting alter- 78

native for monitoring soil moisture [6], with airborne sen- 79

sors operating at low frequencies (L-band), such as the Push 80

Broom Microwave Radiometer (PBMR) and the Electronically 81

Scanned Thinned Array Radiometer, which are found to be 82

very effective for surface soil moisture inference [7]. The Soil 83

Moisture and Ocean Salinity (SMOS) mission [8], which is 84

the first ever passive-microwave spaceborne sensor operating at 85

L-band, is scheduled for launch by the European Space Agency 86

in 2008. This instrument is based on an innovative 2-D aperture 87

synthesis concept, which will bring new and significant capa- 88

bilities in terms of multiangular viewing configurations and will 89

allow for simultaneous retrieval of soil moisture and vegetation 90

biomass [9], [10] with a revisit time ranging from one to three 91

days. However, the spatial resolution (pixel size) of these types 92

of sensors is about 40 km, and the use of such coarse spatial 93
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resolution data in the field of hydrology is not straightforward94

[11]. Indeed, the scale at which most hydrological processes are95

better observed and modeled is less than 1 km [12]. Thus, it is96

of crucial importance to develop simple and robust procedures97

to downscale a passive-microwave-based soil moisture from its98

nominal scale to that needed for hydrologic application and/or99

watershed management.100

In this context, several downscaling approaches with dif-101

ferent degrees of complexity have been developed during the102

last decade. Without going into a comprehensive review of all103

existing methods, which is beyond the scope of this paper, they104

can be categorized into three groups:105

1) methods based on the use of topography and soil depth106

information [13];107

2) methods based on the combination of passive-microwave108

data with high spatial resolution active microwave data109

[14] or optical data such as surface temperature and110

vegetation index [15];111

3) methods based on the combination of coarse-resolution112

passive-microwave data, with fine-scale optical data and113

a surface process model [12], [16].114

This paper is patterned from the work of Merlin et al. [16]115

but with two fundamental differences: 1) There is no need116

to have dual angle observations of surface temperature; and117

2) a simple energy balance model can be used in place of a118

complex surface process model. Moreover, two different energy119

balance approaches are developed and tested for downscaling120

(disaggregating) the coarse-resolution soil moisture data that121

can be retrieved from spaceborne L-band radiometry. These122

two approaches are based on two different soil moisture in-123

dexes (SMIs): 1) the evaporative fraction (EF), which is the124

ratio of the evapotranspiration to the total energy available at125

the surface; and 2) the actual EF (AEF), which is computed126

as the ratio of the actual-to-potential evapotranspiration. The127

hypothesis is that these indexes, which can be computed at fine128

spatial resolution, can provide an information on the fine-scale129

distribution of surface soil moisture. The projection technique130

developed in [16] is then implemented with a surface energy131

balance model to decouple the effects of external factors (i.e.,132

land cover, soil properties, and meteorological forcing) on the133

relationships between SMIs and surface soil moisture. Ground134

and airborne data collected over the Walnut Gulch experimen-135

tal watershed (WGEW) during the Monsoon’90 experiment136

are used to test the performance of these two approaches.137

These data consist of eight micrometeorological stations138

(METFLUX) and six flights of the L-band PBMR. For each139

PBMR flight, the 180-m-resolution L-band pixels covering140

the eight METFLUX sites are first aggregated to generate141

a ∼500-m-resolution “coarse-scale” passive-microwave pixel.142

The coarse-resolution-derived soil moisture is then downscaled143

using the two approaches outlined above and evaluated against144

the ground-based data. The applicability of such downscaling145

methods to SMOS is then discussed.146

II. MONSOON’90 DATA147

The Monsoon’90 experiment was conducted during the sum-148

mer of 1990 over the USDA-ARS WGEW in southeastern149

AZ, USA [17], [18]. The purpose of the experiment was to 150

remotely sense moisture fluxes in a semiarid climate during a 151

dry-down. A network of eight meteorological surface energy 152

flux (METFLUX) stations covering the main study area (about 153

150 km2) was situated in grass-dominated and shrub-dominated 154

ecosystems and in the transition zones containing both vege- 155

tation types. The data collected at each METFLUX site from 156

Julian days (JDs) 204 to 222 consist of 20-min estimates of 157

the following: 0–5-cm soil moisture, meteorological conditions 158

at screen height including air temperature, relative humidity, 159

