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A B S T R A C T

Synthetic Aperture Radar (SAR) data are currently the most reliable resource for flood monitoring, though still
subject to various uncertainties, which can be objectively represented with probabilistic flood maps. Moreover,
the growing number of SAR satellites has increased the likelihood of observing a flood event from space through
at least a single SAR image, but generalized methods for flood classification independent of sensor characteristics
need to be developed, to fully utilize these images for disaster management. Consequently, a neuro-fuzzy flood
mapping technique is proposed for texture-enhanced single SAR images. Accordingly, any SAR image is first
processed to generate second-order statistical textures, which are subsequently optimized using a dimensionality
reduction technique. The flood and non-flood classes are then modelled within a fuzzy inference system using
Gaussian curves. Parameterization is achieved by training a neural network on the image through user-defined
polygons. The results of the optimized texture-based neuro-fuzzy classification were compared against the
performance of the SAR image alone and that of SAR enhanced with randomly selected texture features. This
approach was tested for a COSMO-SkyMed SAR image at two validation sites, for which high resolution aerial
photographs were available. An overall accuracy assessment using reliability diagrams demonstrated a reduction
of 54.2% in the Weighted Root Mean Squared Error (WRMSE) values compared to the stand-alone use of SAR.
WRMSE values estimated for the proposed method varied from 0.027 to 0.196. A fuzzy validation exercise was
also proposed to account for the uncertainty in manual flood identification from aerial photography, resulting in
fuzzy spatial similarity values ranging from 0.67 to 0.92, with higher values representing better performance.
Results suggest that the proposed approach has demonstrated potential to improve operational SAR-based flood
mapping.

1. Introduction

Floods are widely accepted as the most ubiquitous of all natural
disasters and an alarming increase in their frequency has been evident
for the last few decades (Schumann et al., 2009b). The global socio-
economic impacts of flooding are likely to increase as a result of climate
change impacts and population growth (CRED and UNISDR, 2015). As
satellite data provide a cost-effective, near real-time solution for op-
erational flood mapping, it becomes imperative to exploit its full po-
tential for flood management (Giustarini et al., 2016). Furthermore,
satellite-derived flood extent maps can improve flood forecasting skill
by allowing more accurate hydraulic model calibration and validation
(Grimaldi et al., 2016; Wood et al., 2016), through direct assimilation
of flood extent (Hostache et al., 2015; Lai et al., 2014) or spatially

distributed water levels derived using digital elevation models (DEM)
(García-Pintado et al., 2013, 2014; Giustarini et al., 2011; Hostache
et al., 2009, 2010; Lai and Monnier, 2009; Mason et al., 2012; Matgen
et al., 2010).

Synthetic Aperture Radar (SAR) data have proven to be the most
useful for the spatial characterization of floods, due to their all-weather,
all-day imaging capabilities (Smith, 1997). Inundated pixels often ap-
pear dark on SAR images, as specular reflection reflects the radar signal
away from the sensor, resulting in low recorded backscatter (Hostache
et al., 2009). This usually results in a high land-water contrast and so
several flood mapping approaches utilize this characteristic, including
but not limited to; radiometric thresholding (Hostache et al., 2006),
automatic thresholding (Chini et al., 2017; Twele et al., 2016), region-
growing (Boni et al., 2016), object oriented classification (Pradhan
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et al., 2016), pixel based supervised classification (Voormansik et al.,
2014), and change detection (Giustarini et al., 2013; Long et al., 2014).

Most of the aforementioned approaches rely on a clear separation
between land and water pixels achieved at the classification boundary,
which is improbable in practice due to an overlap in the class dis-
tributions. As shown by O'Grady et al. (2014), even for images ex-
hibiting significant class separability, > 2% of pixels will be mis-
classified even if the central data value is accurately identified for
binarization. Furthermore, SAR images are affected by speckle noise,
which causes random backscatter variations within homogeneous
image features, making SAR-based classification significantly more
challenging (Giustarini et al., 2015). Moreover, the SAR imaging geo-
metry at the time of acquisition, especially the local incidence angle,
substantially contributes to backscatter variability (O'Grady et al.,
2013, 2014). Factors like submerged vegetation, wind or rain, which
roughen open water surfaces and thus alter the backscattering beha-
viour, may contribute to under detection. Conversely, dark or smooth
urban surfaces such as asphalt and concrete, which generate low
backscatter similar to water, may lead to over detection (Martinis et al.,
2015).

Given that the sources of uncertainty are numerous, stakeholders
stand to benefit from a clear representation of these on the resulting
flood maps. Probabilistic flood maps provide a unique opportunity for
an objective characterization of the various uncertainties associated
with SAR-based flood mapping. Multi-algorithm map ensembles, which
indicate the possibility of inundation at each pixel, have been proposed
to account for the subjectivity in the choice of an appropriate classifi-
cation algorithm (Schumann et al., 2009b; Schumann and Di
Baldassarre, 2010). Such maps have also proved useful for fuzzy model
calibration, as the information content of SAR imagery could be ex-
tracted while accounting for observational uncertainties (Di Baldassarre
et al., 2009). However, the number of ensemble members and the
specific algorithms chosen for this exercise could still be subjective
(Giustarini et al., 2016).

Similar to the ensemble mapping technique, Schumann et al. (2008)
proposed the use of multiple equally plausible thresholds for the land-
water interface. Building on this, the merit of acknowledging the un-
certainty in the SAR thresholding for flood model calibration was de-
monstrated (Schumann et al., 2014), with the threshold varied across
the whole range of plausible backscatter values to ensure objectivity
and to optimize information extraction from the SAR image. Each
model simulated binary flood map (water and no water) resulting from
a particular parameter set was then compared to all the binary SAR-
based maps generated. Although this approach is theoretically pro-
mising for model calibration, it remains a computationally intensive
exercise which may be unsuitable for operational applications.

More recent studies have used the Bayesian principles of conditional
probability, where each pixel is assigned a flood probability based on its
backscatter value (Giustarini et al., 2016). Here the probability dis-
tributions for flood and non-flood classes were first estimated from the
empirical histogram of SAR backscatter values and parameterized as a
mixture of two Gaussian functions using the Levenberg–Marquardt al-
gorithm (Marquardt, 1963). The reliability statistic used in the study
exhibited a keen sensitivity to the prior probabilities assumed, though
authors showed that using a prior value of 0.5 was mostly acceptable.
Subsequent research on this method used a time-series of SAR data to
parameterize the probability distributions (Schlaffer et al., 2017). The
results showed that the varying imaging geometries, the incidence
angle in particular, had a large impact on class separability. This im-
plies that reliance on SAR backscatter alone is unable to account for
uncertainties contributed by wind and rain conditions, mixed land
covers, or water lookalike surfaces. However, these studies established
that a reasonable probabilistic definition of flooding at each pixel was
possible by modelling the backscatter distribution using some non-
linear regression technique, if complementary information was avail-
able or priors were accurately estimated.

Ideally, the inclusion of ancillary datasets within this Bayesian
framework could eliminate one or more sources of errors in SAR-based
flood extraction (D'Addabbo et al., 2016). Integration with a detailed
land cover map for example, allows differentiation between water and
water lookalike regions in the SAR image (Pierdicca et al., 2008).
Several approaches have been proposed for the integration of these
separate information layers, from Bayesian networks (Refice et al.,
2014) to fuzzy inference systems (Pulvirenti et al., 2013, 2014). A key
limitation of such approaches is the assumption that suitable supporting
datasets are available for the area of interest, which is often inaccurate
especially for developing regions. Moreover, the present cohort of fuzzy
rule-based approaches utilizes theoretical electromagnetic back-
scattering models for parameterization. Given that these are wave-
length specific, they typically limit transferability of fuzzy approaches
across the range of SAR satellites. Therefore, this study introduced a
texture-based image enhancement approach to improve single image
flood mapping, which can incorporate the spatial autocorrelation
amongst pixel values to minimize the impact of sensor parameters.

