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A Methodology for Surface Soil Moisture and
Vegetation Optical Depth Retrieval Using the

Microwave Polarization Difference Index
Manfred Owe, Richard de Jeu, and Jeffrey Walker

Abstract—A methodology for retrieving surface soil moisture
and vegetation optical depth from satellite microwave radiometer
data is presented. The procedure is tested with historical 6.6
GHz and polarized brightness temperature observations
from the scanning multichannel microwave radiometer (SMMR)
over several test sites in Illinois. Results using only nighttime
data are presented at this time due to the greater stability of
nighttime surface temperature estimation. The methodology uses
a radiative transfer model to solve for surface soil moisture and
vegetation optical depth simultaneously using a nonlinear iterative
optimization procedure. It assumes known constant values for the
scattering albedo and roughness, and that vegetation optical depth
for -polarization is the same as for -polarization. Surface
temperature is derived by a procedure using high frequency

-polarized brightness temperatures. The methodology does not
require any field observations of soil moisture or canopy biophys-
ical properties for calibration purposes and may be applied to
other wavelengths. Results compare well with field observations
of soil moisture and satellite-derived vegetation index data from
optical sensors.

Index Terms—Microwave radiometry, remote sensing, soil mois-
ture, vegetation.

I. INTRODUCTION

M ICROWAVE radiometry has been used extensively for
the retrieval of soil moisture during the last 25 years, al-

though only a few studies have devoted any significant effort to
extending their work to satellite applications [1]–[5]. Recently,
however, interest in satellite microwave research has increased
significantly due to the anticipated launch of several new remote
sensing platforms, which include microwave sensors.

Surface soil moisture is an important link between the land
surface and the atmosphere, directly influencing the exchange
of heat and moisture between these two sinks, and as such, is
an important element in the global circulation process. How-
ever, soil moisture is often somewhat difficult to measure accu-
rately in both time and space, especially at large spatial scales.
Soil moisture exhibits extremely high spatial variability on both
the small and large scale, due to the variability of precipitation
and the heterogeneity of the land surface (e.g., vegetation, soil
physical properties, topography, etc.). Whilein situsampling of
soil moisture is generally thought to be the most accurate, such
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observations are representative only of a relatively small area
immediately surrounding the sample location. Subsequent areal
averaging of a few point measurements, especially at scales of
10 –10 km , will often introduce large errors. Since remotely
sensed land surface observations are already spatially averaged,
they are a logical input to regional or larger-scale land process
models and general circulation models (GCMs) [6].

While the radiative transfer mechanisms, which describe the
emission of microwave energy both from the soil and vegetation,
are for the most part known, the inverse problem of separating
brightness temperature observed at satellite altitudes into its
component parts is still not entirely straightforward. A number
of obstacles have contributed to this difficulty and may be sum-
marized as follows:

• large number of factors, which affect the emission pro-
cesses (e.g., soil physical properties, vegetation charac-
ters, temperature, atmosphere);

• the nonlinearity of the emission processes and the diffi-
culty in quantifying these complex physical relationships;

• the heterogeneity of the land surface and the inherent spa-
tial variability of soil physical properties, especially at
satellite scales;

• the lack of optimal validation data sets, such as large-scale
spatially representative surface soil moisture observations.

The application of radiative transfer theory is not entirely
straightforward due to inadequate knowledge about the vege-
tation optical depth. Traditional methodologies often attempted
to relate remotely sensed data to either observed or modeled soil
moisture, solve for the vegetation component as a residual, and
then relate this value to some measurable parameter such as a
vegetation index. Many of these early studies were highly em-
pirical simple linear models [7], [8]. These approaches were not
ideal because they were not physically based and failed to ac-
count for many of the properties that affect the microwave emis-
sion processes. Additionally, the lack of good spatially repre-
sentative ground data resulted in the reliance on empirically de-
rived datasets such as antecedent precipitation index. However,
they were still quite instrumental in demonstrating the poten-
tial of satellite observations. Subsequent studies have used more
physically-based models [9]. Wigneronet al. [10], [11] used
both dual polarization and multifrequency based approaches to
retrieve soil moisture and vegetation biomass. Some methods,
though, relied heavily on knowledge of certain surface proper-
ties in order to effect regional calibrations. Recently, Njoku and
Li [1] have developed an approach, which uses six microwave
bands (three frequencies, each at two polarizations) to solve for
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three land surface parameters (soil moisture, vegetation water
content, and surface temperature).

