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A B S T R A C T

Low frequency passive microwave remote sensing is a proven technology for providing soil moisture estimates,
but the coarse resolution of its data restricts the range of applications. Downscaling, otherwise known as dis-
aggregation, has been proposed as the solution to spatially enhance these coarse resolution soil moisture ob-
servations, through association with complementary observations, or ancillary information about land surface
features at higher spatial resolution. Such information includes solar reflectance, thermal emission, passive
microwave emissions at a higher frequency, radar backscatter, soil or surface attributes such as topography and
soil properties, and land surface modelling. Each of these ancillary data sources has its own strengths and
limitations in terms of, for example, sensitivity to surface soil moisture dynamics and availability. This paper
provides an extensive review of the capabilities and opportunities of current soil moisture downscaling ap-
proaches which provide a deterministic pattern of soil moisture, together with their strengths and limitations.

1. Introduction

Land-atmosphere interactions are affected by soil moisture on a
global scale (e.g. Entekhabi et al., 1996; Petropoulos et al., 2015), thus
exerting an impact upon the climate and weather (e.g. Entekhabi, 1995;
Western et al., 2002; Seneviratne et al., 2010; Jung et al., 2010;
Lakshmi, 2013; Taylor, 2015) by influencing the partitioning of the
incoming radiant energy at the land surface into sensible and latent
heat fluxes (Xia et al., 2014). Soil moisture variation also controls the
water and energy cycle components through the amount of evapo-
transpiration which affects soil surface wet and dry patterns that in turn
affect precipitation (Koster et al., 2004; Hirschi et al., 2011). The vo-
lume of surface run-off and groundwater recharge also depends upon
the soil moisture by way of the infiltration rate of precipitation into the
soil (Tuttle and Salvucci, 2014). Regional characterization of soil
moisture variability at short time intervals would therefore greatly as-
sist understanding of the land-atmosphere system.

Obtaining accurate information on soil moisture at an appropriate
temporal and spatial scales is challenging to achieve with global cov-
erage using traditional approaches, due to the high spatial and temporal
variability of soil moisture. This variation is caused by the hetero-
geneous nature of soil properties, topography, land cover, and me-
teorology (e.g. rainfall and evapotranspiration) that vary as a function

of scale (e.g. Crow et al., 2012; Vereecken et al., 2008). Meteorological
forcing has a dominant control on the soil moisture spatial pattern at
watershed, regional and continental scales (Jana, 2010; Crow et al.,
2012), unlike the field and point scales at which the soil moisture varies
due to land cover, topography and soil properties. Accordingly, multi-
scale soil moisture measurements can provide a vital piece of in-
formation for economic, social and environmental planning. Develop-
ment of field and watershed scale soil moisture measurements is of
benefit to agricultural production and better understanding of rainfall-
runoff responses, respectively (Robinson et al., 2008). Moreover, mea-
surement of soil moisture at regional and continental scales is important
for interpreting land-surface-atmosphere interactions (Kerr et al., 2001;
Robinson et al., 2008).

Historically, ground sampling was the only possible approach to
measuring soil moisture. However, the sparseness of point measure-
ment stations makes the use of in situ measurements for capturing the
spatially variable nature of soil moisture impractical due to their high
maintenance and operation expenses. The need for global soil moisture
monitoring that compliments the sparsely distributed ground mea-
surements has led to the development of space-borne remote sensing
(e.g. Entekhabi et al., 1999; Njoku et al., 2002; Entekhabi et al., 2010;
Kerr et al., 2012), covering the Earth's surface with a temporal fre-
quency of a few days. Consequently, a number of sensors have been
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launched on space-borne platforms over the past four decades to ac-
quire the electromagnetic emission, reflection and/or scattering from
the land surface, but not necessarily designed for soil moisture.

Sensors are classified according to the electromagnetic spectrum in
which they monitor the Earth's surface. The regions of the spectrum of
greatest interest for soil moisture are the optical and microwave.
Optical remote sensing measures the solar reflective (VIS, Near Infrared
(NIR), and Short-Wave InfraRed (SWIR) bands) and/or thermal emis-
sive (Thermal InfraRed (TIR) band) regions of the electromagnetic
spectrum. These measurements have been used to determine spatial soil
moisture variations by monitoring changes in surface albedo (e.g. Liu
et al., 2002; Leone and Sommer, 2000; Dalal and Henry, 1986) and soil
heat capacity (Petropoulos et al., 2015). While this information can be
observed at a 1 km or better spatial resolution on a (cloud free) daily
basis, the signal is directly related to only the very top millimetres of
the soil surface for bare soil, or to the surface of the leaves if vegetated.
Moreover, the relationship to soil moisture typically depends on eva-
porative demand and/or vegetation variation across seasons, which
limits the potential application of optical observations for direct soil
moisture retrieval (Petropoulos et al., 2015). These optical observations
also suffer from being attenuated by the atmosphere, and are unable to
provide useful data under cloudy skies. This makes the interpretation of
optically-based soil moisture predictions complicated because data on
the surface micro-meteorological and atmospheric information is re-
quired for corrections (Zhang and Wegehenkel, 2006). Access to such
data is limited at global scale, thus restricting the application of optical
remote sensing for direct soil moisture estimation.