Since texture can be derived from the SAR image, it also reduces the
dependence on ancillary or complementary datasets. However, state-of-
the-art texture based mapping approaches also struggle with the sub-
jectivity in selecting application appropriate texture features, suitable
window sizes, and optimal direction for identifying the feature of in-
terest. These challenges currently significantly limit the use of texture
in SAR based flood mapping (Di Baldassarre et al., 2011). Consequently,
a SAR texture optimization technique is proposed in this paper to im-
prove the utilization of texture in single image flood mapping and ad-
dress these open research questions.

The optimized texture bands were considered alongside the SAR
intensity image, within a neuro-fuzzy classifier to generate a fuzzy flood
map. Gaussian membership functions were chosen to represent the
backscatter distribution of each class, based on the image histogram as
in the probabilistic mapping approaches (Giustarini et al., 2016;
Schlaffer et al., 2017). However, using the neural network for a data
driven parameter estimation of these membership functions removes
the need for identification of suitable prior probability distributions.
Training the classifier on the image to be processed, offers the addi-
tional advantage of accounting for image specific backscatter varia-
bility, caused by the reference incidence angle or wind effects.

Given a filtered SAR image, the ideal window size for texture esti-
mation is first determined through semivariogram analysis. This is
followed by an estimation of omnidirectional Grey Level Co-occurrence
Matrices (GLCM) from which texture features were derived. An in-
dependent component analysis was then used to condense the max-
imum possible information into minimum bands, which were then
added to the SAR image prior to classification. The class distributions
were modelled as Gaussian functions within a fuzzy inference system,
and parameterized using training data from the image itself.

The resulting maps were evaluated using aerial photographs
through reliability diagrams, as well as a fuzzy validation exercise novel
to flood mapping literature. The fuzzy map comparison accounts for the
uncertainties in manual shoreline extraction for validation data as well.
The classification performance of the SAR image with added optimized
texture bands was compared against a SAR image without any texture
addition and a SAR image with some randomly selected texture features
added. Finally, a land-use specific analysis was conducted to assess the
spatial variability of classifier performance, to facilitate an area ap-
propriate choice of classifiers for flood mapping.

2. Study area and data

2.1. Study area

The Clarence Catchment of New South Wales, Australia, which
spans an area of 22,700 km2 was selected as the study site to test the
mapping approach. Fig. 1 illustrates the geographic location of the
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study area and the position of the validation targets, where high re-
solution airborne imagery were available. The land cover of the region
is primarily dominated by grassland vegetation and agriculture. The
Middle Clarence Catchment near Grafton is characterized by gentle
slopes, although the Upper part has a highly undulating topography.
The flood event under consideration occurred from January 10 to 17,
2011.

2.2. Data summary

The proposed approach was tested using a COSMO-SkyMed (CSK) X-
band HH-Polarized image, acquired by the CSK-3 satellite in Stripmap
HIMAGE mode at 3m resolution on 12 January 2011 at 18:03 h
(AEDT). The CSK Level 1D Georeferenced Terrain Corrected (GTC)
product delivered as an 8-bit image of digital numbers was used in this
study. The calibration process for the GTC product corrects for local
incidence angle impacts using a DEM, by normalising the backscatter to
a reference incidence angle which was 40° in this case (Italian Space
Agency, 2009). The domain comprised of 74,056,858 pixels each
having an area of 9m2, bringing the total tile coverage to approxi-
mately 666.5 km2.

Fig. 2 shows the temporal position of the acquisition on the hy-
drograph, generated using hydrometric information available from the
New South Wales Manly Hydraulics Laboratory. The high-resolution
aerial photographs of Junction Hill and Ulmarra, were captured on

January 12, 2011, between 16:41 and 17:17 h and 17:17 to 17:39 h,
respectively. The images had a spatial resolution of 10 cm, and were
provided for this study by the NSW-LPI. Land cover information was
extracted from the National Dynamic Land Cover Dataset distributed by
Geoscience Australia at 250m spatial resolution. Readers are referred
to Lymburner et al. (2011) for a detailed description of this dataset.

3. Methodology

An overview of the proposed flood mapping approach is illustrated
in Fig. 3. The reasons for choosing each processing step and its sub-
sequent implementation are discussed at length in the following sec-
tions.

3.1. SAR preprocessing

The COSMO images were preprocessed using the Gamma
Maximum-A-Posteriori (GMAP) filter which suppresses speckle noise
while preserving edges and image texture, a property conducive for
flood detection (Senthilnath et al., 2013). A window size of 3× 3 was
used as higher resolution SAR images are more susceptible to speckle
noise, due to backscatter interference from neighboring pixels adding to
sub-pixel interference. The GMAP filtered image is then used for texture
analysis, and hereafter referred to as the SAR image.

Fig. 1. Map displaying the location of Clarence catchment (a), and the main drainages and towns (b). The COSMO-SkyMed SAR image acquired on 12th Jan, 2011 is
also shown (c), with the green polygons indicating the aerial photo coverage used for validation. The example subsets used in Fig. 6 are depicted in red, while those
used in Figs. 9 and 14 are shown in blue and yellow respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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3.2. Texture analysis

Texture based approaches have the advantage that a single SAR
image of the event can be used for their derivation and their extraction
can be automated. Image texture can be defined as a measure of the
transitional probabilities of pixel values, which can facilitate object
identification in SAR data (Haack and Bechdol, 1999; He and Wang,
1991). As SAR images are rich in texture, it has often been utilized for
flood identification (Pradhan et al., 2014; Schumann et al., 2009b;
Senthilnath et al., 2013). However, most of the studies which utilize
textural properties of SAR, have unfortunately failed to quantify their
contribution to the overall improvement in flood mapping accuracy.
Consequently, this study aims to explicitly assess the role of texture in
flood delineation and quantify the maximum improvement possible
through its inclusion.

Objectively selecting appropriate texture features for a particular
case study is critical, as this can significantly impact the subsequent
flood classification (Di Baldassarre et al., 2011; Schumann et al., 2009a,
2012; Schumann and Di Baldassarre, 2010). Moreover, SAR-based land
cover mapping studies have demonstrated the merit of texture opti-
mization methods to solve this problem (Balaguer et al., 2010;
Berberoglu et al., 2000, 2007; Carr, 1996; Carr and De Miranda, 1998;
De-yong et al., 2008; Franklin et al., 1996; Haack and Bechdol, 2000).
However, the impact of optimized texture still needs to be investigated
in the context of SAR-based flood mapping as the implementation of
texture based methods is fairly empirical (Amitrano et al., 2018; Ouled
Sghaier et al., 2018). As texture is direction and scale dependent, these
parameter choices can also influence notably the classification, and so
must be explicitly considered in any texture based mapping approach
(Di Baldassarre et al., 2011; Franklin et al., 1996).

Statistical texture estimation approaches were chosen for this ana-
lysis as they utilize non-deterministic properties, governing the dis-
tribution of pixel value pairs. Second-order image statistics are also
useful for SAR-based flood extent mapping, as the range of spatial au-
tocorrelation for speckle noise is limited to the image resolution in this
space (Ulaby et al., 1986). Grey Level Co-occurrence Matrices (GLCM),
which can be interpreted as joint grey level probability density dis-
tributions or 2-D image histograms, were used for this study due to their
low sensitivity to image contrast (Kuplich et al., 2005). It then follows
that the GLCM-based texture features which were subsequently derived
and used to enhance flood identification in this study, were also rela-
tively insensitive to the land-water backscatter contrast.