wind speed, and solar radiation, surface fluxes composed of net 160

radiation, soil heat flux measured at −5 cm, sensible heat flux, 161

and latent heat flux. 162

As part of the Monsoon’90 campaign, the NASA PBMR was 163

flown on six flights of the C-130 aircraft during a ten-day period 164

in July and August of 1990 [19]. The objective was to map 165

the surface brightness temperature at a wavelength of 21 cm 166

(L-band) and to infer surface soil moisture from these data. 167

The four beams of PBMR point at ±8◦ and ±24◦ incidence 168

angles with a 3-dB beam width of about 30% of the altitude. 169

For Monsoon’90, the PBMR flights were at an altitude of 170

600 m, which yielded an instantaneous field of view or spatial 171

resolution of 180 m. Available PBMR data of the Monsoon’90 172

experiment are nadir H-polarized brightness temperatures. To 173

create the images of the brightness temperature at nadir, the 174

outer beams were corrected for incidence angle effects during 175

each PBMR flight by multiplying them by the ratio of the 176

average of the inner beam to the outer beam on each side [19]. 177

In this paper, a time series of six ∼500-m-resolution mi- 178

crowave pixels is generated by aggregating the eight 180-m- 179

resolution PBMR pixels covering the METFLUX stations on 180

each day of PBMR observations. The low-resolution soil mois- 181

ture is retrieved by using the linear regression of PBMR bright- 182

ness temperature versus the ground-based 0–5-cm soil moisture 183

derived in [19]. 184

III. METHOD 185

The surface soil moisture retrieved from the synthetically 186

derived coarse-scale microwave pixels is downscaled by using 187

two fine-scale SMIs at each of the eight METFLUX sites: 1) the 188

EF and 2) the AEF. The downscaling approaches are based on 189

a linear relationship between the surface soil moisture and the 190

SMI. To decouple the effect of other factors on this relationship, 191

the projection technique in [16] is used in conjunction with a 192

surface energy balance model and surface properties at high 193

resolution. The diagram in Fig. 1 illustrates the different steps 194

and parameters involved in the downscaling procedure. 195

A. General Approach 196

Assuming a linear relationship between the surface soil 197

moisture and the SMI, the low-resolution soil moisture value 198

can be downscaled using the anomalies in the SMI from its 199

mean for the same area. Consequently, the high-resolution soil 200

moisture values WH (subscript H for high resolution = 180 m) 201

can be expressed as 202

WH = WL,obs + f1,L (SMIH,obs − 〈SMIH,obs〉) (1)
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Fig. 1. Schematic diagram of the downscaling procedure.

where WL,obs (subscript L for low resolution = 500 m and203

subscript obs for observed) is the coarse-scale soil moisture204

that is retrieved from the aggregated PBMR data, SMIH,obs205

is the high-resolution SMI measured at the eight METFLUX206

sites, 〈SMIH,obs〉 is the SMI averaged at the low resolution, and207

f1,L (in volume percent) is a scaling parameter used to convertAQ1 208

SMI variations into soil moisture variations. In [16], the SMI209

was the soil temperature inverted from a dual-angle radiative210

surface temperature, and the slope f1 was retrieved from SMOS211

observations by using the multiangular bipolarized information212

of surface soil emission. As this information may be difficult213

to extract due to vegetation effects on SMOS observations, this214

paper tests other SMIs for which the f1 parameter does not vary215

much in time and/or can be estimated indirectly from a different216

source of data. The rationale for choosing EF and AEF as SMIs217

is that both ratios are, in general, near to constant during the 218

daytime [20]–[24]. Moreover, they are more directly related to 219

surface moisture condition [25] and less dependent on incoming 220

radiation than evapotranspiration or surface temperature [26]. 221

In this paper, parameter f1 is therefore assumed to be constant 222

in time. As it is also constant in space within the microwave 223

pixel (hypothesis of linearity of the correlation between the 224

SMI and surface soil moisture), the slope f1 is assumed to be a 225

constant. In this paper, it is calibrated using ground-based data 226

during a training period. 227

B. SMIs 228

Herein, EF and AEF are both calculated from the sur- 229

face fluxes and meteorological data measured at the eight 230
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METFLUX sites. However, they could also be estimated from231

spaceborne optical sensors [27]–[29]. The observed EF is cal-232

culated as233

EFobs =
LEobs

Rnobs − Gobs
(2)

where LEobs is the latent heat flux, Rnobs is the net radiation,234

and Gobs is the ground flux. The observed AEF is calculated as235

AEFobs =
LEobs

LEpobs

(3)

where LEpobs is the potential evapotranspiration computed236

with the Penman–Monteith formula237

LEpobs =
∆(Rnobs − Gobs) + ρCp

(
es−ea,obs

ra,obs

)