The conversion of remotely sensed solar reflection/albedo data to
soil moisture is primarily based on the color of the soil or vegetation.
Thus, information about soil mineral composition, organic matter, local
incidence angle and vegetation type is required (e.g. Wang and Qu,
2009). For bare soil the determination of soil moisture is limited to
observing and interpreting changes in soil color, with moist soil being
darker than dry soil. When there is a layer of vegetation, observations
primarily reflect changes in vegetation color and/or water in the ve-
getation. Several land surface indices e.g. Normalized Difference Ve-
getation Index (NDVI) by Rouse et al. (1974), Normalized Difference
Water Index (NDWI) by Gao (1996), and Normalized Multiband
Drought Index (NMDI) by Wang and Qu (2007) were developed to
suppress vegetation and/or plant color impact. However, their appli-
cation is limited by the factors mentioned previously.

The utility of TIR remote sensing for soil moisture mapping has been
demonstrated in several studies (e.g. Schmugge et al., 1980; Friedl and
Davis, 1994; Verhoef et al., 1996; Muller and Décamps, 2001; Anderson
et al., 2007). These studies have shown that while there is a negative
correlation between the diurnal range in surface soil temperature and
the surface soil moisture content, moist soil is cooler in daytime and
warmer at night-time than dry soil. This is because the presence of
water, which has a greater heat capacity, leads to moist soil having a
greater resistance to temperature change than dry soil. These TIR
techniques, which use the thermal inertia concept for estimation of soil
moisture, are often based on using the TIR imagery in energy balance
calculations (e.g. Goward et al., 2002) or hydrological models (e.g.
Coppola et al., 2007; Minacapilli et al., 2009). The thermal inertia
principle correlates changes of soil temperature to changes of soil
moisture as well as heat capacity (e.g. Mallick et al., 2009; Van Doninck
et al., 2011). Moreover, the TIR data is either used alone or combined
with vegetation indices to adjust for the vegetation impact on the de-
gree of heat transferred into the soil (Carlson et al., 1994). For example,
Hain et al. (2009) used the TIR-based Atmosphere Land EXchange In-
version (ALEXI) surface energy balance model (Anderson et al., 1997;
Mecikalski et al., 1999; Anderson et al., 2007) to estimate available
water fraction, from which volumetric soil moisture was indirectly
derived.

Microwave emission (collected by passive sensors) and backscatter
(from active sensors, otherwise known as radars) are directly related to

near surface soil moisture (< 5 cm) through the dielectric contrast
between that of liquid water (~80) and dry soil (~4) (Schmugge et al.,
1974). The observations can be made under almost all weather condi-
tions due to the atmosphere being transparent at the wavelengths most
suitable for soil moisture (X- to L-band). The difference between the
active and passive microwave techniques lies in the source of the signal;
radar observations measure the proportion of a transmitted signal being
backscattered to the sensor proportional to the surface reflectivity and
roughness, while the radiometer observations are measurements of a
natural emission proportional to the surface emissivity and physical
temperature (Ulaby et al., 1981).

Active microwave remote sensing of soil moisture has the advantage
of being at high spatial resolution, especially Synthetic Aperture Radar
(SAR) which has the capability of observing the earth's surface at re-
solutions as high as 10m (Torres et al., 2012). However, this high
spatial resolution results in a revisit time of 35 days or longer. The
temporal repeat issue has been recently addressed through a con-
stellation of sensors by the European Space Agency (ESA); Sentinel-1
consists of two polar orbiting satellites having a global coverage of at
least once every 6 to 12 days in Interferometric Wide Swath (IWS) mode
(Wagner et al., 2009). The higher temporal resolution of Sentinel-1 SAR
observations compared to that of previous SAR missions improves the
feasibility of using SAR radar backscatter for a wider range of soil
moisture applications. Nevertheless, its narrow imaging swath cannot
achieve the temporal resolution of 3 days or better that is required for
many soil moisture mapping needs (e.g. Walker and Houser, 2004; the
National Research Council's Decadal Survey). Radar imagery is also
highly sensitive to surface roughness, vegetation biomass and vegeta-
tion water content, making the direct soil moisture retrieval from radar
backscatter alone a complex process. One solution proposed to over-
come this problem is to use temporal change detection approach
(Engman and Chauhan, 1995; Wagner et al., 1999; Njoku et al., 2002;
Moran et al., 2000), which assumes that factors such as surface
roughness remain fixed with only the soil moisture varying. However,
to date accurate and global soil moisture retrieval from SAR backscatter
remains a challenge.

Passive microwave emissions at L-band (e.g. Schmugge et al., 1974;
Jackson, 1993; Ulaby et al., 1996; Njoku and Entekhabi, 1996;
Schmugge et al., 2002) have been of great interest because of their
better sensitivity to soil moisture dynamics (Ulaby et al., 1982) than
radar and optical observations, and their favourable signal-to-noise
ratio. Consequently, the European Space Agency (ESA) and National
Aeronautics and Space Administration (NASA) have launched dedicated
soil moisture missions using L-band passive microwave instruments
aboard the Soil Moisture and Ocean Salinity (SMOS) satellite in 2009
and Soil Moisture Active Passive (SMAP) satellite in 2015, respectively,
to monitor global surface soil moisture at a temporal resolution of at
least 3 days. SMOS uses an interferometric radiometer with aperture
synthesis by which multi-angular brightness temperature data sets are
collected. In contrast, the SMAP radiometer has a scanning real aper-
ture antenna which provides single angle (~40°) but high accuracy
brightness temperature observations. Both the SMOS and SMAP sa-
tellites have an approximately 40 km resolution of their brightness
temperature measurements, due to the trade-offs in antenna (aperture)
size needed for high resolution and the technical challenge of launching
and operating a large antenna in space. As the 40 km spatial resolution
restricts the applications to hydro-climatological studies (Entekhabi
et al., 2008b), spatial enhancement approaches are required if the
passive microwave missions are to satisfy hydro-meteorological and
agricultural applications (Entekhabi et al., 2010). Fig. 1 summarizes the
temporal and spatial resolution requirements of soil moisture in a range
of application areas.