This implies that the effect of wind related surface roughening,
which usually hampers accurate flood mapping from SAR by sig-
nificantly increasing the backscatter of open water surfaces, can largely
be mitigated. Adding contrast insensitive texture features as additional
information layers reduces the dependence on backscatter, and there-
fore minimizes the impact of wind-induced backscatter variations. As
the patterns in the backscatter rather than the backscatter itself were

analysed, the probability of correctly classifying a wind roughened
flood pixel was increased. This is a clear improvement over backscatter
contrast dependent flood classification techniques such as histogram
thresholding, which are completely unable to identify inundated pixels
under windy conditions as the class distributions are no longer separ-
able. Moreover, the use of a fuzzy mapping technique also allows for a
clear expression of the uncertainty in flood detection; especially in the
overlap between the two class distributions.

Each entry in the n× n GLCM indicates the number of co-occur-
rences of pixel value pairs at a specific lag distance in a given direction,
where n is the number of grey levels in the image. For example, the 45°
GLCM with one pixel lag for a binary image would record the number of
times each combination of grey level pairs ([0,0], [0,1], [1,0], [1,1])
appears in the image separated in the specified direction by one pixel
distance. The optimum window size for GLCM calculation was esti-
mated as the range of sensible intra-class variance through semivario-
gram analysis (Balaguer et al., 2010). Omnidirectional semivariogram
curves were generated for both the flood and non-flood classes, by
taking homogeneous subsets of size 400×400. This step can be auto-
mated in the future as the semivariograms for different sensors and
resolutions can be precomputed and used as a look up table, based on
archived satellite data. According to this scenario, when a new satellite
image becomes available the algorithm would select an appropriate
window size for texture estimation based on the specific sensor char-
acteristics.

GLCM matrices obtained in the previous step were used to estimate
the second-order textures proposed by Haralick et al. (1973). Mean,
variance, homogeneity, contrast, dissimilarity, entropy, angular second
moment, and correlation were the co-occurrence measures retained for
further optimization as they were least correlated. Direction-invariant
texture information was obtained prior to optimization, by averaging
the texture values in all eight directions. An Independent Component
Transform (ICT) was used, to optimize the textural information and
reduce the dimensionality.

As ICT assumes the errors to be of unit variance (white noise), the
noise adjusted Principal Component Transform was used to whiten the
noise and decorrelate it from the signal (Chica-Olmo and Abarca-
Hernández, 2000). From the noise whitened data, ICT extracts the di-
rection with the least-Gaussian distribution, and removes the data ex-
plained by this variable. A cost function implying non-Gaussianity, such
as skewness or kurtosis, is iteratively maximized until the remaining
dataset can be explained by statistically independent variables. The first
three independent components which contained approximately 99% of
the GLCM texture information, characterized by significant Eigen va-
lues (Fig. 4), were added to the SAR image by layer stacking.

Fig. 2. Flood hydrograph recorded at the validation site Ulmarra (shown in Fig. 1), with the temporal positions of available aerial photos and radar remote sensing
from COSMO-SkyMed data represented.
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3.3. The adaptive neuro-fuzzy inference system (ANFIS) classifier

3.3.1. Fuzzy membership function definition
Fuzzy set theory is a probabilistic adaptation of the classical notion

of crisp sets which provides an elegant solution to objectively dealing
with the ambiguity of SAR-based flood mapping (Pulvirenti et al.,
2011). An element of fuzzy set is its representation of the degree of
membership to a particular category or class, characterized by a pre-
defined function with values ranging from 0 to1. In this study, the
Takagi-Sugeno type fuzzy inference system was implemented for the
classification, as it can handle non-linearities in the data distribution
(Takagi and Sugeno, 1985). Gaussian membership functions were
chosen for both classes, as the histograms of flooded SAR images can be
modelled as a mixture of two normal distributions (Giustarini et al.,

2016). Studies have shown that the bimodality assumption fails if the
observed flooded area is not significant compared to the tile size (Chini
et al., 2017). Therefore, the image was first subset to extract the area of
interest - including the flooded area, flood plains and nearby regions -
through visual interpretation. This results in a comparable division of
flooded and not flooded pixels, causing the image histogram to exhibit a
clear bimodality.

3.3.2. Function parameterization
Theoretical electromagnetic backscattering models have tradition-

ally been used to define fuzzy membership functions and parameters
(Pulvirenti et al., 2013). However, such approaches require detailed
soil, vegetation, and land cover maps, to accurately estimate the ex-
pected backscattering behaviour based on theoretical models, which

Fig. 3. Schematic of the overall classification framework used to generate the fuzzy flood maps.
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are often unavailable. Moreover, as these models are wavelength spe-
cific, the parameterization is not applicable to data from other sensors
or even other areas with a different distribution of scatterers on the
ground. Furthermore, theoretical approaches are often unable to cap-
ture all practical considerations, for example, seasonal abscission in
deciduous vegetation. The use of data driven models like artificial
neural networks (ANN), which can learn data characteristics without
prior process knowledge, is proposed to counteract this problem.
Moreover, the variability in backscatter caused by wind and incidence
angle effects - which alter the mean and standard deviation parameters
of the class distribution - were implicitly accounted for in this approach,
as they were estimated from the same image which needs to be clas-
sified.

The ANN was trained using polygons selected from the image,
which were consistent throughout the analysis. The hybrid learning
algorithm was used, which identifies parameters by iteratively mini-
mizing errors using the gradient descent technique (Jang, 1993). The
number of epochs used for training was 100 for each case and the model
error was estimated using cross-validation. In order to individually
quantify the impact of optimized texture on classification performance,
the classifier was tested with the following inputs:

1. The speckle filtered SAR image or the control without any addition
of texture, called SAR hereafter.

2. The filtered SAR image enhanced with some arbitrarily selected
common texture features – variance and mean Euclidean distance in
this case – hereafter called Std+ SAR.

3. The filtered SAR image with the optimized rather than arbitrary
texture bands added, referred to as Opt+ SAR.

3.3.3. Training approach
The classifier was tested with three different sets of training data to

ensure repeatability of results and to evaluate the sensitivity. The three
training datasets are shown in Fig. 5 and the strategies for each training
set described below:

Set 1: Large area polygons were drawn for each class, encompassing
the backscatter variability of the target classes, and spread out
across the image. An equal number of polygons were chosen for
the flood and non-flood classes.

Set 2: Smaller area polygons, each comprising of a nearly uniform
subset of backscatter values representing one of the signatures,
were selected for the training. Polygon selection was restricted to
the flooded area and floodplains, where maximum classification
accuracy was desired. More non-flood polygons were chosen
than flood, to ensure sufficient representation of the entire
spectrum of backscatter variability for training.

Set 3: Same as in training Set 2, except that the size and number of

polygons was further reduced to ensure that the classifier did not
overfit the training data and to maximize computational effi-
ciency.

As results of training Set 1 yielding large errors during the classifier
assessment phase, it was not tested subsequently for the flood mapping
or to assess the classification accuracy. However, a description of the
training set has been provided here to highlight the problems with this
set and inform readers about these limitations.

3.4. Validation strategies

In order to ensure the reliability of this analysis, results were vali-
dated using two different methods. First, a fuzzy set approach was used
to validate the SAR-based fuzzy maps against a fuzzy validation target.
Second, reliability diagrams were used to assess the flood maps, being
the most commonly used validation technique for probabilistic maps.

