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A B S T R A C T

Synthetic Aperture Radar (SAR) enables 24-hour, all-weather flood monitoring. However, accurate detection of
inundated areas can be hindered by the extremely complicated electromagnetic interaction phenomena between
microwave pulses, and horizontal and vertical targets. This manuscript focuses on the problem of inundation
mapping in areas with emerging vegetation, where spatial and seasonal heterogeneity makes the systematic
distinction between dry and flooded backscatter response even more difficult. In this context, image inter-
pretation algorithms have mostly used detailed field data and reference image(s) to implement electromagnetic
models or change detection techniques. However, field data are rare, and despite the increasing availability of
SAR acquisitions, adequate reference image(s) might not be readily available, especially for fine resolution
acquisitions. To by-pass this problem, this study presents an algorithm for automatic flood mapping in areas with
emerging vegetation when only single SAR acquisitions and common ancillary data are available. First, prob-
ability binning is used for statistical analysis of the backscatter response of wet and dry vegetation for different
land cover types. This analysis is then complemented with information on land use, morphology and context
within a fuzzy logic approach. The algorithm was applied to three fine resolution images (one ALOS-PALSAR and
two COSMO-SkyMed) acquired during the January 2011 flood in the Condamine-Balonne catchment (Australia).
Flood extent layers derived from optical images were used as validation data, demonstrating that the proposed
algorithm had an overall accuracy higher than 80% for all case studies. Notwithstanding the difficulty to fully
discriminate between dry and flooded vegetation backscatter heterogeneity using a single SAR image, this paper
provides an automatic, data parsimonious algorithm for the detection of floods under vegetation.

1. Introduction

Floods are the most frequent, disastrous and widespread natural
hazards of the world (CRED and UNISDR, 2015). Thanks to their sy-
noptic view of the flooded area, Earth observations from space can
effectively support emergency management (Ajmar et al., 2017) and
enable more comprehensive ways of constraining flood forecast hy-
draulic models than gauged data (Grimaldi et al., 2016; Schumann and
Domeneghetti, 2016). In particular, satellite-borne Synthetic Aperture
Radar (SAR) systems, because of their 24 hours and all-weather ac-
quisition capabilities, have become the preferred tool for flood mapping
from space (Dasgupta et al., 2018a; Schumann and Moller, 2015). SAR
is an active system that emits microwave pulses at an oblique angle
towards the target. The amount of microwave energy scattered off an
object is mainly a function of its surface roughness, with shape and
dielectric properties as secondary factors (Woodhouse, 2005). Rough
terrestrial land surfaces reflect the energy in many directions, including
back towards the sensor, and therefore appear as high backscatter

zones. Conversely, open water has a relatively smooth surface which
causes radar radiation to be reflected away from the sensor, resulting in
low backscatter (Henderson and Lewis, 2008). This difference in
backscatter response generally allows flood mapping (Ulaby et al.,
1986). Nevertheless, a number of event-related and catchment-related
meteorological and geometric factors can alter the backscatter char-
acteristics causing errors in the detection of the flooded area. For in-
stance, smooth surfaces such as roofs, tarmac and car parks can lead to
commission errors (Giustarini et al., 2013), while roughening of the
water surface due to rain and wind can lead to omission errors
(Zwenzner and Voigt, 2009). Moreover, interpretation of the back-
scatter response of different targets in urban and vegetated areas in the
presence and/or absence of flood water represents the biggest challenge
for inundation detection (Pierdicca et al., 2018; Shen et al., 2019). The
detrimental impacts of floods on densely populated areas and man-
made infrastructures has led to increased research efforts on flood
monitoring in urbanized areas (Chini et al., 2019; Li et al., 2019; Lin
et al., 2019; Mason et al., 2014; Wang and Tong, 2018). Nevertheless,
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flood monitoring in areas with emerging vegetation is essential for
comprehensive evaluation of the economic and environmental costs of
floods (Dutta et al., 2003; Koks et al., 2019; Molinari et al., 2019).
Moreover, adequate understanding of flood dynamics at the large scale
is pivotal for emergency and land management in urbanized areas
(Falter et al., 2015). The need for methodologies targeting the detection
of floods under vegetation has been highlighted by a number of studies
(e.g. Brisco et al., 2019; Dasgupta et al., 2018b; Landuyt et al., 2018;
Pulvirenti et al., 2011c; Schlaffer et al., 2017; Tsyganskaya et al., 2019;
Tsyganskaya et al., 2018b; Tsyganskaya et al., 2016; Twele et al.,
2016). Consequently, this study has focused on the investigation of
novel numerical techniques to distinguish between dry and flooded
vegetation, within the overarching aim of complementing the existing
body of literature on the detection of floods in non-obstructed and ur-
banized areas.

Vegetation backscatter is the result of volume scattering from the
canopy, diffuse scattering from the ground, and the double-bounce
mechanism due to multiple reflection from the horizontal surface
(ground or water) and vertical structures (trunks or stems) (Richards
et al., 1987a). When horizontal and vertical surfaces act as a dihedral
corner reflector, the double-bounce mechanism becomes the main
driver of vegetation backscatter. This effect can be further amplified in
flooded conditions when a layer of water covers the ground. In fact, the
smooth water surface and high permittivity enhance the coherent
specular reflection leading to backscatter in flooded vegetation that is
higher than that under non-flooded conditions, as opposed to condi-
tions in which water completely submerges the surface (Engheta and
Elachi, 1982; Pierdicca et al., 2018). While optical sensors cannot de-
tect standing water beneath vegetation, this backscatter increase en-
ables SAR the unique opportunity to map floods in areas with pro-
truding vegetation (Schumann and Moller, 2015).

In vegetated areas, however, the electromagnetic interaction phe-
nomena between microwave radiation, horizontal, and vertical surfaces
are extremely complex and can mask, diminish or hinder the expected
backscatter increase from non-flooded to flooded conditions (Pulvirenti
et al., 2013). Backscatter increase is the predominant effect only when
the radar signal is able to penetrate the vegetation canopy with enough
microwave energy to generate double bounce between horizontal and
vertical surfaces (Hess et al., 2003; Richards et al., 1987b; Townsend,
2002a). Consequently, detection of floods is facilitated by low vegeta-
tion density, sparse canopy and leaf-off conditions. Moreover, the pe-
netration depth of the SAR signal into vegetation is higher for longer
wavelengths, and so use of L-band has been recommended (Henderson
and Lewis, 2008; Hess et al., 1990; Richards et al., 1987a). Never-
theless, C-band and X-band data have also been successfully used for
the identification of flooded vegetation, especially for sparse forests and
leaf-off conditions (Clement et al., 2018; Cohen et al., 2016;
Voormansik et al., 2014). Steep (near nadir) incidence angles are gen-
erally preferred as they lead to a shorter path of the SAR signal through
the canopy, thus enabling the potential for a stronger double bounce
mechanism (Lang et al., 2008). Finally, radar signal polarization also
impacts the capability of discriminating between flooded and non-
flooded vegetation. When available, dual- or quad-polarization SAR
data are preferred as they provide more information on the target
structural and geometric properties than single-polarization data
(Brisco et al., 2013; Plank et al., 2017; Wang and Davis, 1997). When
only single polarization data are available, co-polarized signals (HH or
VV) are preferred over cross-polarized signals, with HH-polarization
leading to more accurate results than VV-polarization (Pierdicca et al.,
2013; Townsend, 2002b).

Empirical investigations of radar backscatter increase from non-
flooded to flooded conditions reported a wide range of values with up
to one order of magnitude difference. For instance, for X-band SAR
data, backscatter increase detected in olive groves by Pulvirenti et al.
(2013) was 10 times larger than the backscatter increase obtained in
dense deciduous forests during the leaf-on phase by Martinis and Rieke

(2015). As a consequence of this large variability, the distinction be-
tween diffuse vegetation backscattering in dry conditions and the
double-bounce phenomena in flooded conditions is a great challenge,
and the use of scene-specific thresholds has been recommended
(Martinis and Rieke, 2015; Plank et al., 2017; Pulvirenti et al., 2011a).
The classification algorithms proposed in the literature broadly rely on
change detection techniques and on the use of electromagnetic models.
A brief description of the existing techniques is provided below, with a
comprehensive review available in Tsyganskaya et al. (2018b).