No remote sensing technique utilizing a single electromagnetic re-
gion or approach can by itself satisfy the accuracy, spatial and temporal
resolution requirements. While L-band passive microwave can yield
accurate estimates of soil moisture content at low resolution, the radar
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and optical imagery are capable of high spatial resolution but low ac-
curacy soil moisture; the decreased accuracy of the radar- and optical-
based remote sensing of soil moisture is due to the high impact by
features such as surface roughness and vegetation canopy.
Consequently, the SMAP satellite had included a radar in its design, to
produce an approximately 10 km resolution soil moisture by merging
the active and passive microwave data sets and permitting a compro-
mise on accuracy. But due to a hardware anomaly, the radar transmitter
failed on 7th of July 2015, making the SMAP combination of active and
passive microwave observations no longer possible.

Apart from the SMAP active-passive baseline approach (Das et al.,
2014), there have been a number of other studies that have proposed
leveraging the strengths of passive microwave with that of radar and/or
optical observations. This leveraging is possible through a process
called downscaling or disaggregation. Downscaling methods combine
coarse passive microwave observations with high spatial resolution
features obtained from: microwave remote sensing backscatter ob-
servations from active microwave sensors (e.g. Piles et al., 2009b; Das
et al., 2011; Das et al., 2014; Akbar and Moghaddam, 2015); higher
frequency radiometric observations from passive microwave sensors
(e.g. Santi, 2010; Gevaert et al., 2015); visible, SWIR and/or TIR ob-
servations from optical sensors (e.g. Verhoef et al., 1996; Muller and
Décamps, 2001); and/or soil surface attributes (e.g. Pellenq et al., 2003;
Ines et al., 2013). More recently, data assimilation has been used to
combine coarse passive microwave data into a high resolution hydro-
logical/land surface model (e.g. Reichle et al., 2001; Sahoo et al., 2013;
Reichle et al., 2017), and a hydrological/land surface model has been
used to train machine learning techniques for soil moisture downscaling
(e.g. Srivastava et al., 2013; Chai et al., 2011; Chakrabarti et al., 2015,
2016). One advantage of these model-based prediction approaches is
that there is no need for concurrent overpass by other satellites or
concern about lost data due to cloud coverage.

There are also statistical-based downscaling approaches (e.g. Parada
and Liang, 2003; Loew and Mauser, 2008; Kaheil et al., 2008; Mascaro
et al., 2010, 2011; Shi et al., 2014b; and Verhoest et al., 2015), which
provide the possible behaviour of the soil moisture using copula
probability distributions and/or wavelet coefficients. Camps et al.
(2008) and Piles et al. (2009a) have also developed mathematical-based
downscaling techniques, which also estimate the possible behaviour of
the soil moisture using the Fourier domain. However, such techniques
are out of scope of this manuscript, which provides an overview of
downscaling techniques that derive a deterministic pattern of soil
moisture at higher resolution.

This paper provides a systematic and critical review of existing

downscaling techniques for high resolution soil moisture mapping.
Strengths and limitations associated with each technique are discussed,
specifically in relation to the suitability and/or applicability in terms of
the accuracy of soil moisture products, and availability of the land
surface feature data, which are the key component in mapping accurate
soil moisture. A comprehensive background of the downscaling
methods and how they operate to improve soil moisture spatial scale
are also provided. Subsequently, there is an overview and discussion on
the advantages, drawbacks and knowledge gaps related to each ap-
proach to highlight the opportunities and challenges related to the re-
search in this field. This review paper is complimentary to Peng et al.
(2017), by providing a detailed description of the limitations of the
various downscaling techniques, so as to move forward the develop-
ment of high resolution soil moisture mapping from coarse passive
microwave observations and summarising the accuracy of the different
approaches.

2. Review of downscaling methods

Accurate soil moisture maps at moderate spatial resolutions
(1–10 km) are required for regional and local earth system applications.
Various downscaling techniques have been proposed for meeting the
user requirements on spatial scale and accuracy of soil moisture mea-
surements. A schematic of the general approach to downscaling soil
moisture is shown in Fig. 2, with Table 1 providing a concise overview
of the strengths and weaknesses of each downscaling method by listing
each method with its pros/cons. Table 2 provides the reported accuracy
of each downscaling technique together with the list of methods, re-
ferences, main inputs, and improvement of downscaled products over
the radiometer only measurements, as suggested by Merlin et al.
(2015).

[Tables 1 and 2 (available after the references section) features
here].