3.4.1. Fuzzy set validation approach
Shoreline extraction from aerial photography can be quite ambig-

uous in densely vegetated and built up environments (Giustarini et al.,
2013). The accuracy of the derived shoreline may vary from 10 to
100m, depending largely on the skills of the photo interpreter (Mason
et al., 2010). In this particular case, the riparian vegetation at the edge
of the storage areas in the flood plain made it rather challenging to
“see” the underlying water edge. The illumination differences in the
separate flight lines, combined with atmospheric effects, severely af-
fected the clarity of boundaries in the area, as seen in Fig. 6. Studies
have proposed marking ambiguous boundary regions as “no data” to
remove the associated uncertainty (Giustarini et al., 2016). However, it
is more appropriate to use a performance measure which is capable of
handling uncertainties, rather than discarding potentially valuable in-
formation.

A number of fuzzy performance measures capable of handling un-
certainties in validation data have been developed for model calibra-
tion, especially those which use remote sensing data as targets
(Pappenberger et al., 2007b). However, the utility of such metrics for
the validation of SAR-based flood maps has not yet been tested. In order
to facilitate this, the fuzzy map comparison method proposed by Hagen
(2003) has been adopted in this study for the assessment of probabil-
istic flood maps for the first time. The proposed approach takes into
account locational as well as categorical uncertainty in both the input
as well as the validation data (Hagen-Zanker et al., 2005; Wealands
et al., 2005). The resulting map comprises of pixel-wise similarity va-
lues ranging from 0 to 1, indicative of the local goodness of fit. As this
evaluation approach requires an explicit representation of uncertainties
in both datasets, a fuzzy flood map for validation was prepared as
follows to reflect the errors of manual flood delineation:

1. The aerial photographs were manually digitized into three classes -
clearly flooded, clearly non-flooded, and possibly flooded.

2. The flooded polygons were assigned a value of 1 and non-flooded
polygons, a value of 0.

3. The partially flooded polygons were filled with intermediate values,
interpolated using an inverse distance weighting (IDW) algorithm
with an exponent of 2, to fuzzify the validation data.

3.4.2. Fuzzy similarity statistics
In order to characterize the similarity between the SAR-based flood

map and the one derived from aerial photos, several statistics were
calculated which could highlight the different aspects of classifier
performance. First, deterministic grid-based statistics, such as Root
Mean Squared Errors (RMSE) and Mean Absolute Errors (MAE), were
calculated to assess classifier performance. This was followed by the
map comparison method proposed by Hagen (2003), which allows the
comparison of fuzzy maps while explicitly accounting for spatial and

Fig. 4. Eigen values of the independent components obtained after analysing
the texture bands.
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categorical uncertainties in both datasets.
For the two fuzzy vectors; FSAR was obtained as the SAR-derived

flood extent while FVAL represents the validation data. The similarity
measure S can therefore be computed for two pixels at the same loca-
tion in both maps using:

= ⎡⎣ ⎤⎦− −S F F F F F F( , ) , , , ,SAR VAL SAR VAL min SAR VAL min maxflood flood non flood non flood

(1)

where FSARflood
and FSARnon−flood

denote the fuzzy values of the flood class
and the non-flood class memberships at a given pixel in the SAR-based
map, while FVALflood and FVALnon−flood

refer to corresponding values in the
validation map. S is the maximum value within the set obtained by
evaluating the minimum of the two fuzzy vectors FSAR and FVAL on a

pixel by pixel basis (Pappenberger et al., 2007a), which can also be
interpreted as the maximum grade of membership to the intersection of
the fuzzy sets (Zadeh, 1965). S takes values from 0 to 1 based on the
degree of similarity, such that 0 was assigned to cells that were com-
pletely different and 1 was assigned to those which were identical. In
order to account for fuzziness in location, the influence of neighbor-
hood cells was also considered. The contribution of each neighborhood
cell can be calculated using a distance decay function chosen based on
the nature and magnitude of uncertainties, and the desired tolerance for
spatial error (Hagen, 2003).

In this study, the number and impact of neighbors included in the
analysis were selected based on the semivariogram assessment results.
The neighborhood influence was estimated based on the 3D exponential
decay function with a halving distance of two pixels. This essentially

Fig. 5. The actual training polygons selected to train the neuro-fuzzy classifier are shown, where (a), (b), and (c), correspond to training sets 1, 2, and 3, respectively.
The difference in the three trainings is primarily the size of individual polygons and their corresponding locations as shown by the coloured squares. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Example subsets of the true colour aerial photographs (left) shown along with the corresponding manually fuzzified flood maps (right). Locations are shown in
Fig. 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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means that the influence of the neighborhood was halved every two
pixels. The two way similarity between the fuzzy distance weighted
neighborhood contributions (FSARnbh

,FVALnbh) and the fuzzy membership
values for the central cells (FSARcc

,FVALcc) were calculated using the ex-
pression:

=S F F S F F S F F( , ) ( , ), ( , ) .SAR VAL SAR VAL SAR VAL minnbh cc cc nbh (2)

For further information about the calculation of the neighborhood
sets, the reader is referred to (Hagen-Zanker et al., 2005). Last, the
fuzzy kappa Kfuzzy statistic is proposed as an overall performance
measure, calculated using:

=
−

−
K

S S
S

( )
(1 )

,fuzzy
obs exp

exp (3)

where Sobs and Sexp are the observed and expected percentages of fuzzy
agreement. Here the observed percentage of fuzzy agreement refers to
the spatial similarity between the SAR-based maps and validation data
computed using Eq. (2). Conversely, the expected agreement is a
function of the number of classes and the image histogram calculated
theoretically (Hagen, 2003). Kfuzzy only differs from the traditional
Cohen's kappa popularly used for map comparison, in the calculation of
the expected percentage of agreement Sexp (Hagen-Zanker, 2006).

The fuzzy Kappa statistic quantifies the improvement between the
compared maps relative to a randomly generated categorical map with
an identical histogram (Wealands et al., 2005). Sexp is estimated as the
probability that a wet pixel observed in the validation data appears
within a certain range of pixel distances or neighborhood in the cor-
responding SAR-based flood maps. This means that a flooded pixel in
the validation data, which may have shifted in the SAR-derived map
due a variety of factors such as sensor orientation or geo-location er-
rors, is considered a match if it fell within reasonable bounds of un-
certainty. Sexp can be viewed as a measure of the chance agreement that
the two maps in consideration may exhibit, based on chosen neigh-
borhood sizes and the number of classes in the dataset.

Neighborhood rings are defined as the set of cells located at an equal
distance from the central cell. This implies that the chance agreement
needs to be computed for each central cell and all possible neighbor-
hood rings. Ideally this should be done for each pixel individually and
for an infinite zone of influence, as edge pixels may have a different
nature and number of possible neighborhood rings. However, on in-
creasing the search radius for neighborhood identification from 10 cells
to 500, the difference in values of Sexp was found to be insignificant, as
the function used to model the influence decays rather rapidly.
Furthermore, using a search radius of 500 increases the possible
number of permutations and combinations, thereby drastically in-
creasing the computational time. Finally, a radius of 10 pixels was used
to calculate the expected agreement between the SAR-derived and
aerial photo based fuzzy flood maps.

3.4.3. Reliability diagram assessment
The final performance assessment used reliability diagrams, being

the currently accepted evaluation method for probabilistic maps in
literature. As discussed previously, the limitation of this technique is
that the validation data need to be binary. However, this analysis was
conducted to facilitate the understanding of error characteristics with
respect to state of the art mapping techniques and to understand the
specific contributions of under or over predictions. A threshold of 0.5
was chosen for defuzzification, to reflect the maximum uncertainty in
the resulting deterministic flood map (Schlaffer et al., 2017). As the
validation map was digitized on an aerial photo with a spatial resolu-
tion of 10 cm, the choice of this threshold has limited impact on the
outcome of the analysis conducted at 3m.