The methodology described in this paper is somewhat unique
in that it uses only the horizontal and vertical polar-
ization bands of one frequency plus temperature derived from
37 GHz to solve simultaneously for surface soil moisture and
the vegetation optical depth, without the use of surface obser-
vations of soil moisture or any other land surface property for
calibration or tuning purposes. The approach uses a theoretical
radiative transfer model and the microwave polarization differ-
ence index, and is tested with 6.6 GHz scanning multichannel
microwave radiometer (SMMR) data over two footprint-sized
test sites in Illinois. The study is limited to analyzing nighttime
data because of the greater stability and uniformity of nighttime
surface temperature. Results are compared with field observa-
tions of soil moisture, precipitation data, and satellite-derived
vegetation index data.

II. DATASETS AND MATERIALS

The microwave data used to test the proposed methodology
are from the SMMR instrument, which flew onboard the
Nimbus-7 satellite [12]. The instrument began transmitting
data in October 1978 and was eventually deactivated in August
1987. Due to power constraints onboard the satellite, the
SMMR instrument could only be activated on alternate days.
The satellite orbited the Earth approximately 14 times in
one day, with a local noon (ascending orbit) and midnight
(descending orbit) equator crossing, and a swath width of
about 780 km. Brightness temperatures were measured at five
frequencies, from 6.6 GHz ( cm) to 37 GHz (
cm) at both and polarization, resulting in ten different
channels. Complete coverage of the Earth required about six
days, and repeat coverage of sites in the mid-latitudes occurs
about every three to four days. The 24-h on-off cycle of the
instrument still permitted both day and night observations,
which for research purposes, was an ideal feature. The spatial
resolution of SMMR was rather coarse (from approximately
25 km at 37 GHz to 150 km at 6.6 GHz). However, these data
still have highly useful applications, especially at regional,
continental, and global scales.

The SMMR orbit brightness temperatures [13] were extracted
and binned into daily 1/4global maps. If a pixel center fell
within a grid, then the grid is assigned the brightness value. If
multiple pixel centers fell within a 1/4grid, then all the bright-
ness values within the grid were averaged. Separate daytime and
nighttime datasets were created.

Information on soil physical properties was obtained from the
Natural Resources Conservation Service (STATSGO) database,
the Land Data Assimilation System (LDAS) database [14], and
various Soil Survey Handbooks for Illinois. Land classification
and land use information was derived from the University of
Maryland Global Land Cover Facility 1 km land cover database
[15] and Soil Survey Handbooks for Illinois. Topographic char-
acteristics were also obtained from the previous references.

Soil moisture field data was obtained from the Illinois Water
Survey [16] and consists of a network of 19 stations located
throughout the state. Observations were typically made bi-

Fig. 1. Locations of SMMR footprints used to calculate the vertical and
horizontal optical depth at saturated conditions. The Illinois study sites are
located in the boxed area.

monthly, usually between 1000 and 1400 hours, except during
snow cover conditions. Measurements were made by neutron
probe down to 2 m, and reported as average volumetric soil
moisture for a given layer. However, only data for the top 10
cm surface layer was used for this study.

Two 150 km test sites in Illinois were selected (Fig. 1), how-
ever, the locations were based solely on an attempt to maximize
the number soil moisture stations positioned in each site. The
northern test site consists almost entirely of farms, with about
60% cropland, 10% grasses, and about 30% woodlands. Urban
or built-up areas and surface water account for less than 1%
each. Soils are generally poorly drained fine to medium textured
silt loams to silty clay loams. The topography is nearly flat to
gently undulating. The southern site is also largely farms, with
about 40% crops, 25% woodlands, and the remainder in pasture
and grasses. Urban area and surface water again account for less
than 1% each. Soils are for the most part well drained moder-
ately fine to medium textured silt loams.