2.1. Microwave-based downscaling techniques

The capability of active and passive microwave observations has
been verified for soil moisture mapping since the 80’s (eg. Dobson and
Ulaby, 1986; Ulaby et al., 1982). The Advanced SCATterometer
(ASCAT) aboard the European METeorological OPerational (METOP)
satellite is an example of an operational microwave radar which maps
soil moisture globally at coarse resolution of 25 and 50 km (Wagner
et al., 2013). The ESA Climate Change Initiative (CCI) active soil
moisture data, which is a merged product created from C-band
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Fig. 1. Summary of spatial and temporal resolution requirement of soil moisture for a range of applications (Dr. Thomas Jackson and Prof. Dara Entekhabi, personal communication).
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scatterometers (ERS-1/2 scatterometer, METOP Advanced Scatte-
rometer), is available at 12.5 km. However, these products cannot sa-
tisfy the spatial resolution requirement of soil moisture applications
presented in Fig. 1. Advanced Synthetic Aperture Radar (ASAR) also
maps soil moisture at 1 km, but this product is only available over
Australia, southern and central Africa, and parts of Argentina for the
time period between January 2005 and May 2010 (see: http://rs.geo.
tuwien.ac.at/data-viewers/). Accordingly, active microwave observa-
tions alone have not been able to routinely provide accurate high re-
solution soil moisture estimates (e.g. Walker et al., 2004; Paloscia et al.,
2013) globally, but can contribute valuable information about the
geophysical properties of the target scenes (e.g. Chauhan, 1997;
Mohanty et al., 2017). Reliable soil moisture retrieval from passive

microwave remote sensing is limited to the lower frequencies, namely
L-band (~1.4 GHz), C-band (~6.9 GHz) and X-band (~10 GHz). The
higher frequencies such as Ka-band are not as sensitive to soil moisture
as lower frequencies and respond to a very shallow layer of soil (Calvet
et al., 2011; Yee et al., 2017). Conversely, the Ka-band provides ob-
servations at much higher resolution than lower frequencies because
the Instantaneous Field of View (IFOV) which is a spatial resolution
measure of the remote sensing system is proportional to wavelength
(Salvia et al., 2011). Therefore, while direct retrieval is unlikely, Ka-
band could be a potential source of information about the surface
spatial heterogeneity (e.g. Neale et al., 1990; Santi, 2010; Gevaert et al.,
2015).

The multi-source concept, in which the strengths of each sensor type
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Fig. 2. Schematic of the downscaling concept using spatially detailed information on land surface features to distribute coarse scale soil moisture to fine scale.

Table 1
Summary of the strengths and weaknesses of each downscaling method listing all the methods and pros/cons.

Downscaling
Techniques

Approaches Pros Cons

Radar-based Complimentary radar and radiometer • Applicable under all-weather condition

• Independent from meteorological and land
surface information

• Better sensitivity of radar backscatter to soil
moisture dynamics than optical observations

• Lack of concurrent radar and radiometer
observations at the same temporal repeat and on
the same platforms

• Low temporal coverage of radar imagery

• Active microwave observations are sensitive to
vegetation cover and surface roughness

Change detection of radar
Fractal interpolation
Bayesian
Combined radar and radiometer

Radiometer-based Combined high and low frequency
radiometer

• Applicable under all-weather condition

• Direct relationship of radiometric emissions to
soil moisture dynamics

• Availability of radiometric emissions at higher
frequency and at regular repeat coverage

• Spatial scale of soil moisture retrievals is limited to
the scale of high frequency radiometric
observations

• High frequency microwave observations are
sensitive to vegetation cover and rainfall events

Optical-based Physical • High spatial resolution of optical observations

• High temporal resolution of optical
observations

• No availability of optical observations under
cloudy sky

• Impacts of vegetation cover on the optical
observations makes relating these observations to
soil moisture difficult

• Indirect relationship of optical observations to soil
moisture variations

Thermal inertia
Semi-empirical

Soil surface attributes-
based

Statistical • Reflects soil water dynamic and storage
capacity impact/control on soil moisture space-
time scaling behaviour

• Limited access to global data on attributes
including topography, soil surface properties and
their possible rate of change

Data assimilation-
based

High resolution model predictions
combined with low resolution
radiometric observations

• Accounts for both model and measurement
uncertainties

• No need to have concurrent overpass by other
satellites

• Requires information on meteorological and land
surface parameters at high resolution

Machine learning-
based

Relationship with surface parameters • No need to have concurrent overpass by other
satellites

• No need for continuous data

• No lost data due to cloud coverage

• Needs parameter optimization

• Computationally demanding

• Training globally
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Table 2
Summary table on accuracy of soil moisture downscaling methods including the list of methods, references, and main inputs.

Downscaling
techniques

Approaches References Main inputs Accuracy Improvement over the radiometer
only measurements

Range of
accuracy
parameters

Radar-based Complimentary
radar and
radiometer

Ulaby et al.
(1983)

• NASA C-130 airborne
L-band scatterometer
data

• NASA C-130 airborne
L- and C-band
radiometric data

±30% of truth soil moisture – RMSE ∈
(0.01,0.029)
m3m−3

R2 ∈ (0.65,0.99)
Theis et al.
(1986)

C-band V-pol R2= 0.65, C-band H-
pol R2= 0.65, L-band H-pol
R2= 0.95

C-band V-pol ΔR2= 0.42, C-band
H-pol ΔR2= 0.43, L-band H-pol
ΔR2= 0.26

O'neill and
Chauhan
(1992)

• MACHYDRO '90
experimental AIRSAR
L-band radar data

• MACHYDRO '90
experimental PBMR L-
band radiometric data

RMSE=0.029m3m−3 –

O'neill et al.,
1996

• MACHYDRO '90
experimental data set
including PBMR L-
band radiometric and
AIRSAR L-band radar
data

• Washita '92
experimental ESTAR L-
band radiometric and
GSFC's L-band truck-
mounted radar data

MACHYDRO ‘90:
RMSE=0.028m3m−3 R2= 0.93
(on average)
Washita '92:
α=0: RMSE=0.016m3m−3,
R2= 0.99 (on average)
α ‡ 0: RMSE=0.01m3m−3,
R2= 0.99 (on average)