The agreement between the fuzzy membership values predicted by
the neurofuzzy classifier, and the observed proportion of flooded pixels
in the validation data can be characterized by a reliability diagram
(Horritt, 2006). The fuzzy membership values were binned into inter-
vals of 0.1 and the ratio of wet cells to total number of cells in each bin,
was plotted against the bin means. The ideal classifier assigns fuzzy
membership values identical to the proportion of observed wet pixels in
the validation data, with deviation from the 1:1 line representative of
the classification error. As the distribution of pixels across the bins is
non-uniform, a weighted RMSE (WRMSE) was calculated to objectively
represent the uncertainty. The WRMSE is calculated by assigning
weights to the bin errors, based on the bin population as in (Giustarini
et al., 2016):

=
∑ −
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where ni is the pixel count of each bin, Fv is the observed proportion of
wet cells in the validation map, Fs is the fuzzy membership value pre-
dicted based on SAR analysis, and N is the total number of pixels in the
validation domain. Reliability diagrams were also used to assess clas-
sifier performance for each land cover (LC) class in the study area
through reliability diagrams. Such diagnostic analyses may lead to in-
sights on when the proposed approach can be expected to perform well.

4. Results and discussion

4.1. Window size selection

The choice of an appropriate window size is an essential step for
texture estimation, to avoid inadvertently interpreting noise as a
meaningful pattern. Therefore, the range of spatial autocorrelation
observed through the flood and non-flood semivariograms was used as
the window size for texture analysis. The semivariogram plots were
estimated by visually selecting homogeneous subsets of flood and non-
flood classes, to ensure that the observed range reflects only the intra-
class variance. The non-flood subsets were located clearly outside and
away from the floodplain area, such that purely dry land pixels could be
isolated.

Fig. 7 shows the semivariogram plots obtained for the flood and

Fig. 7. Semivariograms showing spatial autocorrelation amongst backscatter values for the different classes in a COSMO-SkyMed 3m image.
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non-flood classes. The range of both semivariograms is consistent at
3 pixels as expected, as high-resolution data are more prone to noise
and thus exhibit low spatial autocorrelation. The non-flood class ex-
hibits significantly higher values of variance due to the diversity of
surface scattering characteristics encountered on land.

4.2. Neuro-fuzzy classifier - training, testing, and validation

The results for the neuro-fuzzy mapping are presented in the fol-
lowing manner. First, the general training procedure and results of the
training are discussed, followed by an evaluation of the result maps
obtained for each validation site. As the classifier uses a data driven
estimation of the model parameters, it needs to be trained and subse-
quently subjected to rigorous testing. It is important to note that for
statistical models, two types of errors need to be estimated:

1. Model selection error - which characterizes the prediction error of
the selected model in the context of other available models. This
analysis allows to select the one most suited to the data distribution;

2. Model assessment error - which evaluates the ability of the selected
model to correctly classify new or previously “unseen” data points
(Hastie et al., 2009).

The appropriate way to assess both, if sufficient data points are
available, is to randomly divide them into three parts: a training set, a
validation set, and a testing set. Based on the signal-to-noise ratio ex-
pected of a high resolution SAR image and the complexity of the
Gaussian model, the split was chosen as 70% training, 15% validation
and 15% testing (James et al., 2000). The training set includes the
majority of data points by convention, and is used to fit the data driven
model or distribution. Ideally, all distributions which are able to suf-
ficiently explain the data characteristics should be examined. A sepa-
rate dataset, hereafter referred to as the validation set, is used to
compute the prediction error for all the competing models or the model
selection error. The model with the lowest value of validation error is
chosen for further analysis. Since in this case the Gaussian model was
already selected based on the histogram bimodality, the validation
error was used to select a suitable parameterization of the distribution.

Once a distribution has been trained and validated as the best fit
model, another previously unseen batch of data, called the test set, is
used for assessment. The test error provides a measure of the general-
ization capabilities of the chosen model and the ability to correctly
classify new data points. If the validation set is reused for this evalua-
tion, the true test error will be substantially underestimated. Ideally,
multiple equally plausible model structures should be tested to assign
the test error. From the histograms of the SAR image and the optimized
texture features presented in Fig. 8, it is apparent that the distributions
were exhibiting slight deviations from Gaussianity. However, in-
vestigating different distributions with better fits was considered out-
side the scope of the present investigation, primarily because histo-
grams of flooded SAR images are usually known to consist of a mixture
of two Gaussian class distributions, which is also evident from the
backscatter histogram shown in Fig. 8(a) (Chini et al., 2017). As the
distributions of the texture classes were also nearly symmetrical and
choosing a case-specific distribution function would limit transfer-
ability of the method, the Gaussian assumption was maintained
throughout the analysis.

The error values followed the expected pattern of lower training set
errors and larger test and validation set errors as summarized in
Table 1. Training Set 3 led to a more generalized classifier as errors
were nearly consistent across training, validation, and test sets. As
elaborated earlier, minimizing the sample size can reduce overfitting
which in turn can improve classifier performance, by reducing the bias-
variance trade-off (James et al., 2000). This is in contrast to Set 2,
where the validation errors were noticeably higher for both the texture
based methods. The larger magnitude of test and validation errors can

be due to overfitting to the training data in Set 2, which adversely af-
fects model generalization. Generalization can be defined as the ability
of a classifier to correctly identify previously “unseen” data points, a
desirable quality for any classification problem (Hastie et al., 2009).
The pixel-wise comparison of deterministic statistics was carried out for
both training Set 2 and Set 3, however, the reliability diagrams and
fuzzy statistics were only calculated for Set 3. Set 3 was chosen for the
more detailed analysis as the classifier achieved a better generalization
and was expected to perform better.

Note that the training, testing, and validation datasets defined in
this section are subsets of the training data selected to “train” the
neurofuzzy classifier, and the meanings of these terms are specific to
the data driven modelling part of this study. After the model selection
and training process was conducted, the trained model was used to
generate fuzzy flood maps from SAR. These were validated against
manually derived flood maps from aerial photography, hereafter re-
ferred to as the validation data.

4.3. Fuzzy flood maps - accuracy assessment

The fuzzy flood maps obtained post classification were assessed
using two approaches - using the fuzzy map comparison and reliability
assessment. For each validation site, the fuzzy flood maps, difference
maps, spatial similarity maps and reliability diagrams were generated
through the procedures detailed in Sub-section 3.4.

4.3.1. Validation site 1: Junction Hill
The pixel-wise assessment results from the two training datasets

were found to be somewhat inconsistent, as evident from Table 2. The
proposed texture optimization approach succeeded in reducing the
RMSE slightly (~2%) in Set 2. However, Set 3 exhibited a slightly
higher RMSE, though increase of 10−3 can be considered to be negli-
gible. It can easily be observed from the fuzzy flood maps illustrated in
Fig. 9 that the optimized texture approach reduced the misdetection of
linear and smooth urban features, like road networks, as flooded pixels
in the urban land-use dominated (top row) subsets.

The proposed approach also reduced the fuzziness in the sparsely
vegetated region which has varying backscatter but relatively homo-
genous texture, as seen in the second row of Fig. 9 where local im-
provements are visible. However, the pixel-wise assessment was unable
to capture this improvement as both the maps had very different un-
certainty characteristics. A deterministic differencing approach is in-
appropriate for the assessment of continuous random variables as an
exact match is nearly impossible. Furthermore, the difference maps
depicted in Fig. 10 highlight the disparity between the error char-
acteristics in the validation data and the SAR-based maps. In fact, the
SAR-based maps provide more realistic estimates of uncertainty at each
pixel, as these are calculated objectively through the ANFIS classifier.
Conversely, given that the chief contributor to the uncertainty in
manually digitized flood maps is the skill of the analyst (Mason et al.,
2010), quantifying this value objectively is significantly more challen-
ging.