Change detection methods derive a threshold from the analysis of
the backscatter intensity difference between at least two SAR observa-
tions, more specifically the image of the flood and a minimum of one
acquisition during dry conditions (e.g. Pierdicca et al., 2008). The
analysis of backscatter intensity difference can also be complemented
with information on interferometric coherence (Canisius et al., 2019;
Chaabani et al., 2018; Nico et al., 2000; Pulvirenti et al., 2015).
However, in change detection methods, the selection of a dry condition
acquisition is a critical step, especially for areas of high backscatter
variability such as crops (Hostache et al., 2012; Martinis and Rieke,
2015; Matgen et al., 2011). While consistent acquisition properties have
(so far) been required, the hurdle of finding a reference image acquired
in the same season of the flooded image can be overcome, at least
partially, by producing sets of several multi-year images of non-flooded
conditions which contain seasonal information (Cian et al., 2018; Long
et al., 2014; Schlaffer et al., 2017). Threshold values of backscatter
intensity difference have been derived using supervised approaches
based on user-defined training data (Martinis and Rieke, 2015; Plank
et al., 2017; Tsyganskaya et al., 2019; Tsyganskaya et al., 2018a), un-
supervised approaches such as the application of a Markovian model
(Martinis and Twele, 2010), electromagnetic models (Pulvirenti et al.,
2011c), or statistical analysis (Tsyganskaya et al., 2016). However,
despite the increasing frequency and number of radar acquisitions, an
appropriate reference image (or a long time series of images) might not
yet be available, especially for high resolution sensors that do not ac-
quire data routinely (Voormansik et al., 2014). Moreover, historical
SAR acquisitions have often been used in proof-of-concept studies in-
vestigating the use of RS data to improve flood forecast skill (e.g.
Hostache et al., 2018). In fact, finding an adequate reference image for
selected historical flood events could be an even harder task. Conse-
quently, a flood mapping algorithm for the detection of floods in ve-
getated areas which makes use of a single SAR acquisition is beneficial
to both near-real-time applications and hindcast analysis.

The accuracy of an algorithm for the detection of flooded vegetation
using single SAR acquisitions relies on an adequate understanding of
the vegetation backscatter response under flooded and non-flooded
conditions. Electromagnetic models provide a rigorous theoretical
treatment of the scattering of the radiation by vegetation and the un-
derneath horizontal layer in dry and flooded conditions (Bracaglia
et al., 1995a, 1995b; Ferrazzoli and Guerriero, 1995; Pulliainen et al.,
1994). Nevertheless, application of these models requires a large
number of site specific information on the structure of the target (e.g.
trunk geometry and permittivity; branch sizes, distribution, and or-
ientation; leaf dimensions and orientation; soil moisture and soil
roughness). Pulvirenti et al. (2011c) developed look-up tables for the
most common Mediterranean vegetation types. However, in different
climatic areas, vegetation parameters are very dissimilar and Cohen
et al. (2016), Pulvirenti et al. (2013) and Pulvirenti et al. (2015) tuned
the parameters of electromagnetic models using a plethora of detailed
ground survey data and optical data. In fact, adequate data for the
implementation of electromagnetic models are hardly available and a
novel data-parsimonious algorithm for flood mapping in vegetated
areas can support a larger number of analysis.

The aim of this study is therefore the development of an algorithm
that enables automatic flood mapping in vegetated areas using single
SAR acquisitions and commonly available ancillary data. Automatic
flood detection is required by near-real-time applications for the
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purpose of processing several acquisitions over a number of areas, and
to provide standardised results. Moreover, despite multi-polarized data
being used in continuous wetland monitoring programs (Brisco, 2015;
Wohlfart et al., 2018), often only single-polarized or dual polarized data
are available for operational flood monitoring (Cohen et al., 2016;
Martinis and Rieke, 2015). For this reason, the algorithm proposed in
this study has focused on the analysis of single polarized data, specifi-
cally HH data, as this is the most frequent acquisition choice in the case
of floods (Martinis and Rieke, 2015). This novel approach for the
mapping of flooded vegetation uses a statistical technique known as
probability binning (Roederer et al., 2001) to analyse the backscatter
response of wet and dry vegetation. Thresholds computed using prob-
ability binning were then applied within a fuzzy logic approach (Zadeh,
1965) which allows information provided by radar backscatter to be
complemented with information on morphology and context. The al-
gorithm was tested on three fine resolution SAR images acquired during
the January 2011 flood in the Condamine-Balonne catchment
(Queensland, Australia) and the accuracy of the SAR-derived flood
extent was evaluated using flood extent layers derived from optical
images.

2. Study area and data

2.1. Study area

The study area is the Condamine-Balonne catchment located in
Southern Queensland, Australia (Fig. 1a). The drainage area is
136,014 km2; the main rivers are the Condamine, Balonne, Culgoa, and
Maranoa. Two-thirds of the catchment drainage area is nearly flat, with
a complex braided river system and numerous creeks joining and
breaking away from the main channels. The climate is semi-arid with
the area subject to El Niño Southern-Oscillation (ENSO). Accordingly,
most of the waterways are ephemeral with extreme flow variability

(Arthington and Balcombe, 2011). The Millennium Drought, from the
mid-1990s to 2009, was followed by the La Niña Floods (Leblanc et al.,
2012) with 50 years average recurrence interval floods occurring in
2010, 2011, and 2012. As a consequence of the large intra and inter-
annual hydrological variability, the distribution of the vegetation is
driven by landscape position and associated flooding behaviour. The
larger rivers are lined by River Red Gum woodland (Eucalyptus ca-
maldulensis) which can grow up to 45 m tall, while the smaller rivers
and creeks are generally lined by 10 to 20 m tall Coolibah woodlands
(Eucalyptus coolabah) and river oak (Casuarina cunninghamiana).
Weeping bottlebrush (Callistemon viminalis), which can be up to 10 m
tall, is the most common understory. These trees and bushes have
sparse canopies, with long and narrow pendulous leaves. Frequently
flooded depressions within the major rivers support a range of her-
baceous and shrub wetlands species including Cane Grass, Lignum,
Golden and Nitre Goosefoot. The grasslands occupy slightly higher and
less frequently flooded areas, with extensive areas of the catchment
having been cleared for agriculture (Eco Logical Australia, 2016).

2.2. SAR data and optical validation data

The algorithm proposed in this paper was tested on three SAR
images acquired during the 2011 flood event. All three images have fine
(< 10 m) spatial resolution. Two images were acquired by the X-band
wavelength sensor onboard of the COSMO-SkyMed constellation, and
one image was acquired by the L-band wavelength sensor onboard of
ALOS-PALSAR 1. These SAR images will be hereafter referred to as
CSM1, CSM2, and AP, respectively. Airborne (AO) and satellite-borne
(SPOT5) optical imagery were used as a validation dataset. These
images were digitalised into binary flood extent maps using visual in-
spection by the Queensland Reconstruction Authority and Geoscience
Australia, respectively. Details of the interpretation of the airborne
image are available from https://www.data.qld.gov.au/dataset/flood-

Fig. 1. Location of the Condamine-Balonne catchment (yellow) and of the observed area (red square) (a). Observed area: river network, footprint of the SAR and
optical images, major townships (b). 2011 flood event: measured flood hydrographs, acquisition time of the SAR and optical images (c). Backscatter values σ0 from
ALOS PALSAR (d) and COSMO-SkyMed (e, f) acquisitions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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extent-series. For the satellite image SPOT5, care was taken to include
flooded vegetation into the inundation layer (Norman Mueller, personal
communication 22/09/2016). In this latter image, areas affected by
cloud cover and cloud shadows were excluded from the evaluation
dataset.

The sensor, data provider, acquisition time and features of the SAR
and optical imagery are detailed in Table 1. Despite a temporal
(< 12 h) offset between the SAR and optical sensor overpasses and the
well-known difficulty of detecting water under vegetation canopies
using optical wavelengths, the airborne and SPOT5-derived flood layers
were deemed to provide the most reliable reference for evaluating the
accuracy of the presented algorithm. Fig. 1b, c shows the images
footprint and acquisition time while Fig. 1d, e, f shows the values of
radar backscatter.

2.3. Ancillary datasets

Land cover maps, land use maps, the Water Observation from Space
(WOfS) database (Mueller et al., 2016), a Digital Elevation Model
(DEM), and extreme flooding assessment maps were the ancillary da-
tasets used for implementation of the interpretation algorithm.

