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ABSTRACT 
Passive microwave sensors onboard satellites can provide global snow water equivalent (SWE) observations day or 
night, even under cloudy conditions. However, there are both systematic (bias) and random errors associated with the 
passive microwave measurements.  While these errors are well known, they have thus far not been adequately quantified. 
In this study, unbiased SWE maps, random error maps and systematic error maps of Eurasia for the 1990-1991 snow 
season (November-April) have been examined.  Dense vegetation, especially in the taiga region, and large snow crystals 
(>0.3 mm in radius), found in areas where the temperature/vapor gradients are greatest, (in the taiga and tundra regions) 
are the major source of systematic error. Assumptions about how snow crystals evolve with the progression of the season 
also contribute to the errors. In general, while random errors for North America and Eurasia are comparable, systematic 
errors are not as great for Eurasia as those observed for North America. Understanding remote sensing retrieval errors is 
important for correct interpretation of observations, and successful assimilation of observations into numerical models. 
 

I.0 INTRODUCTION 
 
Snow plays an important role in the global energy and water budgets, as a result of its high albedo and thermal and water 
storage properties. Snow is also the largest varying landscape feature of the Earth’s surface. Since Eurasia is 
considerably larger than North America and more of its land mass is positioned in higher latitudes, its snow cover area 
and snow volume in mid winter are also greater than for North America. Thus, reliable and accurate measurements of 
snow extent and snow water equivalent (SWE) in Eurasia are essential for climate change studies and for applications 
such as flood forecasting.  
 Passive microwave remote sensors onboard satellites provide an all-weather global SWE observation capability day 
or night. Brightness temperatures from different channels of satellite passive microwave sensors (hereafter referred to as 
PM) can be used to estimate the snow water equivalent (or snow depth with knowledge of the snow density), and hence 
snow cover extent. However, there are both systematic (bias) and random errors associated with the passive microwave 
measurements.  In order for the remotely sensed SWE observations to be useful for climate modelers, water resource 
managers and flood forecasters, it is necessary to have both an unbiased SWE estimate and a quantitative, rather than 
qualitative, estimate of the uncertainty (Sun et al., 2004). This is a critical requirement for successful assimilation of 
snow observations into land surface models (LSMs).  
 For most PM algorithms, the effects of vegetation cover and snow grain size variability are the main source of error 
in estimating SWE. Forests can have a significant impact on the accuracy of SWE estimates. In densely forested areas, 
such as the boreal forest of Canada and Siberia, the underestimation of SWE from retrieval algorithms can be as high as 
50% (Chang et al., 1996). In addition, snow density and snow crystal size do not remain constant throughout the snow 
season everywhere on the globe but rather vary considerably over time and space. PM algorithms are found to be very 
sensitive to snow crystal size (Foster et al., 1999).  
 The purpose of this paper is to present a methodology for deriving unbiased SWE estimates for Eurasia from PM 
observations. Both random errors (those that result from simplifying assumptions used in retrieval algorithms) and 
systematic errors (those due to the effects of vegetation cover and crystal size) are quantified. This paper presents results 
for the 1990-1991 snow season, as an example, using data from the Special Sensor Microwave/Imager (SSM/I). 



  

2.0 PASSIVE MICROWAVE RADIOMETRY 
 
If a snowpack is not too shallow (> 5 cm or contains more than about 10 mm SWE), scattering of naturally emitted 
microwave radiation by snow crystals occurs and can be detected at frequencies greater than about 25 GHz. Otherwise, 
the snow will be virtually transparent. By comparing brightness temperatures detected at an antenna at frequencies 
greater than 25 GHz (typically scattering dominated) with those brightness temperatures detected at frequencies less than 
25 GHz (typically emission dominated), it is possible to identify scattering surfaces. Generally, the strength of scattering 
signal is proportional to the SWE, and it is this relationship that forms the basis for estimating the water equivalent (or 
thickness) of a snow pack (Chang et al., 1976; Tsang et al., 2000; Pulliainen and Hallikainen, 2001; Kelly et al., 2003, 
Foster et al., 2004).  
 From November 1978 to the present, the SMMR instrument on the Nimbus-7 satellite, and the SSM/I on the 
Defense Meteorological Satellite Program (DMSP) series of satellites have acquired PM data that can be used to estimate 
SWE. The SMMR instrument failed in 1987, the year the first SSM/I sensor was placed in orbit. On SMMR, the 
channels most useful for snow observations are the 18 and 37 GHz channels. For the SSM/I, the frequencies are slightly 
different (19.35 and 37.0 GHz). The data are projected into ½ degree latitude by ½ degree longitude grid cells, uniformly 
subdividing a polar stereographic map according to the geographic coordinates of the center of the field of view of the 
radiometers. Overlapping data in cells from separate orbits are averaged to give a single brightness temperature, assumed 
to be located at the center of the cell (Armstrong and Brodzik, 1995, Chang and Rango. 2000).  
 We propose a modified SWE algorithm based on the original algorithm by Chang at al. (1987), where brightness 
temperature differences between the 19 GHz (or 18 GHz for SMMR) and 37 GHz channels are multiplied by a constant 
related to the average grain size to derive the water equivalent of the snowpack. The simple algorithm is  
 