∆ + γ
(
1 + rmin

ra,obs

) (4)

where es − ea,obs represents the vapor pressure deficit of the238

air, ρ is the mean air density at constant pressure, Cp is the239

specific heat of the air, ∆ is the slope of the saturation vapor240

pressure versus temperature relationship, γ is the psychrometricAQ2 241

constant, ra,obs is the aerodynamic resistance, and rmin is the242

minimum surface resistance (fixed to 20 m · s−1 for this appli-243

cation). The canopy height used to calculate the aerodynamic244

resistance is taken from [30].245

As an illustration of the dependence of EF to surface246

soil moisture, Fig. 2 shows the time series of surface soil247

moisture and EF measured at the METFLUX stations. Both248

the maximum and minimum values measured at the eight249

METFLUX stations are plotted to illustrate the range of spatial250

variability observed within the coarse-scale microwave pixel.251

The difference between the maximum and minimum surface252

soil moistures varies from approximately 10% to 20% vol. from253

JDs 212 to 221. Data are consistent with a presumed correlation254

between EF and surface soil moisture between 10 am and 2 pm.255

The difference between the maximum and minimum values of256

EF generally ranges between 0.2 and 0.5. Note that the values257

of EF greater than one are due to the presence of clouds, which258

make the available energy suddenly decrease while the surface259

is still evaporating.260

To assess the link between SMIs and the surface soil moisture261

over a wider range of moisture and vegetation conditions, the262

results of a synthetic study are presented in Fig. 3. The surface263

energy balance model in [31] is used to simulate the variation264

of both the EF and AEF in response to the surface soil moisture265

ranging from 0% to 35% vol. and for LAI values varying266

from zero to four. Atmospheric forcing is fixed (air temperature267

Ta = 20 ◦C; incoming radiation Rg = 900 W · m−2; relative268

humidity qa = 50%; wind speed u = 3 m · s−1), and surface269

parameters are set as in [31]. The relationship between the270

SMI and surface soil moisture is found to be approximately271

linear below 20% (vol.) but saturates above this threshold. The272

synthetic study also shows that the soil moisture sensitivity of273

the SMI decreases with increasing LAI values.274

Fig. 2. Time series of the (a) minimum and maximum surface soil moisture
observed at the eight METFLUX sites and the (b) minimum and maximum EF
measured at the eight METFLUX sites between 10 am and 2 pm from JDs 212
to 221.

C. Projection 275

The basis for the projection step is to improve the rela- 276

tionship between the SMI and the surface soil moisture used 277

for downscaling the low-resolution soil moisture in (1). The 278

methodology used in this paper is that developed in [16] (but 279

the SMI used is different as discussed above). It consists of 280

using a land surface model to simulate the impact of surface 281

parameters, such as vegetation cover, soil type, and atmospheric 282

conditions, on the relationship between the SMI and surface 283

soil moisture at high resolution. In this application, the surface 284

energy balance model is used to simulate EF or AEF at a 285

high resolution given: 1) surface parameters available at high 286

resolution and 2) the same set of surface parameters averaged 287

at low resolution. The projected SMI, which is denoted as 288

SMIH,obs, is the observed SMI that is less than the difference 289

of the two simulated SMIs AQ3290

SMIH,obs = SMIH,obs − [SMIH,sim(WH , pH)

−SMIH,sim (WH , 〈p〉H)] (5)

where SMIH,sim(WH , pH) (subscript sim indicates simulated) 291

is the SMI simulated using the modeled soil wetness and sur- 292

face parameters p at high resolution, and SMIH,sim(WH , 〈p〉H) 293

is the simulated SMI using the modeled surface wetness and 294

surface parameters averaged at the microwave resolution. The 295

projected SMI is therefore a combination of the observed SMI 296

and the SMI simulated at fine scale by a surface energy model 297

using fine-scale and aggregated parameters. Note that the pro- 298

jection does not require all the surface parameters involved in 299

the surface energy budget (input of the model) to be available at 300

high resolution. If one parameter is available at high resolution 301

(vegetation cover for instance), the projection can be applied 302

with respect to this parameter only. 303

By replacing the observed SMI with the projected SMI, (1) 304

becomes 305

WH = WL,obs + f1,L

(
SMIH,obs − 〈SMIH,obs〉

)
. (6)
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Fig. 3. Sensitivity of the (a) simulated EF and the (b) simulated AEF to surface soil moisture for increasing LAI values.