The Dynamic Land Cover Dataset of Australia (Geoscience Australia,
2010) presents land cover information according to the 2007 Interna-
tional Standards Organization (ISO) 19144-2. As detailed in Lymburner
et al. (2011), 186 images acquired by the Moderate Resolution Imaging
Spectroradiometer (MODIS) from 2000 to 2008 were analysed to pro-
duce a 250 m resolution land cover map for the Australian continent.
More specifically, 34 land cover classes were used to reflect the struc-
tural character of Australian vegetation. These classes can be broadly
identified as grasses, shrubs, trees, crops, and bare areas. Shrub and
trees were further classified into closed, open, sparse, and scattered
according to the following thresholds of canopy cover:> 70%, between
30% and 70%, between 10% and 30%, and<10%. Urban areas, in-
frastructure (e.g. roads and water channels), and irrigated areas were
identified based on land use data, which are available at the continental
scale with 1:2,500,000 resolution (Australian Land Use and Manage-
ment Classification version 7, ABARES, 2010). Land cover data and
extent of the urban and irrigated areas for the footprint of the SAR
images are shown in Fig. 2a, b.

The WOfS product is a 25 m resolution gridded dataset indicating
areas where surface water has been detected from the analysis of
Landsat 5 and 7 acquisitions between 1987 and 2014 (WOfS product
version 1.5). The algorithm presented in this paper uses the water fil-
tered confidence layer (WOfSFCL), which provides for each pixel the
percentage of clear observations for which water was observed.
WOfSFCL values higher than 80 identify permanent water bodies
(Mueller et al., 2016). Conversely, very low values of WOfSFCL identify
areas affected by extreme flood events only. The values for WOfSFCL for
the footprint of the SAR images used in this study are shown in Fig. 2c,
d.

A Digital Elevation Model (DEM) is a three-dimensional re-
presentation of the Earth. The resolution and accuracy of DEMs vary
widely depending on the data source and the catchment characteristics
(Wang et al., 2018). In this study, the SRTM-derived 30 m resolution
DEM-H (Gallant et al., 2011) was used to draw the watersheds and the

river network (O'Callaghan and Mark, 1984). These datasets were re-
quired for the computation of the Height Above Nearest Drainage
(HAND) index and the distance (DIST) index. The HAND index is the
height difference between a DEM cell and the nearest cell along the
drainage channel while the DIST index is the planar distance along the
same drainage path (Nobre et al., 2011; Rennó et al., 2008). These
indices were computed using the toolbox developed by Schwanghart
and Scherler (2014) in Matlab. Algorithms for the computation of the
HAND and the DIST indices have also been developed in Python
(Bartos, 2018) and ArcGIS (Samadi, 2018). Moreover, the HAND index
can be retrieved from global and continental databases (e.g. Donchyts
et al., 2016; Yamazaki et al., 2019).

The Queensland Floodplain Assessment Overlay (Queensland
Reconstruction Authority, 2013) represents an estimate of areas po-
tentially at threat of flooding. This layer will be hereafter referred to as
the Extreme Flood Boundary (EFB) and was developed utilizing a range
of data sources including topographic information and historical flood
records. In catchments where information on the Extreme Flood
Boundary is not available, a contoured HAND map with a fixed
threshold (e.g. 15 m) has been largely employed in RS image analysis to
delineate areas at risk of flooding (Huang et al., 2017; Nobre et al.,
2016; Twele et al., 2016).

3. Methodology

The flood mapping algorithm proposed here makes use of different
information sources; specifically, (1) the backscatter response of the
different targets, (2) morphology and land use, and (3) context. These
information sources were analysed and combined within a fuzzy logic
approach. Fuzzy logic (Zadeh, 1965) has been previously acknowledged
as a valuable tool to derive floods beneath vegetation because it enables
considering the ambiguities of the radar measurements and the inclu-
sion of ancillary data in the processing algorithm (e.g. Pulvirenti et al.,
2013). Within this approach, each pixel is assigned a degree of mem-
bership to the flooded area. Degrees of membership are defined by real
numbers in the interval [0, 1] and computed using membership func-
tions which allow the comparison of pixel properties with pre-de-
termined parameters of the flooded and non-flooded areas. The work-
flow and the use of ancillary datasets at each step are shown in Fig. 3.
Sections 3.1 to 3.5 present the details of the proposed methodology.

3.1. Pre-processing

The pre-processing of the SAR data requires geometric correction,
radiometric calibration, speckle filtering, and the application of exclu-
sion layers. Geometric correction has the purpose to locate the image on
the Earth (geocoding) and to correct terrain distortions (orthor-
ectification). Radiometric calibration is conducted by the calculation of
the backscattering values (usually indicated with sigma nought, σ0) for
each pixel. More specifically, digital numbers (DNs) of the SAR datasets
are converted to backscatter values considering the local incidence
angle. While radar intensities can be computed considering both linear
and logarithmic (i.e. dB) units, the use of the latter was preferred
(Rignot and Van Zyl, 1993).

Speckle is a random noise that occurs when distributed targets are

Table 1
SAR and optical data used for testing the algorithm and validating its results, respectively.

Image acronym Instrument, sensor (agency) Date, time [AEST] Wavelength, polarization Incidence angle Pixel resolution [m]

AO Optical, airborne (Queensland Department of Natural
Resources and Mines)

2011/01/04,
14:15–15:12

– – 2

CSM1 SAR, COSMO-SkyMed2 (Italian Space Agency) 2011/01/04, 18:09 X, HH 40.07–41.89 5
AP SAR, ALOS PALSAR 1 (Japan Aerospace Exploration Agency) 2011/01/07, 23:10 L, HH 34.3 6.25
SPOT 5 Optical, SPOT5 (Airbus Defense & Space) 2011/01/08, 10:30 – – 12
CSM2 SAR, COSMO-SkyMed3 (Italian Space Agency) 2011/01/08, 17:27 X, HH 35.92–38.09 5
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imaged and the radar intensity represents the contribution of a number
of point scatterers (Oliver and Quegan, 2004). A number of techniques
exist to diminish this problem; examples include filtering techniques
(e.g. Frost et al., 1981; Lee et al., 2009) and bootstrapping methods
(Giustarini et al., 2015). This study made use of a 3 × 3 kernel size
gamma filter. This technique was selected because it achieves good

noise reduction and, at the same time, it preserves details within a
limited computational time (e.g. Cohen et al., 2016; Martinis et al.,
2009).

The last pre-processing step consists in the application of exclusion
layers with the purpose to limit commission errors. More specifically,
man-made flat surfaces, such as roads, usually have low backscatter

Fig. 2. Land cover data, extent of the irrigated and urban areas for the footprint of AP and CSM2 (a) and CSM1 (b). Water observations from space filtered confidence
layer data, Extreme Flood Boundary for the footprint of AP and CSM2 (c) and CSM1 (d).

S. Grimaldi, et al. Remote Sensing of Environment 237 (2020) 111582

5



Fig. 3. Workflow of the proposed algorithm (a): parameters that can be changed by the users are in yellow; dashed rectangles feature future improvements to the
current algorithm. Ancillary datasets (b). Z and S fuzzy functions; here q is the quantity under investigation (e.g. backscatter value for the computation of FM-OW and
FM-FV) (c). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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response that can be confused with water. Conversely, double bounce
backscattering from buildings can be confused with the response of
flooded vegetation. Since the purpose of the presented algorithm is the
detection of flooded vegetation (Section 1), man-made infrastructures
and urbanized areas were identified using land use information and
subsequently excluded from the investigated dataset.

3.2. Fuzzy set based on backscatter, FM1

The backscatter distribution of SAR images of areas with extensive
flooded vegetation can be interpreted as deriving from the overlapping
of the backscatter distribution of open water areas (OW), flooded ve-
getation (FV), and dry areas (e.g. Tsyganskaya et al., 2018a). In this
step of the proposed algorithm, degrees of membership to the open
water areas (FM-OW, Section 3.2.1) and to the flooded vegetation (FM-
FV, Section 3.2.2) are defined for each pixel based on its backscatter
value; the ancillary datasets used are land cover, land use, EFB, and
WOfS. To facilitate the understanding of the processing steps, Fig. 4
provides a graphical explanation of the use of the ancillary datasets and
of the analysis of the distribution of the backscatter values. It is im-
portant to note here that the rapid, yet simple approach for the com-
putation of FM-OW has the purpose to allow the extraction of areas of
low backscatter to facilitate the computation of FM-FV. The limitations
and potential for improvement of the methodology explained in Section
3.2.1 are discussed in Section 5. FM-OW and FM-FV are combined to
compute the membership value FM1 (Section 3.2.3) which provides the
core of the SAR-derived inundation layer.