      SWE = c ( T19  - T37 )   [mm]                    (1) 
   

where SWE is snow water equivalent in mm, c is 4.8 mm K-1, and T19 and T37 are the horizontally polarized brightness 
temperatures at 19 GHz (or 18 GHz for SMMR) and 37 GHz, respectively. The performance of this algorithm is similar 
when either vertical or horizontal polarizations are utilized – horizontal polarization was used in this study (Rango at al., 
1979). If the brightness temperature from the 19 GHz channel is less than that from the 37 GHz channel, then the snow 
depth and SWE are zero (Foster et al., 2004).  
 To derive snow depth, SWE is simply divided by the snow density. It has been determined that in general, a snow 
density value of 300 kg/m3 is representative of mature mid winter snow packs in North America (Foster et al., 1999). 
The effect of this is to modify the coefficient in (1) such that c is 1.60 cm K-1 (1.59 cm K-1 for SMMR). 

 
3.0 UPDATED RETRIEVAL ALGORITHM 

 
There are typically two kinds of errors associated with a given observation, systematic error (bias) and random error.  In 
this study, the emphasis is to evaluate the bias in the original algorithm (1) by comparing it with a new algorithm (2). We 
use the term “bias” as if the new algorithm gives  “true” values of SWE – based on evaluations with ground truth data.  
 The primary source of systematic error in SWE is the masking effect of vegetation, which reduces the brightness 
temperature difference term in (1). In the PM portion of the electromagnetic spectrum, the error due to forest cover is 
expected to be very high, upwards of 50%, since the emissivity of the overlying forest canopy can overwhelm the 
scattering signal from the snowpack (Chang et al., 1996; Brown at al., 2003). Where forests are scant or absent PM 
estimates of SWE are more accurate.   
 For each forested pixel, a fractional forest cover is calculated using the International Geosphere-Biosphere Program 
(IGBP) Land Cover Data Set described by Loveland et al. (2000). These data, at 1 km x 1 km, are averaged to the 1° x 1° 
latitude/longitude grid used in this study. The percentage of forest cover in a PM pixel was calculated from the total 
number of forest classification pixels at 1 km divided by the total number of pixels. Based on this fractional forest cover, 
the systematic error in the SWE value obtained from (1) can be estimated. A multiplicative “forest factor” is introduced 
to remove the bias due to forest cover from (1) 
 

 SWE = F c (T19 – T37)        [mm].                   (2) 
                                

 We derived the values of forest factor F by assigning underestimation errors in algorithm (1). In Figure 1, the 
diamonds denote the underestimation error in (1) due to forest cover. For example, if the fractional forest cover at a 



  