Vegetation time series were illustrated with ten-day normal-
ized difference vegetation index (NDVI) [17] composite data,
which were obtained from the Goddard Space Flight Center Dis-
tributed Active Archive Center (DAAC), Greenbelt, MD.

III. M ICROWAVE THEORY

Passive microwave remote sensing is based on the measure-
ment of thermal radiation from the land surface in the centimeter
wave band. This radiation is determined largely by the physical
temperature and the emissivity of the radiating body, and may
be approximated by

(1)
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where
observed microwave brightness temperature;
physical temperature of the emitting layer;
smooth-surface emissivity.

Emissivity is further defined as

(2)

where is the smooth-surface reflectivity. While the absolute
magnitude of the soil emissivity is somewhat lower atpo-
larization, the sensitivity to changes in surface moisture is sig-
nificantly greater than at polarization. Conversely, at po-
larization, the sensitivity to surface temperature is greater. This
forms the basis for a surface temperature estimation procedure
[18] that is discussed later. A brief discussion of some of the
more relevant factors that affect the microwave emission fol-
lows. More thorough treatments of microwave theory may be
found in [19] and [20].

Microwave technology is the only remote sensing method
that permits truly quantitative estimates of soil moisture using
physically based expressions such as radiative transfer models.
These techniques follow from the large contrast between the di-
electric constant of dry soil and water and the re-
sulting dielectric properties of soil-water mixtures (4–40) and
their effect on the natural microwave emission from the soil
[20]. The dielectric constant is a complex number, containing
a real and an imaginary part. The real part determines
the propagation characteristics of the energy as it passes upward
through the soil, while the imaginary part determines the energy
losses. In a nonhomogeneous medium such as soil, the com-
plex dielectric constant is a combination of the individual di-
electric constants of its components (i.e., air, water, rock, etc.),
which is further influenced by temperature, salinity, soil texture,
and wavelength. Two dielectric models that are commonly used
in theoretical calculations are the Dobson Model [21] and the
Wang-Schmugge Model [22].

Microwave energy originates from within the soil, with the
contribution of any soil layer decreasing with depth. For prac-
tical purposes, the thickness of the surface layer that provides
most of the measurable energy contribution is defined as the
thermal sampling depth [23], and often referred to as the skin
depth or observation depth. The energy which is subsequently
emitted from the soil surface is highly affected by the dielectric
contrast across the soil-air interface, causing some of the en-
ergy to be reflected back downward into the soil. The thickness
of this layer is thought to be only several tenths of a wavelength
thick. However, its thickness varies according to its moisture
content, in addition to wavelength, polarization, and incidence
angle. As the average moisture content of this layer decreases,
its thickness increases. It is the average dielectric properties of
this layer that determines the observed emissivity.

The effects of vegetation on the microwave emission as mea-
sured from above the canopy are two-fold: 1) the vegetation will
absorb or scatter the radiation emanating from the soil and 2) the
vegetation will also emit its own radiation. Under a sufficiently
dense canopy, the emitted soil radiation will become masked
out, and the observed emissivity will be due largely to the vege-
tation. The magnitude of the absorption depends upon the wave-

length and the water content of the vegetation. The most fre-
quently used wavelengths for soil moisture sensing are in the L-
and C-bandwidths (1.4 and 6 GHz, respectively), with L-band
sensors having a greater penetration of vegetation. While obser-
vations at all frequencies are subject to scattering and absorp-
tion and require some correction if the data are to be used for
soil moisture retrieval, shorter wave bands are more susceptible
to vegetation influences. A variety of models have been devel-
oped to account for the effects of vegetation on the observed
microwave signal, and range from empirical linear models [7],
[8] to more physically-based radiative transfer treatments [1],
[9], [11], [24]–[26].

The upwelling radiation from the land surface as observed
from above the canopy may be expressed in terms of the radia-
tive brightness temperature,, and is given as a simple radia-
tive transfer equation [24]

(3)

where
polarization ( or );

and thermometric temperatures of the soil and the
canopy respectively;
single scattering albedo;
transmissivity.