3.2.1. Degree of membership to the open water areas, FM-OW
Smooth water surfaces have a low backscatter and so the standard Z

fuzzy function (Pal and Rosenfeld, 1988; Fig. 3c) was selected to
compute the membership of a pixel to open water surfaces (FM-OW). In
this fuzzy function, the lower the intensity of the pixel, the higher its
degree of membership; this choice is consistent with previous studies
(e.g. Martinis et al., 2015; Pierdicca et al., 2008; Pulvirenti et al.,
2011c). The parameters z1,OW and z2,OW have often been defined after
the partitioning of the SAR image with the purpose to segregate areas
where backscatter distribution is expected to show a peak in the low
range of values (Chini et al., 2017; Shen et al., 2019).

In the proposed application, the images are partitioned using in-
formation provided by land cover, land use data, and WOfS. More
specifically, if permanent water bodies can be identified using land
cover, land use, or WOfSFCL > 80 (Mueller et al., 2016), the dis-
tribution of the backscatter values sampled from these areas is ap-
proximated by the Gaussian probability density function (e.g. Giustarini
et al., 2016; Ulaby et al., 1986) according to

=
− −

f σ μ s
s π

e( | , )
1
2

,0
σ μ

s

( 0 )2

2 2
(1)

where σ0 is the pixel backscatter value (dB), and μ (dB) and s (dB) are
the mean and the standard deviation of the Gaussian density function,
and estimated using the Levenberg-Marquardt non-linear least squares
algorithm (Marquardt, 1963) as explained in Seber and Wild (2003).
The Shapiro-Wilk test (Shapiro and Wilk, 1965) was used to check the
possibility of approximating the sample with a Gaussian distribution.
The parameters of the Z fuzzy function are then defined as z1,OW = μ
and z2,OW = μ + 2s, meaning that pixels with backscatter values lower

Fig. 4. Schematic of the segmentation of the pixel population according to land cover, EFB, and WOfS. The test case CSM1 and the land cover Trees-Sparse are shown
as an example. Spatial distribution of the pixels with WOfS > 0.3 and of the land cover Trees-Sparse with reference to EFB and WOfS (a). Analysis of the backscatter
distribution of open water areas (b). Analysis of the backscatter response of the land cover Trees-Sparse for control, test, historically observed (HO), historically non-
observed samples (HNO) (c). Computation of βHO and βHN as in Section 3.2.2.3 (d).
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than the mean had FM1-OW equal to 1 while pixels with backscatter
value higher than twice the standard deviation had an FM1-OW of 0.
Backscatter values higher than twice the standard deviation are ex-
pected to be due to speckle, wind roughening, or other sources of un-
certainty. It is noted that thresholds of one time and three times the
standard deviation were also tested (analysis not shown here).

In semi-arid areas with ephemeral rivers, permanent water bodies
might not be identified or their backscatter distribution might not be
adequately represented by a Gaussian distribution (Fig. 4a). In such a
scenario, the algorithm automatically retrieves the backscatter values of
pixels with WOfSFCL > α. Inspection of the WOfSFCL database for a
number of Australian catchments demonstrated that a threshold value
of α = 0.3 allows considering the inundation extent of large and rare
flood events. The resulting sample of backscatter values selected from
the SAR image is then approximated by a gamma probability density
function according to
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where σ0 is the pixel backscatter value (dB), σ10 (dB) is the minimum
backscatter value in the analysed area of the SAR image, σm0 (dB) is the
distribution mode, k (–) is the shape parameter, and Г is the gamma
function. Here, similarly to previous studies (e.g. Giustarini et al., 2013;
Giustarini et al., 2015; Matgen et al., 2011), the asymmetric and left-
skewed gamma distribution, as opposed to the symmetrical Gaussian
distribution, was preferred for the retrieval of the OW parameters from
an enlarged sample of pixels, which is likely to include the higher
backscatter response of dry and flooded vegetation pixels. Conse-
quently, assessment of the parameters σm0 and k is focused on the lower
values of the distribution, up to an empirically-derived threshold σth0
(> σm0). This threshold represents the backscatter value above which
the empirical density function departs from the theoretical gamma
distribution. Assessment of σm0, k and σth0 is achieved as explained in
Matgen et al. (2011), using an iterative approach to minimize the RMSD
between the theoretical density function and the empirical density
function (Fig. 4b). These values are then used for the computation of
FM-OW. More specifically, backscatter values below σm0 are attributed
to open water areas, thus z1,OW = σm0, while σth0 is used to identify the
upper parameter of the Z fuzzy function, thus z2,OW = σth0.

3.2.2. Degree of membership to the flooded vegetation, FM-FV
The standard S fuzzy membership function (Pal and Rosenfeld,

1988; Fig. 3c) was selected to compute the degree of membership FM-
FV of a pixel to the flooded vegetation. In this function, the higher the
intensity of the pixel, the higher its degree of membership. Previous
studies defined the parameters of the S function using change detection
(e.g. Pierdicca et al., 2008; Tsyganskaya et al., 2016) or electro-
magnetic models (e.g. Pulvirenti et al., 2011c).

The algorithm implemented in this study adopted the statistical
technique called probability binning, proposed by Roederer et al.
(2001). Probability binning is a variant of the chi-squared statistic and
was formulated to allow automated non-parametric comparisons of
highly-overlapping distributions. More specifically, probability binning
defines whether a test sample is statistically significantly different from
a control sample, i.e. the test sample and the control sample belong to
different populations. The description reported below is limited to the
steps implemented within the proposed image classification algorithm;
a complete demonstration of probability binning can be found in
Roederer et al. (2001).

3.2.2.1. Lower threshold value s1,FV. The threshold value s1,FV is
computed using probability binning; for this purpose, the first step
consists in the identification of the test and control samples. The test
sample is composed by ntest pixels representing the backscatter response

of possibly flooded vegetation and is compared with a control sample of
ncont pixels representing the backscatter response of supposedly dry
vegetation. The control sample is divided into K bins such that each bin
contains the same number of pixels nkcont, meaning that a randomly-
selected pixel from the control sample has an equal probability of being
assigned to any of the bins. Using a higher number of bins resolves
distributions with higher confidence. Following a sensitivity analysis
(not shown here), a value of K equal to 100 was used for the
implementation of the proposed algorithm. The subsequent step
counts the number of pixels nktest of the test sample that belong to
each bin to allow the computation of a normalized chi-squared χPB
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Roederer et al. (2001) then proposed a T(χ) metric to quantify
whether the control and test samples have the same distribution. This
metric is analogous to the t-score as in
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The value χPB
2 is obtained for comparing equivalent data sets.

Consequently, any χPB
2 equal to or less than this value indicates that the

two compared data sets have the same distribution. A value T(χ) = 0
implies that the two distributions are indistinguishable; a value
T(χ) = 1 means that the two distributions are the same with a prob-
ability p < 0.17; T(χ) > 4 implies that the two distributions are the
same with a p < 0.01 (i.e., 99% confidence that the distributions are
different). When the latter condition is verified, the quantity Zk can be
computed for each bin to separate the bins in the test dataset that do not
belong to the control distribution following
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Zk is interpreted as a realization of an approximately Gaussian dis-
tribution with zero mean and unit variance. Bins of the test dataset for
which absolute values of Zk scores are larger than 1.96 belong to a
different distribution than the control dataset. In this application, bins
representative of the double bounce effect are expected to accom-
modate a larger number of test pixels than the number of control pixels
(that is, nktest ≫ nkcont) in the higher range of backscatter values.
Consequently, in the proposed algorithm, the backscatter response of
flooded vegetation is given by the union of the bins with Zk scores lower
than −1.96.