Note that the application of (6) requires iterating on soil306

moisture values, as WH is not known at the beginning of the307

procedure. In fact, the algorithm runs a loop on integer k with308

WH,k = WL,obs (7)

for k = 0 (initialization) and309

WH,k = WL,obs + f1,L

(
SMI(WH,k−1) −

〈
SMI(WH,k−1)

〉)
(8)

for k > 0. Convergence of WH within 0.1% vol. is typically310

reached after two or three iterations on k. Since parameter f1 is311

assumed to be constant in time and space (within the microwave312

pixel), WH is the only parameter to vary in (8).313

D. Land Surface Energy Balance Model314

The energy balance model used for the application of this315

downscaling approach to the Monsoon’90 data is the N95316

model developed by Norman et al. [31], revised by Kustas317

et al. [32], and further improved by Kustas and Norman [33].318

It is a dual-source model which treats the energy balance of319

the soil/substrate and vegetation using surface skin temperature320

observations at the zenith view angle [31] and remotely sensed321

images of near-surface soil moisture [32] for estimating the soil322

energy balance over the watershed. In this paper, the revised323

model by Kustas et al. [32] is used because the heterogeneity324

of the 0–5-cm soil moisture is accounted for in the estimation325

of surface fluxes. The model formulation explicitly computes326

the soil evaporation as a function of the resistance of the327

top soil layer to water vapor transfer. The resistance of the328

surface soil layer rss is parameterized using a near-surface soil329

moisture [34]330

rss = exp(A − BW/Wsat) (9)

where A and B are two calibration parameters, and Wsat is the331

soil moisture at saturation (35% vol. for the Walnuch Gulch332

site). The total net radiation Rn is partitioned into Rns and Rnc333

as in [28]334

{
Rns = Rn exp(−κLAI)
Rnc = Rn [1 − exp(−κLAI)] (10)

where κ is estimated to be 0.45 for high solar zenith angles.335

TABLE I
CALIBRATION PARAMETERS COMPRISED OF THE LEAF AREA INDEX AND

TUNING PARAMETERS A AND B OF THE SOIL RESISTANCE TO

EVAPORATION AT THE EIGHT METFLUX SITES

The simulated SMI used in (5) is computed by replacing the 336

observed fluxes in (2) and (3) with the fluxes simulated by the 337

N95 model. Note that the potential latent heat flux is simulated 338

with Wsat as input to the energy balance model. The N95 model 339

is calibrated against EF observations during a training period 340

between JDs 206 and 211. The measured and simulated EF is 341

averaged between 10 am and 2 pm, and the root mean square 342

difference between the average of the measured and simulated 343

EF is minimized by varying the parameters A, B, and LAI. 344

Note that the objective here is not to evaluate the model at the 345

METFLUX sites but to derive a simple calibration for further 346

applications. Another calibration approach would have been to 347

use LAI measurements and to adjust coefficient extinction κ. 348

Results of the site-specific calibration are presented in Table I. 349

The space-varying surface parameters p are composed of A, 350

B, LAI, canopy height, air temperature Ta, relative humidity 351

qa, solar radiation Rg, and wind speed u. The other input 352

parameters (albedo, thermal emissivity, κ, and Wsat) are fixed 353

to uniform values as in [33]. 354

IV. APPLICATION 355

The application of the downscaling approaches presented 356

here involves successively as follows: 1) projecting EF and 357

AEF using N95 and (5); 2) estimating the slope f1 from point 358

scale observations; and 3) downscaling the coarse-resolution 359
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Fig. 4. Measured and projected SMIs versus surface soil moisture observations between JDs 212 and 221. The projected SMIs are also plotted versus measured
SMIs for comparison.