The fuzzy set evaluation approach results in two sets of maps; one
where only the fuzziness of the membership value or class assignment is
considered and one which additionally includes both fuzziness of value
as well as the fuzziness of location. The fuzzy similarity set presented in
Fig. 11 shows a clear improvement but the transition zone uncertainty
is spuriously inflated. As the validation data are manually digitized and
fuzzified, the nature of uncertainties in the transition zone may be very
different from that of SAR-based approaches. In contrast, the spatial
similarity index illustrated in Fig. 12 reflects the improvements offered
at the land-water boundary much better. A significant reduction in
uncertainties is noticeable across the domain.

The overall performance (average spatial similarity index) values
were 0.899, 0.905 and 0.915 for SAR, Std+ SAR, and Opt+ SAR, re-
spectively (Table 3). The fuzzy kappa statistic, which corrects for the
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expected percentage of agreement and can be more informative, is
identical to average similarity in this case due to low expected agree-
ment.

The Kfuzzy can provide a measure of the overall improvement, which
is categorically required for many applications. As the expected value
for similarity is directly related to the number of classes and the intra-
class pixel distribution, the values obtained for this statistic can also be
insightful (Hagen, 2003).

Expected similarity can be understood as the probability of chance
agreement between the two maps having identical image histograms. In
the context of fuzzy spatial similarity, this value of possible chance
agreement is computed for all the cells in the neighborhood rings under
consideration. One of the possible reasons for the low expected simi-
larity values obtained might be the distance decay function chosen
here, which was the 3-D exponential function with a halving distance of
two pixels, reducing the neighborhood influence drastically. This ob-
servation is in keeping with the expectation, as the nature of un-
certainties in the validation data is very different from the SAR-based
maps. Since the validation map is manually digitized and fuzzified,
error variation is expected to differ substantially from the fuzzy flood
maps from SAR, which objectively represent backscatter and classifi-
cation uncertainty.

The spatial auto-correlation in high-resolution SAR data are also
highly localized due to increased speckle noise, as already established
through the variogram analysis. However, it is expected that Kfuzzy can
help with assessing probabilistic flood maps and may add value to the
average spatial similarity. The expected similarity Sexp would obviously
vary with the spatial resolution of the maps, choice of the distance
decay function, and the number of classes considered in the analysis. In
cases like this where Sexp is nearly negligible, the average spatial si-
milarity statistic Sobs may suffice as a test statistic for map comparison,
as the Kfuzzy doesn't add any new information.

The reliability diagram for Junction Hill (Fig. 13) better reflects the
improvement offered by Opt+ SAR, which consistently gave predic-
tions very close to the 1:1 line. Both the texture based approaches
correctly classified nearly all the pixels for the last few bins, containing
flood membership values ranging from 0.8–1. These are the certainly
flooded pixels of the study area and the ones the algorithm primarily
seeks to correctly identify. The addition of optimized texture, especially
after optimization, seems to be conducive to this cause. Furthermore,
omission errors seem to dominate over commission errors, for most of
the uncertain bins. A closer examination reveals that the under-
prediction increases with the uncertainty, i.e. the Opt+ SAR assigned
lesser pixels to bins 4, 5, and 6 than observed in the validation data. The
SAR image alone seemed to over predict in bin 9 and under predict in
bin 10, both of which contained pixels almost certainly flooded, in-
dicating a contribution of noise in the training. Consequently a reduc-
tion in the signal to noise ratio led to ambiguity in classification even
within homogeneous image objects such as flood patches.

Texture estimation highlighted patterns and increased the separ-
ability between signal and noise. This reduced the uncertainty in fea-
ture extraction, offering some advantages for flood assessment. The
change in the distribution of bin-sizes on the application of the
Opt+ SAR approach, evident from the subplot included in Fig. 13,
corroborates this interpretation. The WRMSE values based on the de-
viation from the 1:1 line show a relative improvement of 54.2% over
the use of SAR image without texture, and 52.6% over the use of
standard textures when using the optimized texture approach. This
clearly indicates the importance of choosing appropriate texture fea-
tures, as the addition of arbitrary texture features reflects no significant
improvement.

4.3.2. Validation site 2: Ulmarra
At Ulmarra, the pixel based statistics show a reduction in RMSE for

both training Set 2 and 3. However, the magnitude of this reduction was

Fig. 8. Histograms depicting the bimodality in the distribution of pixel values for (a) the filtered SAR image in digital numbers, (b) Independent Component (IC) I
texture values, (c) IC II texture values, and (d) IC III texture values.

Table 1
Mean Absolute Error statistics for classification model selection and predictive
capability assessment.

Training Set 2 Training Set 3

Input Training Validation Testing Training Validation Testing

SAR 0.184 0.183 0.186 0.217 0.217 0.216
Std+ SAR 0.155 0.178 0.159 0.174 0.175 0.175
Opt+ SAR 0.121 0.136 0.125 0.117 0.12 0.12

Table 2
Root Mean Squared Error statistics based on the pixel-wise deterministic dif-
ference operation.

Training Set 2 Training Set 3

Junction Hill Ulmarra Junction Hill Ulmarra

SAR 0.242 0.243 0.233 0.261
Std+ SAR 0.239 0.246 0.241 0.257
Opt+ SAR 0.222 0.24 0.236 0.24
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Fig. 9. Validation maps generated from aerial photographs are displayed in the first column, followed by flood maps derived by processing the following inputs
through the ANFIS classifier; SAR alone in column two (SAR), arbitrarily selected textures with SAR in column three (Std+ SAR), and optimized textures with SAR in
column four (Opt+ SAR). Areas depicting maximum reductions in uncertainty for the Junction Hill test site were chosen for illustration. The locations of the subsets
used here are shown in Fig. 1.

Fig. 10. Pixel-wise difference maps generated by subtracting the SAR-based flood maps, from the fuzzy validation map digitized from aerial photos, for entire
Junction Hill region.
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larger in Set 3. According to the flood maps in Fig. 14, this validation
site had a larger proportion of flooded pixels. Since a significant per-
centage of the image is covered with a homogeneous land cover type,
the impact of noise is more prominent. The optimized approach per-
formed better in Set 3, due to the better model generalization achieved.
The generalized model exhibited lower noise sensitivity. The
Opt+ SAR flood maps showed a noticeable reduction in fuzziness
within the homogeneous regions and near the transition zone, in
agreement with the findings from Junction Hill.

While the pixel-wise RMSE values reduced with the addition of
texture, it is important to consider the failure of the deterministic dif-
ferencing approach to capture improvements in mapping for the
Junction Hill site. The problem of non-contiguous vegetation patches
surrounded by flood pixels is observable even in Ulmarra. The de-
terministic difference maps for Ulmarra have not been included here for
brevity as the inferences from the analysis were similar to those from
Junction Hill.

Additionally, some portion of the domain had agricultural fields
with standing crops, highlighted in the top row of Fig. 14, making the
underlying flood water very difficult to detect. A large portion of this
area had been classified as non-flooded by all the SAR based ap-
proaches. As texture is a backscatter-derived property, the approach is
unable to bring significant improvements in this area. Since the ex-
periment was conducted using low-wavelength X-band data, which
experiences severe scattering due to emergent vegetation, it was rather
challenging to demonstrate the full potential of the proposed approach
in this region. However, the RMSE still showed an improvement overall
as the texture optimization seemed to reduce noise sensitivity. Since
this particular test site was populated with homogeneous flood patches,
where the effects of noise dominate, the overall errors were decreased.