The identification of a control sample is pivotal for the im-
plementation of this methodology. Backscatter values of pixels located
outside of the EFB are therefore assumed to adequately represent the
backscatter response of dry vegetation. Conversely, it is hypothesized
that the distribution of backscatter values of pixels inside the EFB re-
sults from the overlapping of the response of dry and flooded vegetation
and pixels from this area are used to build the test sample (Fig. 4a, c).
Since this analysis aims at detecting areas of high backscatter due to
double bounce, backscatter values lower than z2,OW (the highest
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parameter of the Z fuzzy function for the identification of OW, Section
3.2.1) are excluded from both the control and the test sample. The
impact of different vegetation structural characteristics on the dis-
tribution of radar backscatter is accounted for by using information
provided by land cover and land use maps. Cultivated areas subject to
irrigation can cause large uncertainty in the interpretation (e.g.
Martinis and Rieke, 2015). To limit this problem, irrigated areas are
identified using the land use map to define irrigated areas-specific
control and test samples. Subsequent to the extraction of irrigated
areas, control and test samples are also built for each land cover class.
Probability binning is then applied for the assessment of irrigated areas-
specific and land cover-specific values of the parameter s1,FV of the S
fuzzy membership function (Figs. 3c, 4c). More specifically, s1,FV is
given as the lowest value of the union of the bins with Zk scores lower
than −1.96.

3.2.2.2. Higher threshold value, s2,FV. The analysis of the right
decreasing limb of the relative frequency distribution of the control
sample allows the assessment of the upper threshold s2,FV. More
specifically, having defined mC as the mode value of the backscatter
distribution of the control sample, s2,FV is the backscatter value with
relative frequency equal to mC / 10 (Fig. 4c). This definition was the
outcome of a sensitivity analysis (not shown here) according to which
such a threshold could account for the noise of radar backscatter while
at the same time limiting omission errors.

The Shapiro-Wilk test (Shapiro and Wilk, 1965) was then used to
check the possibility of approximating the control sample with a
Gaussian distribution (Eq. (1)). The distribution parameters μ and s
describing the left portion (up to mC) of the empirical relative frequency
distribution are computed using the Levenberg-Marquardt non-linear
fitting algorithm (Marquardt, 1963; Seber and Wild, 2003). A correla-
tion coefficient between the right portion (that is for backscatter values
larger than mC) of the theoretical distribution and of the empirical re-
lative frequency distribution larger than 0.998 is used as an indicator
that speckle noise is responsible for backscatter values in the right
portion of the control sample. For this reason, backscatter values of the
control sample higher than s2,FV are labelled by the interpretation al-
gorithm as non-flooded; a gamma function was also tested but had
lower accuracy in representing the left-hand side of the control back-
scatter empirical distribution. The threshold value 0.998 was selected
after extensive testing aiming at maximising the accuracy of the de-
tection of inundated areas (not shown here).

3.2.2.3. Shape coefficient of the S fuzzy function (optional). When
information of past inundation extent is available, such as from the
WOfS database, the test sample can be split into two sub-samples for the
purpose of computing a shape coefficient of the S fuzzy function. The
first sub-sample is therefore composed by the pixels which have been
previously observed as flooded. This sub-sample will hereafter be
referred to as “historically observed” (HO) sub-sample. The remaining
pixels are those for which floods have not (yet) been observed; these
pixels constitute the “historically non-observed” (HN) sub-sample. In
this study, pixels of the test sample having WOfSFCL > α were
allocated to the HO sub-sample; remaining pixels were allocated to
the HN sub-sample. Consistently with the analysis of the open water
areas, α was selected as 0.3. It is here noted that the WOfS database was
derived from optical images with 8-days average acquisition frequency,
meaning that flooding of pixels of the HN sample could have been
missed due to clouds, tree canopies, or low acquisition frequency. The
ratios βHO and βHN between the areas under the empirical relative
frequency distribution of these two latter samples, and control sample
for backscatter values larger than s1,FV and lower than s2,FV, is used as a
holistic measure of the difference between flooded and dry populations
(a schematic is shown in Fig. 4d). This evaluation is reflected in the
definition of a γ multiplicative coefficient of the S function as in

= −βγ 4 ,H
2 (9)

where βH is βHO or βHN and consequently, γ is the shape coefficient γHO
applied to the analysis of the HO sample or the shape coefficient γHN
applied to the analysis of the HN sample. Only βH values larger than 1
are considered for the computation of γ. The lower the areas ratio βH,
the more similar the two distributions, and the more difficult the
segregation of the flooded population from the dry population.
Conversely, the higher the areas ratio βH the more different the two
distributions and thus the easier the segregation of the flooded
vegetation from the dry population. As shown in Fig. 3c, the γ
multiplicative coefficient modifies the shape of the S function.

3.2.3. FM1
The total inundation extent in any observed area is given by the

union of areas of open water and flooded vegetation. Therefore, the
operation of fuzzy union, which assigns to each element the largest
degree of membership between FM-OW and FM-FV, is used for the
computation of the fuzzy membership FM1 as in

= − −FM1 max(FM OW, FM FV). (10)

FM1 represents the degree of membership of each pixel to the
flooded area according to its backscatter value only. In this study, it was
hypothesized that the analysis of backscatter intensity yielded a pre-
liminary inundation map that represents the seed region for the final
flooded layer, whose retrieval requires the integration of information
on morphology, land use, and context.

3.3. Fuzzy set based on morphology and land use, FM2

Inundation layers derived from a pixel-based backscatter intensity
analysis are inevitably prone to uncertainties due to the complexity of
the interactions between radar signal, highly heterogeneous vegetation
structure, and environmental factors. Moreover, agricultural practices
such as flood irrigation are a relevant potential cause of commission
error. Despite the analysis of the agricultural areas performed in FM-FV,
uncertainties are clearly still possible. Therefore, block 2 of the inter-
pretation algorithm (Fig. 3) aims to reduce commission errors due to
bright pixels that are not hydraulically connected to the core of the
inundated area. For this purpose, a fuzzy membership function FM-HD
is derived from the analysis of valley morphology, and subsequently
integrated by information on land use to compute the fuzzy member-
ship function FM2.

3.3.1. FM-HD
The HAND (Nobre et al., 2011) and DIST indices allow verifying

whether all the pixels identified as flooded by FM1 are hydraulically
connected. Rather than using fixed, pre-defined elevation or distance
thresholds, the algorithm computes the Empirical Cumulative Dis-
tributions of the HAND (ECD-HAND) and DIST (ECD-DIST) values of all
the pixels with FM1 > 0.8 within each watershed. It is hypothesized
that flooded pixels are located at elevation and distance values gradu-
ally increasing from the nearest river network (Fig. 5a). Therefore, the
knee points KH (xKH, ECDKH) and KD (xKD, ECDKD), that is the points
where the curvature of the empirical cumulative function has a local
maximum and the local slope has an abrupt decrease, pinpoint areas
with FM1 > 0.8 which are not hydraulically connected to the core of
the inundated area. Consequently, pixels at elevation higher than xKH or
distance larger than xKD can lead to commission errors. The fuzzy
membership value FM-HD is then computed using a Z membership
function. Thresholds values z1,HD and z2,HD are defined by imposing a
0.10 buffer around the lowest of ECDKH and ECDKD (Fig. 5b). HAND or
DIST values are then used as input to the Z fuzzy membership function
(Fig. 3a, c). The use of a 0.10 buffer, rather than a crisp threshold,
allows accounting for inaccuracies in the computation of HAND and
DIST and for different valley morphologies. Where a knee point was not
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found in either ECD-HAND or ECD-DIST, FM-HD is set equal to 1.

3.3.2. FM2
The weighted average rule (Karmakar and Dooley, 2002; Pulvirenti

et al., 2011c) is used to combine the fuzzy sets FM1 and FM-HD into a
new fuzzy set FM2 according to

= ∗ + ∗ −
+

w w
w

FM2 ( 1 FM1 2 FM HD)
1 w2

,
(11)

where weights w1 and w2 are a function of the land use class. More
specifically, FM-HD has the largest weight in irrigated areas (w1 = 1,
w2 = 3). FM1 has the largest weight in the remaining areas (w1 = 3,
w2 = 1). It should be stressed that FM2 is computed only for pixels
having FM1 > 0.8. Hence, FM2 depends on the previous analysis, on
morphology, on land use.

3.4. Fuzzy set based on context, FM3

Information on context was incorporated into the classification al-
gorithm according to the following considerations: there is a low
probability of finding a non-flooded pixel close to flooded ones, espe-
cially inside the EFB. Similarly, the probability of the presence of one
isolated flooded pixel inside an area of non-flooded ones is low, espe-
cially with increasing distance from the EFB.