soil moisture retrieved from the six generated microwave pixels360

using (6). The approach is demonstrated using Monsoon’90361

data, and the downscaled results are compared with the ground-362

based measurements.363

The projection technique is applied to the data set between364

JDs 212 and 221. The projected EF and AEF that are calculated365

using (5) are averaged between 10 am and 2 pm and compared366

to the 10 am to 2 pm average of the measured EF and AEF from367

METFLUX stations. Results are presented in Fig. 4, where it is368

apparent that the relationship between SMI and W is improved369

by the projection in both cases; the correlation coefficient is370

increased from 0.66 to 0.79 and from 0.71 to 0.81 for EF371

and AEF, respectively. The projection is therefore a useful tool372

to decouple the effect of other variables on the correlation373

between SMI and W , given that a surface energy model can374

be properly calibrated over heterogeneous areas, with notably375

different vegetation cover and soil properties.376

The parameter f1 is calibrated by minimizing the root mean377

square difference between the soil moisture simulated with (6)378

and the observations from JDs 206 to 211 (WL is computed379

as the average of ground-based observations in this case). The380

mean and standard deviation of f1 are evaluated as 56 and381

10 and as 47 and 7 for EF and AEF, respectively (f1 is in382

volume percent). In our analysis, parameter f1 is assumed to 383

be a constant through time and space. The same mean value 384

of f1 obtained between JDs 206 and 211 is subsequently used 385

in the application during PBMR flights from JDs 212 to 221, 386

which follows the calibration period. This allows testing the as- 387

sumption that f1 can be held constant by using an independent 388

data set. 389

The soil moisture retrieved at coarse resolution from the six 390

generated microwave pixels is then downscaled with (6) using 391

the projected SMIs and the estimated value of the slope f1. 392

The downscaled soil moisture is plotted against the ground- 393

based soil moisture measurements in Fig. 5 for both the EF 394

and AEF approaches. Table II reports the average root mean 395

square error (rmse) between the downscaled and measured soil 396

moisture values for each of the eight subpixels and the six 397

days of data. When using all parameters at high resolution 398

(meteorological data, and soil and vegetation parameters), the 399

average of the rmse is about 2% (vol.) and 3% (vol.) for AEF 400

and EF, respectively. On JD 214, however, the disaggregation 401

error is larger than 5% (vol.) in both cases. The poor agreement 402

with ground observations on JD 214 can be explained by the 403

following: 1) the great variations of f1 with the presence of 404

clouds (see time series of EF in Fig. 2) and 2) the saturation of 405
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Fig. 5. Downscaled versus measured surface soil moisture for the six microwave pixels generated on JDs 212, 214, 216, 217, 220, and 221. The results obtained
with the (a) EF and (b) AEF are compared.

TABLE II
AVERAGE RMSE ON THE DOWNSCALED SURFACE SOIL MOISTURE FOR THE SIX GENERATED MICROWAVE PIXELS. RESULTS OBTAINED WITH EF AND

AEF, AND WITH ANCILLARY DATA AVAILABLE AT HIGH OR LOW RESOLUTION, ARE SUCCESSIVELY PRESENTED

SMI for soil moisture values above 20% (vol.) (see synthetic406

study in Fig. 3).407

The comparison of the downscaling results with EF and AEF408

shows that the AEF-based approach performs the best in most409

cases. In Table II, the error on the downscaled values is, in410

general, lower (except on JD 216) when using the AEF. As411

the N95 model was calibrated against EF observations, and412

not against AEF observations, results with the EF approach413

were expected to be superior. While the projection technique414

improves the correlation between EF and W , as compared415

to AEF and W , the correlation between the measured AEF416

and surface soil moisture is simply higher. The stronger link417

between AEF and surface soil moisture can be explained by418

several factors.419

First, AEF is intrinsically more directly linked to the surface420

moisture status than EF, as AEF is defined relative to a “wet421

surface,” whereas EF is defined relative to a surface at the “ther-422

mal equilibrium.” In the case of bare soil in particular, various423

analyses have shown that AEF can be expressed as a function of424

solely near-surface soil moisture alone [35], [36]. For vegetated425

surfaces, AEF is also dependent on vegetation characteristics 426

and water potential in the root zone. However, one can argue 427

that the normalization of AEF at saturation (AEF = 1) makes 428

this SMI more applicable to different vegetation covers in this 429

range of soil moisture. Fig. 2 shows how AEF scales with the 430

surface soil moisture, which is less dependent on LAI for high 431

soil moisture values than EF. 432

The second explanation for a stronger link with AEF and 433

soil moisture is that the diurnal variability of EF may limit the 434

validity of the “f1 constant” hypothesis in this case. The diurnal 435

behavior of EF depends on both surface and atmospheric condi- 436

tions. Notably, the atmospheric demand for evapotranspiration 437

is governed by solar radiation, relative humidity, and to a 438

lesser extent, air temperature, and wind speed, whereas surface 439

control is exerted by soil moisture and vegetation condition. 440

This issue has been heavily investigated from both experimental 441

and theoretical perspectives [22], [23], [37]. Most of these 442

studies have reported a typical concave-up shape for EF which 443

can induce errors when assuming a daytime constant EF that 444

is equal to the noon value, since the latter is always lower than 445
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TABLE III
AVERAGE AT THE EIGHT METFLUX SITES OF THE RELATIVE DIURNAL VARIABILITY OF EF AND AEF, AND STANDARD DEVIATION OF SOLAR