given pixel is 65%, we assume (1) underestimates SWE by 30%. These nonlinear values are inexact, but are our best 
approximations at this time. The error bars are our estimates of uncertainty associated with the underestimation estimate 
of a particular forest cover fraction. The more mixed the pixel, the more uncertainty there is on the forest influence of the 
PM signal. In other words, untangling the contribution of the signal due to scattering from the underlying snow and 
emission from trees is harder to assess when the mixture is more even (Foster et al., 2004).  
 Figure 2 shows the forest factor F as a function of fractional forest cover fr in Eurasia (maximum of 2.0). Note, we 
used the same fr for North America (Foster et al., 2004). Note that the F factor increases nonlinearly with forest cover. 
This is to correct for more severe underestimation of SWE due to dense forest cover.  The values for F are based on the 
underestimation of SWE at different values of fr). For example, for a pixel that is 85% forest covered, the 
underestimation of SWE by algorithm (1) is assumed to be 50%, which is the amount of SWE underestimation that 
results when a very dense forest cover is present (Foster et al., 2004).   
 The secondary source of SWE error results from the retrieval algorithm assumption that snow crystal size and 
shape is spatially uniform and remains constant throughout the snow season. This assumption is reflected in the original 
SWE retrieval algorithm (1) that has c is a constant. In fact, the crystal effect varies with location and evolves with time. 
It should be stated that except when the snowpack is thin, the algorithm overestimates SWE, and thus the errors are 
positive.  
 Sturm et al. (1995) have characterized the seasonal snowpack into six classes (tundra, taiga, prairie, maritime, 
alpine, and ephemeral), based on vegetation and meteorological conditions. In this investigation, we consider the 
evolution of snow crystal size based on these snow classes. As a result, the c value used in (2) varies with time. For our 
purposes, it is assumed that crystals grow throughout the snow season – an exception to this is the “ephemeral” snow 
class. Where temperature and vapor gradients are greater (northern interior climates – taiga, tundra, and prairie snow 
classes), the rate of growth and the associated crystal size errors are typically larger. 
 Figure 3 shows the systematic errors for six different “Sturm” snow classes due to grain size variability. For each 
Sturm snow class calendar month, a percentage error in SWE due to differences in snow crystal size over time is 
prescribed. While negative values of systematic error denote underestimation of SWE, there is an overestimation, in 
most cases. This is because the microwave scattering increases as the crystals grow in size throughout the snow season. 
Therefore, as the snow season progresses, the systematic error in these classes increases. The greatest systematic error 
occurs in the tundra snow and the least in maritime or ephemeral snow (Foster at al., 2004).  
 The original constant coefficient c  (4.8 mm) is associated with an average crystal size of 0.3 mm (radius).  Values 
of c larger than this indicate that the average crystal size is smaller than 0.3 mm, while smaller values are indicative of 
larger crystals. The largest uncertainty in c random errors occur in the tundra and prairie during the late winter and early 
spring period, whereas the smallest uncertainty is for the maritime and ephemeral snow classes. 
 Notice that for the month of November, the error results in only an underestimation for each snow class. The reason 
for this is because when the snow cover is shallow (< 5 cm), as it generally is at the beginning of the snow season, 
microwave radiation at all observed frequencies passes through the snowpack virtually unimpeded.  
 Figure 4 shows the different values of c for each of the six Sturm snow classes for each month of the snow season 
from October to May for Eurasia. Note that these values were derived from estimates of snow crystal size-related errors 
(Figure 3) for North America (Foster et al., 2004).  
 In summary, to compute unbiased SWE value for each pixel using (2), the forest factor F is first determined based 
on the forest cover fraction of this pixel, then the c value is assigned based on its snow class category and time of the 
year. The introduction of forest factor F and time and space-varying c in (2) is to correct the systematic errors in (1) so 
that only random errors remain. 
 

4.0 RESULTS 
 
Figure 5 is a series of monthly maps for November 1990 through May 1991 showing the monthly average SWE using 
(2). On these maps, largest SWE values are shown in red and the smallest values in blue. Note that pixels mixing with 
water (primarily around continental margins) have been designated as snow free, even though they may be snow covered 
during much of the snow season. Also note that for both the November and December maps, SSM/I data was not 
available in Nepal and western China (linear north-south swatches). In addition, it should be pointed out that SWE in 
mountainous areas, such as the Himalayas, is underestimated. 
 Looking first at November, it can be seen that the snow extends well into central Asia. The tundra and taiga regions 
are completely snow covered – maritime and prairie regions are partially covered. Typically, in the tundra region and the 
northern taiga, the snow is deepest at this time of year. SWE values for the most part are less than about 90 mm, but in 



  