The fuzzy set FM3 was defined using a Z membership function. First,
the difference D between a pixel's membership value FM2 and the

average mFM2 of the membership values of the neighbouring pixels
within a n × n mobile window is computed as

= −D mFMFM2 2. (12)

In high resolution images, pixel size smaller than the dimensions of
the targets can lead to uncertainties in pixel-based image interpretation
(Pulvirenti et al., 2013). As such, considerations on the SAR image pixel
size and the expected size of the surface scatterers can provide guidance
for the selection of the window size n. A value n = 11 was used for all
the fine resolution images analysed in this study.

Second, the quantity X is defined as a function of the difference D
(Eq. (12)), the position of the pixel with respect to the EFB, and of a
parameter ε by

⎜ ⎟= ∙ ∙ + ∙⎛
⎝

−
∙
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sgn D

sgn D
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( ) 1
2 ( )

,sgn D( )

(13)

where efb is a dimensionless index whose value decreases from 1 to 0
with increasing distance from the EFB. For instance, a slow decay rate
of −0.1/km, meaning that efb is 1 inside the EFB and 0 at a distance of
10 km, can be used in nearly flat areas (such as the study area presented
in this paper; a graphical representation is provided in Fig. 4a). The
parameter ε is used to discriminate and consequently remove spurious
pixels. After accurate tuning, a value ε = 0.2 was used in the current
version of the algorithm. Different values of ε and n can be defined by
the operator prior to starting the interpretation algorithm (Fig. 3a). The
dimensionless quantity X was then used as input to a Z membership
function for the computation of the fuzzy set FM3. The parameters z1,C
and z2,C had values of −0.2 and 0.2 respectively, the upper degree of
membership was FM2 and the lower degree of membership was mFM2
(Fig. 3a, c).

It is noted that the computation of FM3 is conceptually equivalent to
the membership functions based on context as defined in Pierdicca et al.
(2008) and Pulvirenti et al. (2011c). However, use of the EFB was
preferred here over the use of elevation data and could be a viable
solution in areas, such as the case study presented here, for which high
accuracy Digital Elevation Models are not available.

3.5. Post-processing and evaluation strategy

The final SAR-derived flood extent is obtained through a threshold
defuzzification step, which converts the resulting FM3 membership
degree into a crisp number. In this study, all the pixels having FM3
larger than the fixed threshold value of 0.5 (e.g. Pierdicca et al., 2008)
were allocated to the class water, and the remaining pixels allocated to
the class dry. The retrieved flooded area included the permanent water
bodies. These areas could be segregated using ancillary datasets such as
WOfSFCL, land cover, land use maps, or databases such as OpenStreet
Map.

The accuracy of the proposed interpretation algorithm was eval-
uated by comparing the SAR-derived flood extents with binary flood
extent maps retrieved from optical images (Section 2.2, Table 1). Spe-
cifically, the classification accuracy was quantified by computing the
metrics Overall Accuracy (OA) and the Cohen's kappa coefficient (k).
The Producer Accuracy (PA) and User Accuracy (UA) were also com-
puted for both water and dry classes separately. The computation of the
accuracy metrics was completed for each main processing step (that is,
FM1-OW, FM1, FM2, and FM3) to provide an insight on the relative
contribution of backscatter, morphological and context analysis to the
accuracy of the SAR-derived inundation layer. It is noted that for the
purpose of computing the accuracy metrics, each intermediate fuzzy
layer was defuzzified (using a 0.5 threshold). This evaluation was fur-
ther complemented by an in-depth analysis of the accuracy of the
proposed approach for different land cover classes and by the quanti-
fication of the contribution of the shape coefficient γ of the S function to
the final accuracy of the SAR-derived inundation layer. The former
analysis provided insight on the challenges and opportunities for the

Fig. 5. Schematic of the analysis of HAND and DIST indices: example of the
spatial distribution of the indices HAND and DIST for FM1 > 0.8 (a); com-
putation of the thresholds z1,HD and z2,HD (b).
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detection of flooded vegetation with the proposed algorithm. The latter
analysis quantified the impact of using historical observations of water
on the performance of the interpretation algorithm.

4. Results

4.1. Pre-processing; computation of backscatter threshold values (OW, FV)

Geocoded level 1.5 ALOS PALSAR data were orthorectified using
nearest neighbour function (Martinis and Rieke, 2015) and radio-
metrically calibrated following Lavalle and Wright (2009). COSMO-
SkyMed level 1 data were geometrically corrected and radiometrically
calibrated by e-GEOS. The cartographic system used for all SAR, op-
tical, and auxiliary data was WGS84, UTM55S.

Fig. 6 shows the thresholds z1,OW and z2,OW for the retrieval of open
water areas (Section 3.2.1). More specifically, permanent water areas
were not identified within the footprint of CSM1 and the thresholds
were derived using a gamma function to approximate the distribution
of backscatter values of pixels having WOfSFCL > 0.3. Conversely,
permanent water areas were identified inside the footprints of AP and
CSM2 and the thresholds were derived using a Gaussian distribution.

Fig. 7 shows examples of the computation of the thresholds s1,FV and
s2,FV for the retrieval of flooded vegetation (Section 3.2.2). Land cover
classes having highly different backscatter response were chosen to

discuss the results of the analysis. For all the images, land cover classes
Trees-Open showed different distributions for the test and control
samples; conversely, Tussock Grasses-Open had very similar distribu-
tions for the test and control samples. FM-FV was computed only for
land cover and land use classes which met the criteria explained in
Section 3.2.2.1 and summarised as follows: T (Eq. (4)) higher than 4, a
number of bins with Zk (Eq. (8)) lower than−1.96, and s2,FV larger than
s1,FV. If one of these requirements was not satisfied (as in Fig. 7g), FM1
depended solely on FM-OW. However, it must be noted that the algo-
rithm does not perform any further evaluation of the results of the
probability binning analysis. As such, extremely similar boundary
thresholds (as in Fig. 7f) could be used as input to the S fuzzy function.
Further testing, featuring the evaluation of the threshold values, could
be included in future developments.

4.2. SAR-derived flood extent maps

Figs. 8, 9, and 10 show the results of the computation of the fuzzy
membership values FM-OW, FM1, FM2, and FM3 and the performance
metrics for CSM1, AP, and CSM2, respectively. In each figure, the red
contour is the boundary of the inundation extent as derived from the
optical images, whose footprint is shown by the dashed lines.

For each SAR image, increasing values of OA and Cohen's kappa
from FM-OW to FM3 demonstrate the contribution of each step of the

Fig. 6. Distribution of backscatter values of the full image and of pixels having WOfSFCL > 0.3 for CSM1 (a), AP (c), and CSM2 (e). Analysis of open water areas for
CSM1 (b), AP (d), and CSM2 (f). Specifically, distribution of pixels with WOfSFCL > 0.3 and WOfSFCL > 80 (pixels with WOfSFCL > 80 were not found in CSM1).
Polygons LU in (d) and (f) are polygons extracted from permanent water areas as identified by the land use (LU) map. Gamma and Gauss functions, computed
thresholds z1,OW and z2,OW for CSM1 (b), AP (d), and CSM2 (f).
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computational algorithm to the accuracy of the SAR-derived flood ex-
tent map. Detection of open water only, that is the use of FM-OW, led to
an underestimation of the flooded area with the SAR-derived flood
extent maps showing a number of fragmented patches (Figs. 8a, 9a,
10a). Omission errors were highlighted by PA values for the class water
(PAW) as low as 33.3%, 10.1%, and 16.5% for CSM1, AP, and CSM2,
respectively. Use of probability binning to detect flooded vegetation
allowed to sensibly reduce these errors, and, after computation of FM1,
PAW increased by 62.2%, 75.2%, and 115.1% for CSM1, AP, and CSM2,
respectively. The UA for the class dry (UAD) increased by 14.2%, 2.4%,

5.4% for CSM1, AP, and CSM2, respectively. However, as shown in
Figs. 8b, 9b, and 10b, scattered patches of wet areas were returned in
the floodplain leading to commission errors. These errors were high-
lighted by a visual inspection of the areas outside of the footprint of the
optical images and were partially quantified by a slight decrease of UA
for the class water (UAw) (−3.6%, −6.7% for CSM1 and AP, respec-
tively) and PA for the class dry (UAD) (−2.4%, −2.4%, −1.6% for
CSM1, AP, and CSM2, respectively).