–

Chauhan
(1997)

• MACHYDRO '90
experimental data

Absolute bias on
average < 0.05m3m−3

–

Change detection
of radar

Njoku et al.
(2002)

• SGP99 L- and S-band
PALS experimental
data

No report on retrievals analysis,
just proposing a method for
downscaling

– RMSE ∈
(0.028,0.052)
m3m−3

R2 ∈ (0.31,0.85)Narayan et al.
(2006)

• SMEX02 PALS L-band
radiometer data

• SMEX02 AIRSAR L-
band radar data

RMSE=0.046m3m−3, R2= 0.7
(on average)
After removing outliers:
RMSE=0.028m3m−3, R2= 0.85
(on average)

–

Narayan and
Lakshmi
(2008)

• AMSR-E C-band
radiometric data

• TMI X-band brightness
temperature

• TRMM-PR Ku-band
backscatter data

AMSR-E & TRMM-PR:
RMSE=0.052m3m−3, R2= 0.31
TMI & TRMM-PR:
RMSE=0.049m3m−3, R2= 0.45

AMSR-E & TRMM-PR:
ΔRMSE=0.025m3m−3,
ΔR2= 0.14
TMI & TRMM-PR:
ΔRMSE=0.031m3m−3,
ΔR2= 0.08

Fractal
interpolation

Bindlish and
Barros (2002)

• SGP '97 ESTAR L-band
radiometric data

• SIR-C/X-SAR L-, C-,
and X-band data

RMSE=0.028m3m−3 ΔRMSE=0.004m3m−3

Bayesian Zhan et al.
(2006)

• L-band OSSE
experimental data set

3 km: RMSE=0.028m3m−3(Low
noise data)
RMSE=0.038m3m−3 (High
noise data)
9 km: RMSE=0.027m3m−3(Low
noise data)
RMSE=0.044m3m−3 (High
noise data)

3 km:
ΔRMSE=0.013m3m−3(Low
noise data)
ΔRMSE=0.022m3m−3 (High
noise data)
9 km:
ΔRMSE=0.012m3m−3(Low
noise data)
ΔRMSE=0.028m3m−3 (High
noise data)

RMSE ∈
(0.013,0.044)
m3m−3

R2 ∈ (0.1,0.55)

Wu et al.
(2017)

• SMAPEx-3 L-band
PLMR and PLIS
observations

1 km: RMSE=0.020m3m−3,
R2= 0.1
3 km: RMSE=0.017m3m−3,
R2= 0.3
9 km: RMSE=0.013m3m−3,
R2= 0.55

1 km: ΔRMSE=0.041m3m−3,
ΔR2= 0.01
3 km: ΔRMSE=0.023m3m−3,
ΔR2= 0.18
9 km: ΔRMSE=0.014m3m−3,
ΔR2= 0.35

Combined radar
and radiometer

Piles et al.
(2009b)

• SMEX02 L-band PALS
experimental data set

• L-band OSSE
experimental data set

RMSE=0.027m3m−3 (H pol)
RMSE=0.023m3m−3 (V pol)

ΔRMSE=0.02m3m−3 RMSE ∈
(0.019,0.12)
m3m−3Das et al.

(2011)
PALS: RMSE=0.035m3m−3

OSSE: RMSE=0.028 to
0.033m3m−3

ΔRMSE ∈ (0.015–0.02) m3m−3

Das et al.
(2014)

PALS: RMSE=0.033m3m−3 ΔRMSE>0.02m3m−3

Akbar and
Moghaddam
(2015)

• MEX02 L-band PALS
experimental data set

• Truck mounted
ComRad data

Low noise level:
RMSE=0.039m3m−3 (on
average)
High noise level:
RMSE=0.047m3m−3 (on
average)

ΔRMSE=0.006m3m−3 (Low
noise level, on average)
ΔRMSE=0.002m3m−3 (High
noise level, on average)

(continued on next page)
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Table 2 (continued)

Downscaling
techniques

Approaches References Main inputs Accuracy Improvement over the radiometer
only measurements

Range of
accuracy
parameters

van der Velde
et al. (2015)

• AMSR-E VUA-NASA C-
band soil moisture
products

• PALSAR L-band radar
backscatter

1 km: RMSE=0.067m3m−3,
R2= 0.37 (on average)
5 km: RMSE=0.068m3m−3,
R2= 0.36 (on average)
10 km: RMSE=0.069m3m−3,
R2= 0.36 (on average)

1 km: ΔRMSE=0.126m3m−3,
ΔR2= 0.02 (on average)
5 km: ΔRMSE=0.125m3m−3,
ΔR2= 0.01 (on average)
10 km: RMSE=0.124m3m−3,
ΔR2= 0.01 (on average)

Wu et al.
(2016)

• SMAPEx-3 L-band
PLMR and PLIS
observations

The baseline active-passive
algorithm by Das et al. (2014):
1 km: RMSE=0.038m3m−3

3 km: RMSE=0.028m3m−3

9 km: RMSE=0.019m3m−3

The active/passive retrieval
algorithm by Das et al. (2011):
1 km: RMSE=0.042m3m−3

3 km: RMSE=0.030m3m−3

9 km: RMSE=0.021m3m−3

The change detection approach by
Piles et al. (2009b):
1 km: RMSE=0.044m3m−3

3 km: RMSE=0.033m3m−3

9 km: RMSE=0.026m3m−3

ΔRMSE=0.01m3m−3 (For each
type of downscaling algorithm)

Rüdiger et al.
(2016)