The fuzzy similarity maps for Ulmarra (Fig. 15) show large regions
of uncertainty in the flood transition zone. Although the Opt+ SAR

Fig. 11. Fuzzy similarity maps for the central cell comparison between the Junction Hill validation map and the SAR-based fuzzy maps, where (a) SAR represents the
use of SAR alone as a classification input, (b) Std+ SAR represents arbitrarily selected textures with SAR, and (c) Opt+ SAR represents optimized textures with SAR.

Fig. 12. As for Fig. 11 except with neighborhood context included for the Junction Hill site with (a) SAR, (b) Std+ SAR, and (c) Opt+ SAR.

Table 3
Summary of fuzzy statistics for the two validation sites.

Junction Hill Ulmarra

Input Observed
similarity
(Sobs)

Expected
similarity
(Sexp)

Fuzzy
kappa
(Kfuzzy)

Observed
similarity
(Sobs)

Expected
similarity
(Sexp)

Fuzzy
kappa
(Kfuzzy)

SAR 0.899 3.341e−12 0.899 0.670 4.843e−10 0.670
Std+ SAR 0.905 3.168e−12 0.905 0.689 3.799e−11 0.689
Opt+ SAR 0.915 1.342e−12 0.915 0.713 3.827e−10 0.713

Fig. 13. Reliability diagram for the Junction Hill area with Weighted Root
Mean Squared Error values and bin sizes represented in a sub-plot.
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map shows some improvements compared to the SAR and Std+ SAR, it
is noteworthy that the inclusion of texture itself offers limited en-
hancement in classification performance. This is evident from Fig. 14,
which shows a notable reduction in uncertainties in the Opt+ SAR
compared to the Std+ SAR approach. This implies that in areas where
texture based approaches can be expected to work, such as distin-
guishing between water and water look-alike surfaces, the Opt+ SAR
technique will definitely provide better outputs than arbitrarily selected
texture features.

Spatial similarity maps provide a suitable assessment measure for
probabilistic maps, as a clearer reduction in the transition zone un-
certainty is visible in Fig. 16. Sobs values were 0.67, 0.69, and 0.71 for
SAR, Std+ SAR, and Opt+ SAR, respectively, as shown in Table 3. The
Kfuzzy values were identical to Sobs, as in the case of Junction Hill, as
values of Sexp were low for the same reasons. However, the Kfuzzy and
Sobs both showed improvements when using the proposed technique at
both test sites. This corroborates the visual observations from the fuzzy
maps (Figs. 9 and 14), generated from each input image. The fuzzy map
comparison technique used here can also be thought as something
which mimics human interpretation of errors. The central cell com-
parison with the additional consideration of contextual neighborhood

influence is a powerful tool, which should further be imbibed for the
assessment of probabilistic maps.

At Ulmarra the reliability diagram statistics are inconsistent with
the results obtained from the fuzzy set analysis as illustrated in Fig. 16.
It is important to observe that WRMSE increases with the addition of
any texture in this case. One of the possible reasons for this could be the
large number of certainly flooded pixels classified as not flooded in the
SAR based maps. This large discrepancy can be explained by the pre-
sence of emergent vegetation in the agricultural region. The deviation
from the 1:1 line is large (−1), and as bin 1 has a large population size
it consequently has a higher weightage, which amplifies the error sta-
tistic. Further, the WRMSE increases when adding optimized texture, as
a large number of pixels shift from the uncertain bins to the certainly
non flooded and flooded bins, increasing the weight associated with
these errors. On closer examination, the reliability diagram reveals a
notable shift from all the intermediate bins, containing the uncertain
flood values towards the certain bins (1 and 10). This highlights that
the optimization approach caused a shift in what backscatter value
combinations are classified as uncertain, pushing mixed pixels or those
with emergent vegetation towards the flood class. This observation is
identical to the findings at Junction Hill, where the optimized texture

Fig. 14. As for Fig. 9 but for the Ulmarra test site, with locations of the chosen subsets highlighted in Fig. 1.

Fig. 15. As for Fig. 11 but for the Ulmarra region, where the agreement with validation data is shown for (a) SAR, (b) Std+ SAR, and (c) Opt+ SAR.
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addition resulted in clear error reductions.
Giving due consideration to the visibly flooded agricultural region

(top row, Fig. 11), which is only partially flooded in the SAR-based
maps, allows better understanding of the reduction in uncertainty
through texture optimization. In the SAR-based maps the region con-
sists of pixels mostly from bin 1 and 2, i.e. closer to the certainly non-
flooded end on the fuzzy membership spectrum. However, as optimized
texture enhances feature extraction and reduces noise effects, these
patches were pushed towards the certainly non-flooded bins. This is
consistent with the notable increase in the pixel count of bin 1 for
Opt+ SAR when compared to other inputs. Many of these pixels from
bin 1 and 2, however, belong to the aforementioned error hotspots and
were flooded in the validation data. Therefore, the proportion of wet
pixels was increased in the validation data for the almost certainly non-
flooded classes, especially in bin 2. As more pixels wrongly became
“surer” of their non-flooded status, i.e. moving from uncertain bins
towards bin 1 and 2, the error margin increased thus amplifying the
overall classification error. It is clear from the above analysis that the
use of reliability diagrams alone is insufficient for the assessment of
fuzzy maps. The need to reconvert the continuous, fuzzy, SAR-based
maps into discrete categorical maps with specified bin sizes as well as
the need for a binary validation dataset for assessment, limits the ap-
plicability of reliability diagrams for an objective evaluation of prob-
abilistic flood maps.

When comparing continuous spatial fields as in the fuzzy flood maps
generated here, tolerance for locational or categorical errors is desir-
able (Pappenberger et al., 2007a,b). Locational tolerance accounts for
slight pixel shifts without denoting them in complete disagreement,
while categorical tolerance allows to identify the higher similarity be-
tween “slightly wrong” values which are common in hydrological
spatial fields (Wealands et al., 2005). As the fuzzy spatial similarity
statistic accounts for both category and location fuzziness, the im-
provement brought about by Opt+ SAR could be evaluated without the
impact of spatial mismatches caused by the notably different nature of
the uncertainties in the SAR and the validation data. In this case, ad-
dition of the fuzzy statistic to the accuracy assessment approach, proved
to be rather informative.

The fuzzy map comparison added value to the reliability diagram
analysis, with the local spatial improvement demonstrated through the
maps and captured by the overall similarity statistic (Hagen-Zanker
et al., 2005). Even though the values of spatial agreement at Ulmarra
were lower than those achieved at Junction Hill, which was expected
due to the error hotspots critically discussed previously, a clear im-
provement was evident. All values were>0.6 which has been con-
sidered a satisfactory measure of fit, given the expected uncertainties in
shoreline locations (Pappenberger et al., 2007a,b). By accounting for
locational and attribute uncertainties in the computation of the local
matching, chance agreement and image registration problems were also
accounted for (Power et al., 2001). Furthermore, fuzzy map comparison

provides a unique opportunity to assess the spatial characteristics of the
classification errors, which can help to better diagnose their underlying
cause. Correctly identifying the reasons and nature of uncertainties
represents the first step in designing appropriate post-processing stra-
tegies, or even formulating better SAR-based flood mapping techniques
for the future (Power et al., 2001).