Commission errors were expected when introducing the analysis of
flooded vegetation and FM2 was designed to limit this problem. In these

Fig. 7. Examples of empirical distributions of the control sample, test sample, historically observed sub-sample (HO), and historically non-observed (HN) sub-sample,
Gaussian approximation of the control sample (where applicable). Computed threshold values s1,FV and s2,FV. Land cover Trees-Open for CSM1 (a), AP (c), and CSM2
(e). Land cover Tussock Grasses-Open for CSM1 (b), AP (d), and CSM2 (f). Land Use Irrigated cropping for AP (g).
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Fig. 8. CSM1: results of the computation of FM-OW (a), FM1 (b), FM2 (c) and FM3 (d). Close-up insets focusing on the footprint of the evaluation data (AO as in
Table 1): FM-OW (e), FM1 (f). Performance metrics computed for each processing step (g): Overall Accuracy (OA), Producers' Accuracy for the class water and dry
(PAW, PAD), Users' Accuracy for the classes water and dry (UAW, UAD), Cohen's kappa (k).
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Fig. 9. As per Fig. 8 but for AP. The magenta oval highlights the impact of FM2 for the analysis of irrigated areas. Close-up insets (e, f) feature the area inside the
magenta rectangle in (a) and (b). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. As per Fig. 8 but for CSM2. The magenta ovals highlight the impact of FM2 for the analysis of irrigated areas. Close-up insets (e, f) feature the area inside the
magenta rectangle in (a) and (b); pink dashed area: reservoir. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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case studies, the small footprint of the optical images hindered a
comprehensive quantification of the impact of this step of the compu-
tational algorithm on the accuracy of the SAR-derived flood extent.
Consequently, the values of the performance metrics were similar in
FM2 and FM1 for all the images. However, the comparison with Land
Use data in Fig. 2a, b highlighted that computation of FM2 diminished
the degree of membership to the flooded layer of some irrigated pat-
ches, as indicated by the magenta circles in Figs. 9c, 10c. Inclusion of
information on context then screened out isolated wet patches (Figs. 8d,
9d, 10d). Upon computation of FM3, PAW had an increase of 23.9, 88.7,
and 82.5% for CSM1, AP, and CSM2, respectively, when compared to
FM2. UA increased for both water and dry classes in all the images, with
the average increase being 8.5%. PAD underwent a slight decrease of
0.1%, 0.8% and 1.6% for CSM1, AP, and CSM2, respectively, denoting
small false alarms.

These results demonstrated that the fuzzy membership function
FM1 was able to identify the seeds of the inundation layer, and that
FM2 and FM3 allowed a further refinement of the initial classification.
The final classification layer had an OA of 81.5%, 83.7% and 85.7% for
CSM1, AP and CSM2, respectively. UAw, UAD, and PAD were larger than
70% for all the images; PAW had the lowest values being 66.9%, 33.4%
and 64.8% for CSM1, AP and CSM2, respectively. The low PAW of AP
led to a low Cohen's kappa of 0.34, while this metric was higher than
0.60 for both CSM1 and CSM2. Despite the encouraging results of the
proposed algorithm, further investigations are required to explain the
different performances for different images.

Performance metrics were also evaluated for each land cover class.
Results were consistent for all images. As an example, Fig. 11 shows
results for CSM2. The relative increment of PAW between FM1 and FM-
OW was the highest for the land cover classes Trees-Open (30–70%
canopy cover) and Trees-Sparse (10–30% canopy cover). Conversely,
the relative increment of PAW between FM1 and FM-OW was the lowest
for land cover classes Tussock Grasses-Sparse and Open, Chenopod
Shrub – Sparse, and Hummock Grasses – Sparse. These results can be
explained by the more constant structure of the trees (e.g., trunk or
branches), as opposed to the irregular morphology of grasses and
shrubs. Specifically, the more regular structure of the trees triggered
double bounce effects and radar signal increase for all wavelengths. It is
noted that canopy cover larger than 70%, i.e. land cover class Trees-
Closed, was not detected within these study areas. The analysis of a
larger number of case studies is recommended to verify these conclu-
sions.

Finally, the impact of the introduction of the shape coefficient γ of
the S fuzzy membership function for the computation of FM1 was tested
by running the algorithm with γ = 1. Impact of using WOfS for the
computation of the shape coefficient γ was tangible in CSM1 but neg-
ligible in AP and CSM2. In fact, in AP and CSM2, the area ratio βHO had
values close to 2 for most of the land cover classes, leading to γ values
close to 1. Conversely, in CSM1, βHO and βHN were often close to 4 and
1, respectively, leading to γ values equal to 0.25 and 4. Consequently,
omission of the shape coefficient γ for the analysis of CSM1 caused a
decrease of the accuracy of the results. More specifically, after com-
putation of the fuzzy set FM1, PAW, UAW, OA and Cohen's Kappa were
2.6%, 0.40%, 1.1% and 2.4% lower than the case where the shape
coefficient was used. This decrease of accuracy in FM1 led to a further
decrease of accuracy in FM2 with a decrease of OA and Cohen's kappa
values of 3.5% and 4.5%.

5. Discussion

5.1. Purpose and features of the proposed algorithm

In flooded areas a water layer covers the earth surface. In the pre-
sence of emerging vegetation, water surface smoothness and high per-
mittivity generally enhance double-bouncing effects, leading to a radar
backscatter higher than that under non-flooded conditions. Such an

increase can enable the detection of flooded vegetation using SAR data
(Sanyal and Lu, 2004). This work aimed to investigate novel numerical
techniques for the mapping of flooded vegetation when data avail-
ability or time constraints impede the use of reference images and/or
detailed ground information.

The proposed algorithm makes use of probability binning for the
analysis of highly overlapping backscatter distributions of dry and
flooded vegetation. Differently from other techniques (e.g. mixed dis-
tribution analysis; Bioresita et al., 2018), application of probability
binning does not require secondary distribution peaks. The use of this
methodology allowed correct detection of the initial seed pixels of the
flooded area. Identification of these seed pixels is pivotal for the ap-
plication of further refinements through the use of ancillary data or
widely used post-processing methods such as region growing
(Giustarini et al., 2013; Li et al., 2018). In fact, as shown in Section 4.2,
the use of ancillary datasets within a fuzzy logic approach com-
plemented the results of probability binning analysis, leading to an
OA > 80% for all the tested images. The algorithm is automatic and
ancillary datasets can be prepared off-line to reduce the computational
time. When all the ancillary data were prepared off-line, the compu-
tational time to process AP (~159 ∗ 106 pixels) was 20 min for FM-OW,
23 min for FM-FV, 1 min for FM1, 50 min for FM2, and 14 min for FM3
when using a 3.40 GHz Intel(R) Core™ i7–4770 CPU desktop with
16.0 GB of RAM. However, it must be noted that the current script
could be further optimised to limit the computational time.

5.2. Ancillary datasets

Inclusion of ancillary datasets allows for the integration of relevant
information on the examined area. However, interpretation accuracy is
clearly affected by the quality of these datasets. While only a brief
discussion on ancillary data availability and characteristics is presented
here, a thorough sensitivity analysis is recommended in a future study
through application of the methodology to a large number of catch-
ments. The ancillary datasets used in the proposed algorithm are a
DEM, a land cover map, a land use map, and historical observations of
flood extents. DEM, land cover maps and land use maps can be derived
from satellite and crowd sourced data and are generally available at the
global scale (Fritz et al., 2017). In this study, the Dynamic Land Cover
Dataset of Australia, despite its coarse resolution (250 m), provided
suitable information on the structural characteristics of the vegetation.
In fact, the use of this database allowed the comparison of the back-
scatter response of areas having sufficiently homogeneous vegetation
traits. The results showed that the methodology was capable of de-
tecting floods in areas with sparse trees, while it was less effective in
non-structured vegetation covers such as grasses and shrubs. The other
relevant ancillary dataset used within the proposed algorithm is WOfS
(Mueller et al., 2016), which provided information on historical ob-
servations of surface water in Australia. A global scale Landsat-derived
database of historical water surface observations was published by
Pekel et al. (2016). The latter database could enable the application of
the proposed algorithm to other continents thus allowing an extensive
analysis of the impact of optical-derived historical observations of
surface water on the accuracy of the proposed algorithm. This study
aimed at providing a first assessment by discussing the impact of the use
of WOfS on the SAR-derived flood extent maps. Firstly, WOfS was used
for partitioning of the SAR image to facilitate the assessment of the
backscatter distribution of open water areas. This step of the algorithm
could be replaced by well-established routines, such as automatic tile-
based thresholding protocols (e.g. Chini et al., 2017; Martinis et al.,
2009; Twele et al., 2016). Second, WOfSFCL allowed comparing the
backscatter response of vegetation patches that had been previously
observed as flooded with the control sample. Although the improve-
ments shown for one image suggest the potential utility of this com-
parison, a definite conclusion requires testing other functions and a
larger number of case studies.
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5.3. Limitations and future developments