RADIATION, RELATIVE HUMIDITY, AIR TEMPERATURE, AND WIND SPEED EVALUATED BETWEEN 10 AM AND 2 PM FOR

EACH DAY BETWEEN JDs 212 AND 222. THE SIX DAYS OF PBMR FLIGHT ARE UNDERLINED

the daily average [24]. The assumption of the self-conservation446

of EF during daytime is only valid under relatively dry-surface447

and clear-sky conditions [21], [37].448

To check the stability of both SMIs with the Monsoon’90449

data, the relative variability of EF and AEF is estimated by450

successively calculating the standard deviation of measure-451

ments at the eight METFLUX sites between 10 am and 2 pm,452

averaging the eight standard deviations, and normalizing the453

diurnal variability with the soil moisture sensitivity of SMIs.454

The soil moisture sensitivity of AE and AEF is evaluated455

as the difference between the SMIs calculated at 20% (vol.)456

(maximum value) and 0 (minimum value) using the linear457

regression of the EF−W and AEF−W relationships, respec-458

tively. Table III lists the values of the relative diurnal variability459

(in %) of EF and AEF evaluated for each day between JDs 212460

and 222. The average diurnal cycle represents about 20% and461

15% of the sensitivity to surface soil moisture for EF and AEF,462

respectively. It is suggested that the superiority of the AEF-463

based approach is partly due to the relative stability of AEF464

for changing atmospheric conditions.465

Finally, the comparison between the error on the downscaled466

soil moisture in Table II and the diurnal variation of EF and467

AEF in Table III indicates that the performance of the dis-468

aggregation is well correlated with the stability of SMIs. For469

example, the disaggregation results are significantly improved470

on JDs 212, 217, and 221, for which the diurnal variability of471

AEF is approximately half that of EF. The temporal variability472

of atmospheric conditions is also presented in Table III for473

comparison with the diurnal variability of SMIs. The temporal474

variations of solar radiation, relative humidity, air tempera-475

ture, and wind speed are calculated as the spatial average at476

the eight METFLUX sites of the standard deviation between477

10 am and 2 pm. It is apparent that variations in EF and AEF478

can be attributed to the changes in solar radiation and relative 479

humidity, with the impact of air temperature and wind speed 480

being less visible with these data. 481

V. LIMITATIONS AND APPLICABILITY TO SMOS 482

The application of the passive-microwave downscaling ap- 483

proach developed in this paper to Monsoon’90 data has demon- 484

strated the potential performance when using ground-based 485

measurements over a limited range of surface conditions (eight 486

locations distributed within a 150-km2 semiarid area) during a 487

short period of time (20 days). Here, we assess the applicability 488

of the proposed downscaling method to SMOS data, with larger 489

space-time scales. The assumptions underlying the develop- 490

ment of (1) to (6) are listed and discussed. A sensitivity analysis 491

of the algorithm is also conducted to evaluate the impact of un- 492

certainties in ancillary data, high-resolution SMI observations, 493

and low-resolution surface soil moisture observations. 494

A. Assumptions 495

The methodology is based on five assumptions. Each as- 496

sumption is stated below and followed by a discussion regard- 497

ing its applicability to SMOS-like data. 498

1) Cloud-free conditions: EF observations can be derived 499

at large spatial scales using optical data [27]–[29], but 500

optical data will be available for clear-sky conditions 501

only. Note that clear-sky conditions are also needed, as 502

shown in the application to Monsoon’90, to meet the “f1 503

constant” hypothesis. In the context of SMOS, an interpo- 504

lation between dates could be done on SMI observations 505

in order to apply the downscaling scheme on cloudy days. 506
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2) SMI observations are available at approximately the same507