• AACES L-band PLMR
observations

• ASAR C-band radar
data

RMSE=0.06 to 0.12m3m−3 –

Montzka et al.
(2016)

• PLMR brightness
temperature

• F-SAR radar
backscatter

The active/passive retrieval
algorithm by Das et al. (2011):
Juelich: RMSE=0.083m3m−3

Monschau: RMSE=0.094m3m−3

The baseline active-passive
algorithm by Das et al. (2014):
Juelich: RMSE=0.066m3m−3

Monschau: RMSE=0.077m3m−3

The alternative active-passive
algorithm by Montzka et al.
(2016):
Juelich: RMSE=0.078m3m−3

Monschau: RMSE=not available

–

Radiometer-
based

Combined high
and low frequency
radiometer

Santi (2010) • AMSR-E LPRM C-band
soil moisture product

• AMSR-E Ka-band
radiometric data

Just proposing a method for
downscaling/no analysis

– RMSE ∈
(0.054,0.13)
m3m−3

R2 ∈ (0.28,0.41)
Gevaert et al.
(2015)

RMSE=0.13m3m−3, R2= 0.41a ΔRMSE=0.01m3m−3,
ΔR2= 0.01a

de Jeu et al.
(2014)

Std. Dev.= 0.05m3m−3 ΔStd. Dev.=−0.016m3m−3

Parinussa et al.
(2014)b

• AMSR-E LPRM C-band
soil moisture product

• ALEXI TIR soil
moisture products

• ASCAT C-band soil
moisture products

• AMSR-E Ka-band
radiometric data

Downscaled ALEXI:
RMSE=0.054m3m−3,
R2= 0.34a

Downscaled AMSRE:
RMSE=0.06m3m−3, R2= 0.35a

Downscaled ASCAT:
RMSE=0.066m3m−3,
R2= 0.28a

Downscaled ALEXI:
ΔRMSE=0m3m−3,
ΔR2=−0.01a

Downscaled AMSRE:
ΔRMSE=0m3m−3,
ΔR2=−0.02a

Downscaled ASCAT:
ΔRMSE=0.002m3m−3,
ΔR2=−0.02a

Optical-based Physical Merlin et al.
(2005)

• SGP ‘97 ESTAR L-band
radiometric data

• AVHRR optical data set

Std. Dev.= 0.054m3m−3 – RMSE ∈
(0.003,0.211)
m3m−3

R2 ∈ (0,0.81)
UbRMSEc ∈
(0.039,0.102)
m3m−3

Merlin et al.
(2008a)

• Monsoon ‘90 PMBR L-
band radiometric data

• MODIS products
including NDVI and
LST

EF based: RMSE=0.03m3m−3,
R2= 0.62a

AEF based: RMSE=0.02m3m−3,
R2= 0.66a

–

Merlin et al.
(2008b)

• NAFE'06 L-band
airborne radiometer
observations

• MODIS products
including NDVI and
LST

Uniform θ:
RMSE=0.017m3m−3,
R2= 0.42a

Non-uniform θ:
RMSE=0.0153m3m−3,
R2= 0.58a

–

Merlin et al.
(2010)

RMSE=0.012 to 0.025m3m−3,
R2= 0.55 to 0.81a

–

Merlin et al.
(2009)

• NAFE'06 L-band
airborne radiometer
observations

RMSE=0.062m3m−3, R2= 0.64 –
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Table 2 (continued)

Downscaling
techniques

Approaches References Main inputs Accuracy Improvement over the radiometer
only measurements

Range of
accuracy
parameters

• MODIS products
including NDVI and
LST

• ASTER
Merlin et al.
(2012)

• SMOS level-2 soil
moisture product

• MODIS products
including NDVI and
LST

Austral summer:
RMSE=0.057m3m−3,
R2= 0.49a

Austral winter:
RMSE=0.138m3m−3, R2=~0a

–

Merlin et al.
(2013)

• SMOS level-2 soil
moisture product

• MODIS products
including NDVI and
LST

• ASTER products
including NDVI and
LST

• Landsat products
including NDVI and
LST

3 km, used MODIS:
RMSE=0.11m3m−3, R2= 0.45a

100m, used ASTER:
RMSE=0.0815m3m−3,
R2= 0.50a

100m, used Landsat:
RMSE=0.1m3m−3, R2= 0.72a

3 km, used MODIS:
ΔRMSE=0.01m3m−3,
ΔR2= 0.1a

100m, used ASTER:
ΔRMSE=0.0385m3m−3,
ΔR2= 0.15a

100m, used Landsat:
ΔRMSE=0.2m3m−3,
ΔR2= 0.37a

Djamai et al.
(2015)

• SMOS level-2 soil
moisture product

• MODIS products
including NDVI and
LST

Against ground data: RMSE=0.03
to 0.05m3m−3, R2=0.09 to 0.27a

Against airborne soil moisture:
R2= 0.24 to 0.64a

–

Fan et al.
(2015)

• Airborne PLMR soil
moisture at 700m
resolution

• ASTER products
including NDVI and
LST at 100m

RMSE=0.048m3m−3,
R2= 0.37a

ΔRMSE=−0.08m3m−3,
ΔR2=N/A

Malbéteau
et al. (2016)

• AMSR-E level-3 LPRM
soil moisture product

• SMOS level-3 daily soil
moisture product

• MODIS products
including NDVI and
LST

• DEM data (gtopo30)