parts of the Central Siberian Plateau and in the uplands of eastern Siberia, SWE values exceed 120 mm. In the prairie 
and maritime regions, SWE values are less than about 30 mm.  
 The December map is similar to the November map except that now snow has expanded further south and west, 
into the elevated portions of the Middle East and Western Europe. SWE has slightly increased over the Central Siberian 
Plateau and in parts of western Siberia. Thin snow occasionally covers southwestern Russia and interior areas of China 
and as well as interior areas of Western Europe (ephemeral snow). 
 By January, SWE has continued to increase in the taiga and in some maritime and prairie areas, but there has been 
little increase in tundra regions. Again the deepest snows are found across the Central Siberian Plateau, where maximum 
SWE values now reach 210 mm. Note the ephemeral nature of the snowpack in Western Europe and southwestern 
Russia – compare with the December map. In western China, the Tarim Basin (Taklimakan Desert) is also snow free. 
This arid area is ringed by mountains, which depletes storm systems of their moisture before reaching this basin. 
 In February, the snow extent covers upwards of ¾ of the continent, and SWE values are generally at their greatest. 
Most of the taiga of Siberia and northern Scandinavia now exceeds 90 mm. SWE is also observed to increase in the 
mountainous area between the Black Sea and Caspian Sea (eastern Turkey and northern Iran). By March, the snowpack 
has begun to recede and by April, only the taiga, alpine and tundra regions have SWE values greater than about 30 mm. 
 Figure 6 is similar to Figure 5 but in this case, maps of monthly biases (difference between SWE estimate from the 
new (2) and old algorithm (1) are represented – only maps for November, January, February, and April are shown. 
Shades of yellow and red indicate that the new algorithm is estimating more SWE than the original algorithm. The pale 
blue and sage colors show areas where there is little difference in SWE estimates using the two algorithms. 
 For November, the greatest positive errors (> 60 mm) occur across the Central Siberian Plateau, while slightly 
smaller positive errors are found throughout the taiga region. In the tundra region, the errors are slightly negative – the 
original algorithm (1) shows slightly more snow than does the new algorithm (2). This results because smaller crystal 
sizes (0.3 mm diameter) were prescribed for the tundra, using (1), than is actually the case, and therefore the original 
algorithm overestimated SWE in this region. There is not much change in December and January compared to the 
November map, except that the errors are a little smaller in over the Central Siberian Plateau (<60 mm), and in south 
central Eurasia (steppe or prairie region), the errors are slightly negative. By February, positive errors have increased 
across over much of the taiga region, particularly in eastern Asia (upwards of 60 mm), and the area of negative errors has 
also expanded somewhat. The maps for February and March are similar, but by April, there is little difference between 
(1) and (2). In general, systematic errors are not as great for Eurasia as those observed for North America 
 Figure 7 shows the random errors for the months of November through April (1990-1991) – only November, 
January, February, and April are shown. Again, the blue colors are indicative of small errors, and the yellow and reds 
show areas where the errors are greater. Typically, these errors are greatest where the SWE is highest – in the taiga 
region and across the Central Siberian Plateau (upwards of 24 mm). Random errors are also greater than about 15 mm in 
northwestern Russia in November, and errors larger than 9 mm are found from Scandinavia eastward across nearly the 
entire breadth of Russia. Note that in December, the random errors are actually smaller than in November in the taiga 
region but larger in Western Europe. By February, the errors have increased across eastern Asia (approaching 21 mm in 
places), however, they have changed very little over the rest of Eurasia. March is very similar to February, except errors 
are now larger than about 9 mm in the steppes of southwestern Russia and Kazakhstan. Throughout the winter, in the 
tundra, maritime and ephemeral regions, the random errors remain small – less than 9 mm. By early spring (April), the 
errors are smaller than for any month during the fall or winter. Only over the Central Siberian Plateau do the errors 
exceed 15 mm. It appears that the random errors for North America and Eurasia are comparable in magnitude – usually 
less than about 24 mm. 
 

                                                          5.0 CONCLUSIONS 
 

In this study, unbiased SWE maps, random error maps and systematic error maps of Eurasia for the 1990-1991 snow 
season (November-April) have been examined. Dense vegetation was shown to be the major source of systematic error, 
while assumptions about snow crystal size and how crystals evolve with the progression of the season also contribute 
significant biases. In general, while random errors for North America and Eurasia are comparable, systematic errors are 
not as great for Eurasia as those observed for North America. As more complete data is available on forest density 
becomes available separate forest factors could be prescribed for taiga sub-classes to better account for SWE in densely 
forested areas. 
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  Figure 1. Systematic underestimation and its error bars in unit of percent due to forest cover. 
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  Figure 2. Forest factor F as a function of fractional forest cover. 
 



  

 

 

 Figure 3. Systematic under-estimation or over-estimation and its error bars in unit of percent due to evolution 
of snow grain size. 
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Figure 4. Grain size coefficient c (in mm/K) as a function of month for six Sturm classes. The constant value (4.8 
mm/K) used in the original algorithm is also plotted and labeled as “OLD”. 

 
 

 

Nov 90 

Dec 90 

Jan 91

Feb 91

Mar 91

Apr 91

Figure 5: SWE maps from SSM/I during 1990-91 snow season. Snow-free area is dark gray.  



  

 
 

Figure 6: Difference in SWE estimates from two algorithms (new-old) for four selected months during 1990-91 snow 
season.   
 

 
 
 
Figure 7: Uncertainty of SWE estimates using the new algorithm for four selected months during 1990-91 snow season. 
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