4.4. Land cover based performance analysis

An investigative analysis of the classifier performance within dif-
ferent land cover classes was undertaken, to interpret the classifier re-
sponse when exposed to pixels with varied surface characteristics. This
can help to decide whether or not to use the proposed method based on
the dominant land-use class in the region. In order to quantify the
above, land cover maps of 250m resolution were subset for the vali-
dation sites. The land cover maps were used to extract the underlying
classes of the binned flood maps, which were subsequently overlaid on
the binary validation data, to calculate the observed proportion of wet
cells in each bin. Further, reliability diagrams were constructed in-
dividually for each land cover class and WRMSE values plotted for all
the different approaches. Notably, the spatial average values of WRMSE
in Figs. 13 and 17 differ from the WRMSE values obtained in Fig. 18,
due to the calculation of case individual values for each land-use class.
Based on the pixel count in each class, the values were found to be
significantly different from the global spatial average. Although, if a
weighted average based on the percentage distribution of the land-use
classes was considered as shown in the pie diagrams of Fig. 18, the
statistics were in agreement.

Fig. 16. As for Fig. 12 but for the Ulmarra test site with similarities shown as (a) SAR, (b) Std+ SAR, and (c) Opt+ SAR.

Fig. 17. As for Fig. 13 but for Ulmarra.
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4.4.1. Validation site 1: Junction Hill
The Junction Hill area is dominated by the “Trees - Open (TO)” land

cover class, followed by the “Rain-fed Pasture (RP)” and “Irrigated
Cropping (IC)” classes. According to Fig. 15(a), WRMSE values had a
significant reduction in the RP and TO classes, which might be the
reason for the algorithm performing well in this region. The image
region displaying a visible reduction in uncertainty through texture
optimization, observable in the fuzzy flood maps illustrated in Fig. 9, is
predominantly covered with the TO land cover class.

In the IC class however, classification performance was relatively
poor due to the altered backscatter characteristics caused by emergent
vegetation. The stems cause double bounce scattering of microwaves at
the irrigated water surface making flood identification from SAR
images in these particular land covers challenging. While the other
classes may not contribute much to the overall RMSE values they pro-
vide crucial insight into classifier behaviour. The “Irrigated Sugar (IS)”
shows a sharp increase in WRMSE with the proposed approach for the
same reason as IC.

The water dominated classes like “Inland Water bodies (IW)” and
“Wetlands (WL)” also showed a slight degradation in performance on
texture addition. The contribution of the water based classes is con-
sidered limited in this context due to the land cover composition and
the small magnitude of the increase. However, this suggests that the
slight increase in WRMSE for the Ulmarra region on texture addition
may have been caused by the majority of pixels being flooded with
77.6% wet cells. As the Junction Hill region has only 36.7% coverage of
flooded area in the aerial photo, the improvement is more noticeable in
the mixed land cover classes. This implies that if permanent water can
be masked prior to classification, the results may be further improved.

4.4.2. Validation site 2: Ulmarra
Major classes in this region are TO, RP, and IC as evident from

Fig. 15(b), none of which seemed to benefit especially from the random
addition of texture. IC seems to show a slight improvement over the
poor performance at site 1, but as the crop species are unspecified, the
difference in RMSE values can be assumed to be a function of plant
morphological properties. TO and RP showed almost no change in

WRMSE values for all three approaches. As most of the pixels at this site
are inundated, the approach may not be able to demonstrate substantial
improvement due to scattering of X-band from emergent vegetation.
Conversely, the proposed algorithm was more effective in these land
cover classes at Junction Hill, as the false alarm rate was reduced. Other
classes in the region include “Hummock Grasses - Sparse (HGS)”,
“Rainfed Cropping (RC)”, TC, and IS, of which all except IS exhibited a
slight reduction in RMSE for the proposed approach, with TC showing
the maximum decrease. IS showed an improvement in classification
accuracy with texture addition but a degradation after texture optimi-
zation. However, the percentage coverage of the minority classes is
insufficient to cause a quantifiable impact on the overall RMSE.

5. Conclusions and future scope

5.1. Conclusions

While texture is often utilized in SAR based flood mapping ap-
proaches it has seldom been optimized within this context. An approach
to optimize omnidirectional GLCM-based image features, derived using
the range of the spatial autocorrelation as the window size, has been
proposed through an Independent Component Transform. The opti-
mized texture bands were added to the SAR image pre-classification
using a Gaussian Neurofuzzy classifier, which resulted in reduced un-
certainties. The classification performance was evaluated against the
addition of arbitrarily selected texture features, and without any texture
addition to SAR. Results indicate that the texture optimization ap-
proach was able to extract the most useful texture information, showing
drastic error reductions over the other approaches tested.

The proposed approach was tested at two validation sites situated in
the Clarence catchment, Australia - Junction Hill and Ulmarra - for
which aerial photographs were available close to the time of acquisition
of one of the SAR images. Accuracy was evaluated using a fuzzy set
approach and through reliability diagrams which are based on pixel
count ratios. Pixels for individual land cover classes were subsequently
extracted and the classification performance within each class quanti-
fied. This led to the following findings:

Fig. 18. Distribution of land cover classes and the corresponding Weighted Root Mean Squared Error values obtained for each of the SAR-based flood mapping
techniques at (a) Junction Hill and (b) Ulmarra.
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1. Texture based image enhancements represent a viable approach to
improve flood mapping from single SAR images, leading to a re-
duction in uncertainties particularly in water lookalike regions e.g.
smooth urban surfaces like tarmac. For example, the addition of
optimized texture ensured that linear urban features like roads were
not wrongly detected as flooded in the Junction Hill region.

2. The addition of optimized texture also led to decreased classifier
sensitivity due to speckle noise, corroborated by a notable shift in
pixels from uncertain to more certain bin values in the reliability
diagrams. Interestingly, the study also demonstrated that the use of
randomly selected texture features could actually degrade flood
mapping accuracy, highlighting the importance of the proposed
texture optimization.

3. The neurofuzzy classifier was not only able to characterize back-
scatter uncertainties through the use of fuzzy membership functions
but the model selection and testing phase also explicitly defined the
classification uncertainty.

4. A fuzzy set validation approach was introduced for the first time to
assess SAR-based flood maps. While these methods cannot replace
more traditional approaches like reliability diagrams which provide
a detailed assessment of over and under prediction, they can com-
plement the evaluation strategy to make the validation more robust.
Moreover, the fuzzy set approach presents a unique opportunity to
represent the uncertainties in the validation data and measure the
performance while remaining cognizant of these errors.

5.2. Future scope

The proposed texture optimization and neurofuzzy classification
approach improved flood detection capabilities when only a single SAR
image of the event is available. This assumption of data availability is
typically true in most operational cases. Although the use of a su-
pervised classification technique requires the use of manually selected
training data at the moment, this too can be automated by using a
combination of image segmentation, thresholding and region growing,
by extending methods proposed by Matgen et al. (2011). Once the
semivariogram ranges have been precomputed for available SAR sen-
sors, and the training process has been automated, the proposed ap-
proach could be operationally implemented. Moreover, if additional
data are available, they can be utilized to further refine the resulting
flood maps through some of the following methods:

1. In the case of some texture bands, the nature of fuzzy membership
functions may deviate from the Gaussian distribution, and thus the
sensitivity of this textured approach to the use of different fuzzy
membership functions needs to be investigated.

2. Topographic information from the DEM can be added along with the
texture bands, within the neurofuzzy classifier, to further increase
the information content.

3. Contextual information about neighboring pixel classes can be ex-
pected to further enhance the classification outputs, and thus mis-
classifications or fuzziness within homogeneous image segments can
be further reduced.

4. The potential of the fuzzy kappa statistic needs to be further de-
monstrated through testing different neighborhood influence func-
tions, different resolution SAR images, and different algorithms.

This operational fuzzy flood mapping tool is available on GitHub as
it can be useful to flood managers globally (see https://github.com/
catantics13/Neurofuzzy_floodmapping_SAR).
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