AMSR-E:
Ascending:
RMSE=0.076m3m−3,
R2= 0.61a

Descending:
RMSE=0.092m3m−3,
R2= 0.61a

SMOS:
Ascending:
RMSE=0.079m3m−3,
R2= 0.53a

Descending:
RMSE=0.068m3m−3, R2= 0.5a

AMSR-E:
Ascending:
ΔRMSE=0.019m3m−3,
ΔR2=−0.08a

Descending:
ΔRMSE=0.025m3m−3,
ΔR2= 0.12a

SMOS:
Ascending:
ΔRMSE=0.011m3m−3,
ΔR2= 0.04a

Descending:
ΔRMSE=0.016m3m−3,
ΔR2= 0.02a

Molero et al.
(2016)

• SMOS level-3 daily soil
moisture product

• MODIS products
including NDVI and
LST

• DEM data (gtopo30)

Averaged results from ascending
and descending overpasses
Yanco: ubRMSEc= 0.093m3m−3,
R2= 0.12a

Murrumbidgee:
ubRMSE=0.102m3m−3,
R2= 0.1a

Little Washita:
ubRMSE=0.076m3m−3, R2= 0a

Walnut Gluch:
ubRMSE=0.039m3m−3,
R2= 0.01a

Yanco:
ΔubRMSE=−0.018m3m−3,
ΔR2= 0.08a

Murrumbidgee:
ΔubRMSE=−0.021m3m−3,
ΔR2= 0.06a

Little Washita:
ΔubRMSE=−0.014m3m−3,
ΔR2=−0.01a

Walnut Gluch:
ΔubRMSE=−0.007m3m−3,
ΔR2= 0.01a

Djamai et al.
(2016)

• SMOS level-2 soil
moisture product

• MODIS products
including NDVI and
LST

• OURANOS geophysical
data

• NARR atmospheric
forcing data

Linear:
Ascending: RMSE=0.06m3m−3,
R2= 0.58a

Descending:
RMSE=0.05m3m−3, R2= 0.66a

Non-linear:
Ascending: RMSE=0.06m3m−3,
R2= 0.49a

Descending:
RMSE=0.06m3m−3, R2= 0.52a

Linear:
Ascending:
ΔRMSE=0.04m3m−3, Δ
R2= 0.13a

Descending:
ΔRMSE=0.06m3m−3,
ΔR2=−0.03a

Non-linear:
Ascending:
ΔRMSE=0.04m3m−3,
ΔR2= 0.04a

Descending:
ΔRMSE=0.05m3m−3,
ΔR2=−0.17a

Chen et al.
(2017)

May:
NRSD: RMSE=0.04m3m−3,

May:
NRSD: ΔRMSE=0m3m−3
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Table 2 (continued)

Downscaling
techniques

Approaches References Main inputs Accuracy Improvement over the radiometer
only measurements

Range of
accuracy
parameters

• SMAP radiometer-
derived soil moisture
products

• MODIS land surface
reflectance products

R2= 0.15a

DisPATCh: RMSE=0.07m3m−3,
R2= 0.13a

September:
NRSD: RMSE=0.12m3m−3,
R2= 0.06a

DisPATCh: RMSE=0.17m3m−3,
R2= 0.04a

DisPATCh:
ΔRMSE=−0.03m3m−3

September:
NRSD: ΔRMSE=0.02m3m−3

DisPATCh:
ΔRMSE=−0.03m3m−3

Kim and
Hogue (2012)

• AMSR-E Level 3 soil
moisture product from
NSIDC

• MODIS products
including NDVI and
LST

RMSE=0.051m3m−3,
R2= 0.073a

ΔRMSE=0.003m3m−3,
ΔR2= 0.067a

Zhou et al.
(2015)

• AMSR2 Level 3 soil
moisture products

• MODIS products
including NDVI and
LST

Merlin et al. (2008a, 2008b, 2009):
RMSE=0.032m3m−3,
R2= 0.55a

Kim and Hogue (2012):
RMSE=0.038m3m−3,
R2= 0.58a

–

Peng et al.
(2015)

• ESA CCI multi-mission
soil moisture product

• MODIS products
including NDVI and
LST

• MSG SEVIRI data

MODIS based:
RMSE=0.076m3m−3,
ubRMSEc= 0.042m3m−3,
R2= 0.34a

SEVIRI based:
RMSE=0.072m3m−3,
ubRMSE=0.04m3m−3,
R2= 0.38a

MODIS based:
ΔRMSE=0.034m3m−3,
ΔubRMSE=0.008m3m−3,
ΔR2= 0.06a

SEVIRI based:
ΔRMSE=0.038m3m−3,
ΔubRMSE=0.01m3m−3,
ΔR2= 0.1a

Peng et al.
(2016)

• ESA CCI multi-mission
soil moisture products

• MODIS products
including NDVI/EVI
and LST

LST/NDVI:
RMSE=0.099m3m−3,
R2= 0.38a

LST/EVI: RMSE=0.103m3m−3,
R2= 0.36a

LSTday-night/NDVI:
RMSE=0.078m3m−3,
R2= 0.56a

LSTday-night/EVI:
RMSE=0.091m3m−3,
R2= 0.45a

LST/NDVI:
ΔRMSE=−0.042m3m−3,
ΔR2=−0.23a

LST/EVI:
ΔRMSE=−0.046m3m−3,
ΔR2=−0.25a

LSTday-night/NDVI:
ΔRMSE=−0.021m3m−3,
ΔR2=−0.05a

LSTday-night/EVI:
ΔRMSE=−0.034m3m−3,
ΔR2=−0.16a

Kim et al.
(2017) ⁎⁎

• Merged active-passive
ESA CCI soil moisture
products

• MODIS 16-day NDVI
composite

REMEDHUS:
RMSE=0.11m3m−3,
ubRMSEc= 0.05m3m−3,
R2= 0.24a

CONUS:
Arid: RMSE=0.074m3m−3,
ubRMSE=0.054m3m−3,
R2= 0.29a(median values)
Temperate:
RMSE=0.105m3m−3,
ubRMSE=0.079m3m−3,
R2= 0.14a(median values)
Cold: RMSE=0.091m3m−3,
ubRMSE=0.074m3m−3,
R2= 0.23a(median values)