The first term of the above equation defines the radiation from
the soil as attenuated by the overlying vegetation. The second
term accounts for the upward radiation directly from the vege-
tation, while the third term defines the downward radiation from
the vegetation, reflected upward by the soil and again attenuated
by the canopy. The transmissivity is further defined in terms of
the optical depth, , such that

(4)

The optical depth is related to the canopy density, and for
frequencies less than 10 GHz, it can be expressed as a linear
function of vegetation water content [10], [25]. Typical values
for have been found to be less than about 1.3 (C-band) and
0.4 (L-band) for different covers, with a maximum vegetation
water content to about 3 kg m [24]. However, an optical depth
of 1.3 translates to a transmissivity of about 0.13, which allows
minimal penetration of the soil signal. African savannas were
found to exhibit an annual course that varied from about 0.4
to 0.7 [27]. Theoretical calculations show that the sensitivity
of above-canopy brightness temperature measurements to vari-
ations in soil emissivity decreases with increasing optical depth
[20].

It is shown in Fig. 2, that at C-band, the above-canopy signal
becomes totally saturated at an optical depth of about 1.5

in the horizontal channel, although for practical purposes,
the sensitivity is already quite low above 0.75. Under dry condi-
tions, this threshold is seen to occur even sooner. The sensitivity
of C-band to changes in surface moisture conditions has been
shown to almost cease at a vegetation water content of about
1.5 kg m [1].
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Fig. 2. Effect of the canopy optical depth on the emissivity. AtH-polarization,
the sensitivity of the above-canopy emissivity is severely reduced at an optical
depth of about 0.75(� = 0:3) and totally saturated from the vegetation at an
optical depth of 1.5.

The single scattering albedo describes the scattering of the
soil emissivity by the vegetation and is a function of plant geom-
etry. The scattering albedo may be calculated theoretically [28].
However, experimental data for this parameter are limited, and
values for selected crops were found to vary from 0.04 to about
0.13 [11], [24], [27]–[33]. Few values are found for natural veg-
etation, although estimates of 0.05 [33] for a semi-arid region
in Africa. A three-year time series of the scattering albedo and
canopy optical depth at both 6.6 GHz and 37 GHz has also been
calculated for an African savanna [27]. As expected, the optical
depth displayed a distinct seasonal course at both frequencies.
While the scattering albedo exhibited considerable variability
during the period, no relationship with vegetation biomass or
other seasonal indicators was observed.

There is some experimental evidence that both the optical
depth and the scattering albedo are polarization dependent.
However, these differences are observed mainly over veg-
etation elements that exhibit some preferential orientation
such as vertical stalks in tall grasses, grains, and maize [11],
[28], [30]. At a nadir (0 ) incidence angle, the stalks are not
visible, and appear only as small randomly oriented disks.
However, as the incidence angle increases, the stalks become
more prominent, resulting in an increased effect on vertically
polarized emissions. However, the canopy and stem structure
for most crops and naturally occurring vegetation are randomly
oriented. While it may be reasonable to assume that the optical
depth is for the most part polarization independent, especially
at satellite scales, additional validation is provided.

This validation was done by analyzing areas where the surface
soil moisture was known, namely areas of saturation. Daily
and hourly precipitation records throughout the midwestern
United States were analyzed for the entire SMMR period
for exceptionally large storms. The criteria was that these

Fig. 3. Relationship between the calculated optical depths atV and H

polarization.

storms not only had to deposit large amounts of water to
ensure saturation of the surface, but they also had to cover an
extensive geographic area, to ensure complete coverage of the
SMMR footprint. Storm events with greater than 30 mm average
precipitation for an entire footprint in a 24-h period were
selected. All gauging stations within the selected footprints
must have recorded rain during the period. An additional
stipulation was that a satellite overpass had to occur between
4 and 8 h after end of the precipitation event. The footprint
locations used in this analysis are shown in Fig. 1 and cover
a range of canopy types and densities. Assuming complete
saturation of the surface, and with knowledge of the soil
physical properties, the soil emissivity was calculated with
a dielectric model [22] and the Fresnel [1] equations. The
radiative transfer equation (5) was then inverted and, assuming
an average value for the scattering albedo, was solved for
the optical depth for both and polarization. It is shown
that when and are plotted together (Fig. 3), they fall
very close to the 1:1 line.