time as the passive-microwave observations so that the508

low-resolution surface soil moisture does not vary much509

between the two observation types. With daily optical510

data such as the MODerate resolution Imaging Spectro-511

radiometer (MODIS), this requirement is generally met.512

One can assume that the 40-km soil moisture typically513

does not change significantly between 6 am (SMOS514

overpass time) and 10 am (MODIS overpass time).515

3) The SMI is assumed to be linearly correlated to surface516

soil moisture by (1) and (6). The synthetic study in Fig. 3517

showed that the SMI saturates above 20% (vol.) in the518

case of the Walnut Gulch watershed. The method with519

f1 constant (independent of coarse-scale soil moisture) is520

thus limited to dry-end soil moisture conditions.521

4) At least one parameter involved in the surface energy522

budget, such as vegetation cover, soil properties, and523

meteorological forcing, is available at high resolution524

in order to apply the projection technique of (5). In525

the context of SMOS, vegetation/soil properties can be526

provided at 1-km resolution from the optical data (e.g.,527

MODIS) and global databases (e.g., ECOCLIMAP [38]).528

5) The slope of the relationship between SMI and surface529

soil moisture f1 is assumed to be independent of meteo-530

rological forcing data. This allows the following.531

a) The use of the projection technique with low-532

resolution meteorological data only: Such data would533

be available for global applications (e.g., output from534

NWP models).535

b) The calibration of f1 during a training period that is536

independent from the application data set: Note that537

the value of f1 still varies with any changes in vege-538

tation cover. The calibration of f1 should therefore be539

undertaken for each microwave pixel and as often as540

the surface conditions (seasons and land use) change541

within the microwave pixel. This can be done by com-542

paring the SMI and surface soil moisture observations543

at low resolution.544

B. Sensitivity Analysis545

To assess the impact of uncertainties in input data on the546

downscaling procedure, realistic measurement errors are added547

to high-resolution SMI and low-resolution surface soil moisture548

observations. Three cases are investigated.549

1) Surface parameters, such as vegetation characteristics550

(LAI and canopy height), soil properties (A and B), and551

meteorological data (Rg, Ta, ua, and qa), are available at552

low resolution only.553

2) A bias ranging from −5% to +5% vol. on the low-554

resolution soil moisture observation.555

3) 10% and 20% random errors on SMI observations with556

LAI ranging from zero to four.557

For each of the three cases, the impact on the downscaled soil558

moisture is evaluated and discussed.559

1) Surface Parameters Available at Low Resolution Only:560

To evaluate the impact of ancillary data resolution on the down-561

scaling procedure, the same data set as in the previous section is 562

applied but with the surface parameters one-by-one averaged at 563

the scale of the microwave pixel. Table II lists the mean rmse on 564

the downscaled soil moisture obtained for each type of ancillary 565

information separately. Results are to be compared to the case 566

(in bold in the table) where all surface parameters are available 567

at high resolution. It is apparent that the spatial resolution of 568

soil resistance parameters and canopy height (ranging from 0.1 569

to 0.6 m for Monsoon’90) has no significant impact on the 570

downscaling results. However, the impact of the resolution of 571

LAI is more significant. The mean rmse increased from 2.7% 572

to 3.7% (vol.) for EF and from 2.2% to 2.8% (vol.) for AEF. 573

The impact of the resolution of meteorological data is very 574

low for both EF and AEF. Surprisingly, the downscaling results 575

are slightly better, in general, with low-resolution than with 576

high-resolution atmospheric forcing. It is suggested that the 577

projection is not able to correct the impact of meteorological 578

conditions to the correlation between SMI and surface soil 579

moisture, as this impact is rather small with EF and AEF. 580

As a summary, the critical ancillary data to be used at 581

high resolution appear to be the LAI and soil parameters. The 582

resolution of meteorological data does not appear to have a 583

significant impact on the downscaling results. Note, however, 584

that the spatial extent of the data set used in this paper is rather 585

small (150 km2) compared to the SMOS pixel size (1600 km2), 586

which means that higher heterogeneities are expected at the 587

scale of a SMOS pixel, with potentially higher impacts on the 588

downscaled soil moisture. 589

2) Bias on the Low-Resolution Surface Soil Moisture 590

Observation: To evaluate the impact of a given bias on the low- 591

resolution surface soil moisture observation to the downscaled 592

soil moisture, a bias of −5% to +5% vol. in 1% increments 593

is successively added to the low-resolution soil moisture ob- 594

servation. The resulting bias on the downscaled soil moisture 595

WH is plotted as function of the input bias on WL in Fig. 6 596

for EF and AEF separately. It is shown that the mean output 597

bias is practically equal to the input bias, which is a direct 598

reflection of the assumed linear relationship between high- and 599

low-resolution surface soil moistures in (1) and (6). Note that 600

the slight divergence of the high-resolution bias with respect 601

to the 1:1 line for negative biases is due to the negative 602

values of surface soil moisture that were forced to zero in the 603

computations. 604

3) Uncertainty in Remotely Sensed EF: Space-based esti- 605

mates of EF are probably more uncertain than the ground- 606

based estimates acquired during a field experiment such as 607

Monsoon’90. The objective is to simulate realistic uncertainties 608

on space-based EF observations and to evaluate its impact on 609

the disaggregation results. A synthetic study is undertaken to 610

quantify the error on the downscaled soil moisture associated 611

with errors of 10% and 20% on SMI estimates and with a LAI 612

ranging from zero to four. Fig. 6 shows the results obtained for 613

EF and AEF separately, showing that an error of 5% vol. is 614

achievable with 10% error on SMI. However, an error of 20% 615

on SMI significantly impacts the downscaled soil moisture with 616

an error estimated to 10% (vol.). 617

4) Independent Random Errors in Input Data: To test the 618

impact of uncertainty in all input data simultaneously, the 619
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Fig. 6. Estimated error on the downscaled soil moisture associated with a given uncertainty in SMI observations and a given bias on low-resolution soil moisture
observations.

Fig. 7. Estimated error on the downscaled soil moisture associated with simultaneous and independent errors in input data. The error at fine scale of low-resolution
soil moisture observation is also plotted for comparison.