Notwithstanding the encouraging results shown in this paper, the
methodology is affected by limitations that could be overcome by fu-
ture developments. First, the processing step for the detection of open
water areas (FM-OW) is rapid, yet rather simple. The specific scope of
the computation of FM-OW was the removal of areas of low backscatter
to allow focusing on the discrimination between the backscatter re-
sponse of dry and flooded vegetation. In fact, the proposal and testing of
the numerical analysis steps FM-FV and FM-HD represented the novelty
of this study within the overarching aim to complement the existing
body of literature on the detection of floods in non-obstructed and ur-
banized areas. The rapid method for the computation of FM-OW al-
lowed acceptable results in the three test images presented here, where
small samples of distinguishable pixels could be found. However, the
use of a unique threshold is often not suitable for the whole scene (Cao

et al., 2019). This problem is partially highlighted by the results of the
analysis of CSM1 (West and East areas of the flood extent layers in
Fig. 8a) and is expected to become obvious for images with in-homo-
geneous or unbalanced backscattering populations. To solve this issue,
the first straightforward future development is the integration of the
proposed numerical analysis steps with techniques allowing the ana-
lysis of smaller tiles, such as hierarchical splitting techniques (e.g. Chini
et al., 2017; Martinis and Twele, 2010).

Second, it must be noted that in the three test cases, areas of high
backscatter show significant departures from the rather homogenous
surroundings. The selection of the test cases was driven by the avail-
ability of evaluation data. Nevertheless, the features of the observed
areas could impact the algorithm performance. Consequently, extensive
testing of the algorithm parameters and several assumptions on a larger
number of case studies is required to evaluate the robustness of the
methodology. Specifically, application of the algorithm to intensively

Fig. 11. CSM2: performance metrics computed for the main land cover classes (extent within the footprint of CSM2 indicated as percentage): Overall Accuracy (OA),
Producers' Accuracy for the class water and dry (PAW, PAD), Users' Accuracy for the classes water and dry (UAW, UAD), Cohen's kappa (k). Results forFM2 are reported
for completeness, however this processing step targeted land use class irrigated areas and did not impact the analysis of land cover classes. Values of the performance
metrics of FM-OW, FM1, and FM3 computed for the full image are reported as reference.
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cultivated areas or areas with significant topography could offer the
opportunity for further developments.

In fact, the above suggested further testing would also enable a third
area of investigation, that is a sensitivity analysis of the algorithm re-
sults to image acquisition properties, pre-processing steps, and features
of the land-cover data. Specifically, when SAR data are characterized by
a large range of incidence angles, their influence on the backscatter
response from flooded vegetation can be significant and has to be
considered. Vegetation canopies are intrinsically heterogeneous and
radar measurement sensitivity to the spatial arrangement of the scat-
terers is a big source of uncertainty, especially in high resolution ac-
quisitions (Pulvirenti et al., 2013). Image pre-processing steps and
speckle reduction have a smoothing effect that leads to the degradation
of the geometric details resulting in information loss, with each spatial
resolution characterized by a different compromise between speckle
reduction and preservation of geometrical details (Bovolo and
Bruzzone, 2005). By segregating areas having the same land cover, the
proposed algorithm attempts to analyse samples having similar texture
characteristics (with reference to the geometrical features and the
phenological phase) and thus enable the detection of backscatter var-
iations due to flooding. However, the use of coarse resolution land
cover data (such as the Dynamic Land Cover Map) is likely to impede
accurate detection of geometrical details. Hence, future work should
investigate the impact of pre-processing steps, the inclusion of a higher
resolution land cover dataset and object-based classification (Chini
et al., 2011; Pulvirenti et al., 2011b) within each land-cover class.

A fourth area of development could feature a number of additional
processing steps. For instance, membership functions formulated in
previous studies and focusing on the size and the elevation of the
flooded areas, and terrain slope could be included (Gallant and
Dowling, 2003; Martinis et al., 2015; Pierdicca et al., 2008; Twele et al.,
2016). Moreover, additional ancillary datasets could be used. In non-
flooded terrains with high soil moisture, the high dielectric constant
causes an increase of backscattering from the ground surface which
reduces the contrast between non-flooded and flooded vegetation
(Wang et al., 1995). Remote sensing-derived soil moisture information
(Gao et al., 2018; Sabaghy et al., 2018; Zhu et al., 2019) could be in-
corporated in the proposed algorithm to limit this problem. Conversely,
in flooded vegetated areas, water depth affects backscatter values
(Kasischke et al., 2009). An assessment of water depth could be
achieved by overlaying the preliminary SAR-derived flood extent on a
DEM (Matgen et al., 2016; Schumann and Di Baldassarre, 2010). Pre-
viously investigated relationships between water depth and backscatter
values (e.g. Pierdicca et al., 2013) could be incorporated in the inter-
pretation algorithm. Furthermore, such a three-dimensional map of the
flooded area could be used to evaluate flow connectivity and verify the
connection between irrigated and inundated areas.

Clearly, the inclusion of each suggestion into the classification al-
gorithm should be tested for cost-effectiveness of accuracy compared to
required resources and computational time. Nevertheless, SAR-derived
flood maps are inevitably affected by inaccuracies and their informa-
tion content can be considerably increased by including an assessment
of the uncertainty of the flood area delineation (D' Addabbo et al.,
2016; Di Baldassarre et al., 2009; Giustarini et al., 2016; Schlaffer et al.,
2017; Westerhoff et al., 2013). Provision of probabilistic rather than
crisp flood extent maps requires evaluation of the statistical significance
of each step of the algorithm and would also be the subject of future
studies.

Finally, it is important to underline that the proposed algorithm has
been tested using high resolution, X and L-band wavelength, HH po-
larization SAR acquisitions, for which evaluation data were available.
However, the algorithm was conceived and designed with the over-
arching aim of enabling the analysis of SAR acquisitions having dif-
ferent spatial resolution, wavelength, and polarization. While only
high-resolution (≤10 m) data were used for this study, inundation
detection under vegetation with moderate resolution (≤102 m)

imagery could be possible in large floodplains with uniform vegetation
cover. Extensive testing is strictly required to verify this hypothesis and
investigate the trade-off between SAR resolution, vegetation cover
properties, land cover data resolution, and accuracy of the metho-
dology. By using both X and L-band acquisitions, this study achieved a
first analysis of the flexibility of the methodology for short and long
wavelengths at HH polarization. Nevertheless, the reliability of the al-
gorithm for the application to intermediate (e.g. C-band) wavelengths
and different polarizations has yet to be investigated. In this frame-
work, the dual polarization (VV and VH) acquisitions made available
free of charge by the 101 m spatial resolution C-band Sentinel-1 con-
stellation (launched in 2016) provide a relevant dataset for future
testing.

6. Conclusions

This paper presented a novel algorithm which makes use of prob-
ability binning and fuzzy logic for the mapping of flooded vegetation
from single SAR acquisitions and routinely available ancillary datasets.
The proposed automatic data parsimonious approach, in which ancil-
lary data can be prepared off-line to limit computational time, can
enable near-real time analysis to support emergency management and
complement the existing capabilities of flood detection in non-ob-
structed and urban areas.

The algorithm was tested on three fine resolution images acquired
during the 2011 flood event in the Condamine-Balonne catchment
(Australia) and its accuracy evaluated using fine resolution optical data.
The OA was higher than 80% for all the images; the PA for the class
water had an average increase of 84% when adding the analysis of
flooded vegetation to the analysis of open water areas only. Possible
causes of inaccuracy, the limitations of the proposed methodology, and
a number of areas for future developments have been discussed. Despite
the impossibility of fully separating backscatter effects caused by
flooding and vegetation backscatter spatial heterogeneity using single
acquisitions, the results shown in this paper encourage further testing of
the proposed methodology and extension of the algorithm to in-
corporate previous experience and other datasets.
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