Surface roughness increases the emissivity of natural sur-
faces, due to increased scattering resulting from an increase in
the surface area of the emitting surfaces [20]. Roughness also
reduces the sensitivity of the emissivity to soil moisture varia-
tions, and thus reduces the range in measurable emissivity from
dry to wet soil conditions. An early roughness model developed
by Choudhuryet al. [34] is described as

(5)

where is an empirical roughness parameter related to the
root mean square (rms) height variation of the surface and
the correlation length, and is the incidence angle of the
observation. Numerous variations of this approach have been
used, and more physically-based formulations, which include
polarization-mixing parameters, have also been developed [10],
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[35]. Average roughness values for satellite scale footprints
are clearly difficult to estimate. Moreover, most roughness
studies have been conducted at the plot scale with ground
based radiometers. However, the ratio of the footprint diameter
to the roughness height is orders of magnitude greater at the
satellite scale than that typically encountered at the plot scale.
There is some speculation that the effect of surface roughness
is small at satellite scales in many locations, except in areas of
mountainous terrain or extreme relief. Van de Griend and Owe
[27] found that a surface roughness of 0 gave the lowest rms
errors in satellite-derived soil moisture over a southern African
test site.

Microwave radiometer observations are generally recorded as
brightness temperatures, and must be normalized by the phys-
ical temperature of the emitting layer as shown in (1). Ideally,
the temperature of the soil moisture sampling depth should be
used to normalize the satellite observations [23]. However, es-
timating spatially representative land surface temperature, es-
pecially at satellite scales, is difficult and often imprecise. The
spatial variability of surface temperature is usually high, due to
the differences in topography, albedo, and land cover, so simple
averaging of a few point observations may lead to large errors.
Surface temperature estimates that are based on air temperature
have often given more accurate results because point measure-
ments of air temperature are usually more spatially represen-
tative when measured in appropriate locations than point mea-
surements of surface temperature. Remote sensing techniques
are ideal for estimating surface temperature since radiometer
measurements are already a spatially integrated value. Infrared
sensors have been shown to give excellent surface temperature
estimates, but they require significant calibration, and are too
frequently unavailable due to cloud cover. Njoku [36] has sug-
gested that surface temperature estimation accuracies of 2 to
2.5 C may be feasible by using multichannel microwave mea-
surements, especially if information on the surface character is
known. However, additional research is needed to investigate
these approaches.

It has previously been demonstrated that 37 GHz brightness
temperature at polarization and land surface temperature are
highly correlated. It has also been shown that this relationship
has a strong physical basis. A procedure to derive land sur-
face temperature from 37 GHz observations was developed and
tested during a large-scale field experiment in central Spain [18].
This procedure used a combination of field measurements of
air and surface temperature, satellite infrared temperatures, and
long-term daily maximum and minimum air temperatures to de-
rive a retrospective dataset of land surface temperatures. In the
current analysis, we were able to relate a dataset of 5 cm soil
temperatures from the Oklahoma Mesonet observation network
[37] to 37 GHz polarization brightness temperature observa-
tions from the TRMM microwave imager (TMI) on board the
tropical rainfall mapping mission (TRMM) satellite (Fig. 4).
However, 5 cm soil temperatures are not especially represen-
tative of the 6.6 GHz soil moisture sampling depth. A relation-
ship between 5 cm and 1.25 cm soil temperatures was calculated
from another dataset of field observations [38], and was subse-
quently used to derive the final relationship between the 37 GHz

polarization satellite observations and the 1.25 cm soil tem-

Fig. 4. Relationship between the TRMM 37 GHzV polarization brightness
temperature and the average (2400 hour) surface profile soil temperature at the
indicated depth.

peratures as illustrated in Fig. 4. While both sets of field data
were represented by observations on both bare and vegetated
soils, the 1.25 cm measurements only cover a temperature range
from 13 C–36 C. Improvements to the surface temperature
estimation procedure are currently being investigated, with sev-
eral extensive field data sets of measurements which include im-
proved representation of the lower end of the temperature scale,
and 37 GHz ground-based radiometer measurements. However,
for the purposes of this demonstration, it is felt that the current
correction provides a reasonable estimate of the surface profile
temperature.