downscaling algorithms are run from JDs 212 to 222 with 20%620

error on EF/AEF, an error on coarse-scale meteorological data621

that is equal to the standard deviation observed at fine scale, and622

4% error on low-resolution soil moisture observation. When623

PBMR data are not available, a low-resolution soil moisture624

observation is generated by aggregating high-resolution obser-625

vations. The results are averaged between 10 am and 2 pm as626

for the application with real data (with no perturbation) and627

presented in Fig. 7 for ten independent runs. The aggregation628

of EF/AEF (in time) between 10 am and 2 pm significantly629

reduces the uncertainty from about 10% according to previous630

estimates to about 3% vol. (except on cloudy day 313). The631

errors on the disaggregated soil moisture are generally smaller632

than that of the low-resolution soil moisture observation—as633

compared with high-resolution observations—which indicates634

that independent random errors on EF/AEF, meteorological635

data, and low-resolution soil moisture observation generally636

cancel out in disaggregation products. The different behaviors637

obtained with EF and AEF and the poor results obtained on JD638

213 are consistent with the previous results in Section IV.639

VI. CONCLUSION 640

Two simple approaches for downscaling (disaggregating) 641

a coarse-resolution passive-microwave-derived soil moisture, 642

as anticipated from SMOS, were developed and tested us- 643

ing ground and airborne data that were collected over the 644

WGEW during the Monsoon’90 experiment. The verification 645

data consisted of eight METFLUX stations and six flights of 646

the L-band PBMR. For each PBMR flight, the L-band pixels 647

covering the eight stations were first aggregated to generate 648

a time series of six ∼500-m coarse-scale passive-microwave 649

pixels. The soil moisture retrieved from the low-resolution 650

microwave observations was then downscaled to 180 m using 651

two different SMIs to describe the subpixel variability of sur- 652

face soil moisture: 1) the ratio of the evapotranspiration to the 653

available energy (EF) and 2) the ratio of the actual-to-potential 654

evapotranspiration (AEF). It is well known that both SMIs 655

depend on surface soil moisture. However, they are also 656

influenced by other factors such as vegetation cover, soil 657

type, and atmospheric conditions. In order to decouple the 658
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influence of soil moisture from the other factors, a surface659

energy balance surface model was used in conjunction with660

the projection technique developed in [16] to account for the661

heterogeneity of vegetation cover, soil type, and atmospheric662

conditions.663

The overall accuracy in the downscaled values was evaluated664

to 3% (vol.) for EF and 2% (vol.) for AEF under cloud-free665

conditions. The projection was able to increase the correlation666

coefficient between SMI and surface soil moisture from 0.66667

to 0.79 and from 0.71 to 0.81 for EF and AEF, respectively.668

The comparison of EF and AEF indicates that AEF is more669

directly linked to surface soil moisture, particularly for high670

soil moisture values. The diurnal variability of EF, which is671

due to temporal changes in incoming radiation and relative672

humidity, seems to explain the superiority of the AEF-based673

approach.674

The main limitations to applying this approach to SMOS-675

sized pixels (about 40 km) globally are as follows: 1) It will676

be limited to clear-sky conditions; 2) it only works well for677

dry-end soil moisture contents; and 3) the availability of soil678

and vegetation parameters at high resolution. A sensitivity679

analysis of the method found that an error of 20% (vol.) in680

SMI observations had an effect of about 5% to 10% (vol.) on681

the downscaled soil moisture, depending on soil moisture and682

LAI values. However, the random uncertainty in a single mea-683

surement could be reduced by aggregating the SMI estimates.684

A given bias on the low-resolution soil moisture observation685

linearly impacted the downscaled soil moisture by the same686

amount, but random independent errors in input data cancelled687

out in the disaggregation results.688

In this paper, ground-based, instead of remotely sensed,689

SMIs were used, and the extent of the data set (∼10 km) was690

significantly smaller than the SMOS pixel. It is important to691

note that the spatial variability of micrometeorological data at692

the 40-km scale will be a limitation of the method. The spatial693

organization of meteorological forcing at 40-km scale will need694

to be assessed with data sets over larger areas. In addition,695

the dependence of the used SMIs to plant transpiration was696

assumed to be explained by vegetation cover (e.g., LAI) only.697

In particular, the impact of spatially variable vegetation stress698

on SMIs was neglected in this paper. Note that the sensitivity of699

thermal data to root-zone soil moisture over densely vegetated700

surfaces [40] and the decoupling under dry conditions between701

surface and deeper soil moisture [41] are likely to affect the702

performance of the method if these effects are not taken into703

account.704

These results illustrate the potential of using high-resolution705

satellite-based estimates of instantaneous evapotranspiration706

obtained on clear-sky days for downscaling the coarse-707

resolution passive-microwave soil moisture. Recent studies708

have investigated the use of 1-km-resolution optical data,709

such as NOAA/AVHRR and MODIS, to develop operational710

schemes for monitoring EF at regional and global scales711

[27]–[29]. High-resolution microwave data collected during712

field experiments, such as the National Airborne Field Ex-713

periment [39], will be essential in testing this downscaling714

method for SMOS-sized areas in preparation for receiving715

SMOS data.716
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AQ7 = “land-surface atmosphere models” was changed to “land surface-atmosphere models”. Please check

if appropriate.
AQ8 = Please provide photograph and biography of author R. Panciera.
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