Electromagnetic radiation emitted from the ground surface
may interact with the atmosphere in two ways as it propagates
to a satellite radiometer [39], [40]. In addition to the atmo-
spheric effects on the emitted surface radiation, there is also a
sky background radiation component that is reflected back to the
observing instrument and also an upward atmospheric compo-
nent. Although these effects are generally small at longer wave-
lengths, they may still be important. And while they were ex-
cluded in this initial presentation of the model, these effects will
be examined more closely in a later study, in order to determine
whether they should ultimately be included. In order to mini-
mize adverse atmospheric effects, satellite observations which
occurred during times of active precipitation were eliminated
from the data set. Observations occurring when surface temper-
atures were below zero were also excluded.

IV. M ODELLING APPROACH

The methodology presented here solves for the surface soil
moisture and optical depth simultaneously, using the radiative
transfer equation in (3) and the and polarized brightness
temperature at 6.6 GHz for out demonstration. Although the 37
GHz polarized channel is used to derive surface temperature,
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Fig. 5. Theoretical relationship between MPDI and the canopy optical depth
for a range of soil dielectric constants. Typical soil moisture values of 0%, 18%,
26%, 34%, and 41% would correspond to dielectric constants ofk = 3, 8, 13,
18, and 23.

this procedure is decoupled from the retrieval algorithm. Surface
temperature may be provided from other sources as well.

A nominal satellite footprint size of 150 kmis assumed,
and even though pixels are registered to a 1/4grid, all retrieval
calculations, including ancillary data, are based on the assumed
footprint size. A uniform footprint, with respect to soil and
canopy temperatures and vegetation biophysical characteristics
is assumed. Surface moisture and canopy optical depth are
subsequently extracted as average footprint values.

It was also assumed that surface roughness would have a min-
imum effect on the surface moisture calculations over the test
area, and was subsequently set to zero. An average value for
the scattering albedo of 0.06 was used, based on results of pre-
vious studies and values cited in the literature as discussed ear-
lier. An assumption of equal soil and canopy temperatures was
also made. Nighttime soil, canopy, and air temperatures are usu-
ally quite stable, and since we had limited the initial study to an
analysis of nighttime SMMR observations only, this assumption
is not unreasonable. The model now has two remaining parame-
ters. The vegetation or optical depth and the soil moisture, which
is expressed as the emissivity through the dielectric constant. An
approach for retrieving both parameters is described below.

Brightness temperatures measured from space contain
information on both the canopy and soil surface emissions, in
addition to their respective physical temperatures (1). Polar-
ization ratios, such as the microwave polarization difference
index (MPDI), are frequently used to remove the temperature
dependence of , resulting in a parameter that is quantitatively,
and more highly related to the dielectric properties of each of
the emitting surface(s). At the 37 GHz frequency, the MPDI is
mainly a function of the overlying vegetation, and consequently
is a good indicator of the canopy density, due to its relatively
short wavelength [30]. At a frequency of 6.6 GHz, the MPDI

TABLE I
POLYNOMIAL PARAMETERS FOR(8) THAT DESCRIBE THERELATIONSHIP

BETWEENk AND THE FITTING PARAMETERSC ;C , AND C

Fig. 6. Validation study comparing the MPDI-optical depth relationship
derived from simulations to the theoretical values derived from the radiative
transfer equation.

will still contain information on the canopy, namely the optical
depth, but will also contain significantly more information on
the soil emission and consequently the soil dielectric properties.
The MPDI is defined as

(6)

The theoretical relationship between the MPDI and the
canopy optical depth, as derived from the radiative transfer
equation, is shown in Fig. 5. This relationship was derived
by conducting a series of modeling simulations of and

for different soil moistures, soil temperatures, and optical
depth values. It is seen that the relationship between the optical
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(a)

Fig. 7. Six year time series of soil moisture retrievals for (a) northern test sites. Ground observations of soil moisture, as well as the average dailyfootprint
precipitation are also indicated for comparison.

depth and MPDI exhibits a strong dependence on the surface
moisture, and is defined by a family of curves according to
the surface moisture content. Instead of using soil moisture,
however, the absolute value of the soil dielectric constant
is used in order to minimize the influence of soil physical
properties. These curves may be defined by fitting an empirical
function to the simulations, according to

(7)

where and are coefficients, which may be defined as
a function of the absolute value of the soil dielectric constant

(8)

where
degree of the polynomial;
polynomial coefficients (Table I);

subscript term number.
Validation of the above relationships is given in Fig. 6. The theo-
retical optical depth, as derived by solving the radiative transfer
equation, is plotted together with the model simulation results
for wet and dry soil moisture conditions. Agreement between
the two solutions is good. By substituting (7) into (3), the op-
tical depth is eliminated and the vegetation term in the radia-
tive transfer equation is now expressed as a function of the
MPDI ( and ) and the soil dielectric constant. The
remaining term in the radiative transfer equation (3) is the soil
emissivity . As polarization has the greatest sensitivity
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(b)

Fig. 7. (Continued.) Six year time series of soil moisture retrievals for (b) southern test sites. Ground observations of soil moisture, as well as the average daily
footprint precipitation are also indicated for comparison.

to soil moisture, we solve for using . The emissivity
of the soil is calculated from the Fresnel equations [1], where
the only unknown is the dielectric constant of the soil.

We now have both the canopy optical depth and the soil
emissivity defined in terms of the soil dielectric constant.
Next, the model uses a nonlinear iterative procedure, the Brent
Method [41], in a forward approach to solve the radiative
transfer equation in horizontal polarization by optimizing on
the dielectric constant. This procedure is an excellent tech-
nique for solving the root of a general one-dimensional (1-D)
function when the derivative is not easily found. The Brent
Method optimizes both speed and precision by combining
root bracketing, bisection, and inverse quadratic interpolation
to achieve convergence. Once convergence of the modeled

and observed horizontal brightness temperatures is achieved,
the optimum soil dielectric constant is then input into a soil
dielectric model [11], along with information on soil physical
properties, to solve for the soil moisture.

V. RETRIEVAL RESULTS AND DISCUSSION

The previously described methodology has been applied to
the entire historical data set of nighttime SMMR brightness
temperatures for Illinois. This area was selected because of the
availability of long-term observational soil moisture data that
can be used for validation purposes. Although it is not neces-
sarily the most optimum dataset for microwave validation, it is
one of the few soil moisture data sets in the world, and possibly
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(a)

Fig. 8. Six year time series of satellite-derived optical depth are illustrated for (a) northern test sites. Time series of 15-day NDVI composites arealso plotted for
comparison.

the only one in the U.S., that provides regular observations of
soil moisture over an extensive area for such a long period of
time.

A six-year time series of SMMR-derived surface soil mois-
tures along with the observed soil moistures from the three sta-
tions within the test sites are illustrated in Fig. 7. The annual
course of the satellite retrievals coincides quite well with the in
situ measurements. While a good one-to-one correspondence is
not always observed, it is also not expected. One must keep in
mind several important differences when comparing the satel-
lite-derived surface moistures with the ground observations.

• Differences in spatial resolution. The SMMR-derived sur-
face moisture is a spatial average integrated over the foot-
print, whereas the ground data are point measurements.

• Differences in vertical resolution. The observational data
are an average soil moisture within the top 10 cm profile,
while the SMMR retrievals reflect only the moisture con-
tent of the microwave soil moisture sampling depth, which
is at most only about 1 cm.

• Differences in acquisition times. Ground and satellite ob-
servations rarely occur on the same day.

• Interobservation periods. While the SMMR observations
are displayed with connecting lines, it is done so only to
help in observing general trends in the time series. It is im-
portant to realize that significant changes in surface mois-
ture frequently occur during the interobservation periods
but may go totally undetected by both the satellite and the
ground observations.
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(b)

Fig. 8. (Continued.) Six year time series of satellite-derived optical depth are illustrated for (b) southern test sites. Time series of 15-day NDVI composites are
also plotted for comparison.

Because of these differences between the datasets, scat-
terplots may not serve well as a validation tool, except in
the comparison of general trends. Nevertheless, the resulting
annual course of soil moisture is consistent with the expected
values and trends. The greatest disparities between the two
data sets are generally seen to occur during the period of peak
vegetation, also as expected. To assist in understanding the
satellite retrievals, footprint average daily precipitation is also
included.

Time series of optical depth retrievals are illustrated for the
same test sites (Fig. 8). A distinct annual course is observed
in the optical depth time series, and coincides well with ex-
pected vegetation dynamics and the ten-day NDVI composite
data, which is included for comparison. Pixel average optical

depth values vary from about 0.3 to about 0.8 during the course
of the year, and are consistent with values reported in the liter-
ature. These values correspond to a range in transmissivity of
about 0.25 to about 0.65. The optical depth, however, is seen
to be much more variable in time than the NDVI. This is due
to the inherent characteristics of the NDVI compositing pro-
cedure, where only one value is selected during the composite
window to represent the entire period. The inability to quantify
the vegetation biomass at shorter (i.e., daily) time scales is often
a disadvantage of the NDVI. This may be rather significant in
arid and semi-arid regions, where greening and senescing of the
vegetation canopy (especially grasses) can occur over very short
time periods in response to precipitation events. The microwave
optical depth may provide additional information on vegetation
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biomass, and may be a good indicator of vegetation dynamics
at shorter time scales.

The greatest differences between the two datasets are ob-
served during the nongrowing season, where the optical depth
remains noticeably higher. However, it is also important to un-
derstand that the NDVI and the microwave optical depth re-
spond to different vegetation properties. The NDVI responds to
differences in the reflectivities of the visible (red) and near in-
frared wave bands and is strongly influenced by the chlorophyll
content, which is largely a function of the green leaf biomass.
The microwave optical depth, on the other hand, is a function of
the vegetation dielectric properties, responding most strongly
to the vegetation water content, which may not decrease to the
same relative extent as the green leaf biomass.

An intermediate analysis of satellite radiometer observations
showed that the vegetation optical depth atand polariza-
tion are very close. This result may be important when solving
the radiative transfer equations for two polarizations because
it effectively reduces the number of variables in the system of
equations. It is important to note, however, that this result may
only hold true only when the vegetation cover is truly random,
although at the SMMR scale this will probably be most of the
time.

Error analyses that will attempt to attribute the relative error
to various modeling parameters are currently being performed.
In addition, follow-up studies that will attempt to relate ob-
served differences in the retrievals to various land surface pa-
rameters are also planned.

VI. SUMMARY AND CONCLUSIONS

A methodology for the retrieval of pixel average surface soil
moisture and vegetation optical depth from dual-polarized mi-
crowave brightness temperature observations is presented and
has been applied to the 6.6 GHz SMMR data. The radiative
transfer-based approach does not use ground observations of
soil moisture, canopy biophysical data, or other geophysical
data as calibration parameters, and may be applied at any fre-
quency. The model assumes a constant value for the scattering
albedo based on a series of previous studies, and derives surface
temperature from high-frequency (37 GHz) vertically polarized
brightness temperature data. A soil roughness parameter was not
included during this analysis. However, improvements resulting
from the inclusion of a roughness parameter based on land use
or topographic data, especially in mountainous or other extreme
terrain, are being investigated, and may be incorporated in the
future.

Only nighttime data was used in the study because of the
greater stability of nighttime surface temperatures. Days with
snow cover or when surface temperatures were below zero were
eliminated from the analysis. A nonlinear iterative approach is
used to solve for the surface moisture and vegetation optical
depth by optimizing on the soil dielectric constant.

The present study was limited to two study sites in the Illinois
area as a demonstration because of the availability of long-term
soil moisture observations for comparison. Time series of
the satellite-derived surface moisture compared well with the

available ground observations and precipitation data. Likewise,
optical depth compared well with 15-day NDVI composite
data. Validation studies in other regions are currently being
conducted. Unfortunately, reliable, spatially averaged surface
moisture data, which can be used for validation purposes are
rare to nonexistent, especially at satellite scales. Comparisons
with precipitation fields are often the only validation option
available. Field experiments with the express purpose of
gathering such data should be designed and implemented as
a research priority. Refinements to a 37 GHz daytime surface
temperature retrieval algorithm will be completed shortly,
allowing for daytime soil moisture retrievals to be performed,
with the eventual goal of generating a retrospective daytime
and nighttime global surface moisture dataset for the entire
SMMR period.
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