REMEDHUS: ΔRMSE=0m3m−3,
ΔubRMSE=0.01m3m−3,
ΔR2=−0.1a

CONUS:
Arid: ΔRMSE=0m3m−3,
ΔubRMSE=−0.003m3m−3,
ΔR2=−0.03 a

Temperate:
ΔRMSE=−0.006m3m−3,
ΔubRMSE=−0.008m3m−3,
ΔR2=−0.01a

Cold: ΔRMSE=−0.002m3m−3,
ΔubRMSE=−0.004m3m−3,
ΔR2= 0a

Wang et al.
(2016)

• Microwave products of
soil moisture produced
by Dorigo et al. (2012)

• MODIS products
including EVI and LST

On average:
RMSE=0.211m3m−3

On average:
ΔRMSE=−0.022m3m−3

Hemakumara
et al. (2004)

• AMSR-E C-band
radiometric data

• MODIS and AVHRR
LST and NDVI

No report on retrievals analysis,
just proposing a method for
downscaling

–

Thermal inertia Fang and
Lakshmi
(2014b)

• AMSR-E soil moisture
estimated using the
single channel
algorithm (SCA)

• SMOS Daily Level-3
soil moisture product

• MODIS products
including NDVI and

SMOS: RMSE=0.042m3m−3,
ubRMSEc= 0.045m3m−3 (on
average)
AMSR-E: RMSE=0.0385m3m−3,
ubRMSE=0.045m3m−3 (on
average)

SMOS: ΔRMSE=0.001m3m−3,
ΔubRMSE=−0.002m3m−3 (on
average)
AMSR-E:
ΔRMSE=0.006m3m−3,
ΔubRMSE=−0.003m3m−3 (on
average)

RMSE ∈
(0.027,0.146)
m3m−3

UbRMSEc ∈
(0.026,0.045)
m3m−3

R2 ∈ (0.22,0.56)
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Table 2 (continued)

Downscaling
techniques

Approaches References Main inputs Accuracy Improvement over the radiometer
only measurements

Range of
accuracy
parameters

land surface
temperature

• AVHRR and SPOT
NDVI

• NLDAS model outputs
including LST and soil
moisture

Mallick et al.
(2009)

• MODIS and ASTER
optical data set

• AMSR-E C-band
radiometric product

Fractional vegetation cover<0.5:
RMSE=0.027m3m−3,
R2= 0.56a

Fractional vegetation cover>0.5:
RMSE=0.06m3m−3, R2= 0.22a

–

Fang et al. (2013) • AMSR-E C-band radiometric
data

• NLDAS model outputs
including LST and soil
moisture

• MODIS products including
NDVI and LST

• AVHRR NDVI

Mesonet data:
RMSE=0.146m3m−3,
ubRMSEc= 0.042m3m−3

Micronet data:
RMSE=0.063m3m−3,
ubRMSE=0.026m3m−3

Mesonet data:
ΔRMSE=−0.005m3 -
m−3,
ΔubRMSE=0.0 m3m−3

Micronet data:
ΔRMSE=−0.015m3 -
m−3,
ΔubRMSE=−0.001m3 -
m−3

Fang and Lakshmi
(2014a)

• AMSR-E C-band
radiometric data

• NLDAS model outputs
including LST and soil
moisture

• MODIS products
including NDVI and
LST

NP89: RMSE=0.056m3m−3,
ubRMSEc= 0.039m3m−3

LP92: RMSE=0.056m3m−3,
ubRMSE=0.04m3m−3

NP89: ΔRMSE=−0.001m3m−3,
ΔubRMSE=−0.001m3m−3

LP92: ΔRMSE=−0.001m3m−3,
ΔubRMSE=−0.002m3m−3

Semi-empirical Chauhan et al.
(2003)

• SSM/I K-band
radiometric data

• AVHRR products
including NDVI and
LST

RMSE=0.05m3m−3 ΔRMSE=−0.024m3m−3 RMSE ∈
(0.043,0.13)
m3m−3

ubRMSEc ∈
(0.03,0.07)
m3m−3

R2 ∈
(0.016,0.79)

Choi and Hur
(2012)

• AMSR-E LPRM soil
moisture products

• MODIS products
including NDVI, LST
and albedo

RMSE=0.12m3m−3,
R2= 0.22a(on average)

REMEDHUS:
ΔRMSE=0.03m3m−3,
ΔR2= 0.05a(on average)

Zhao and Li
(2013a)b

• LPRM AMSR-E soil
moisture product

• MSG SEVIRI optical
data including NDVI
and LST

Zhao and Li, 2013a) model:
RMSE=0.099m3m−3,
R2= 0.057a(on average)
Chauhan et al. (2003) model:
RMSE=0.106m3m−3,
R2= 0.016a(on average)

Zhao and Li, 2013amodel:
ΔRMSE=m3m−3, ΔR2=
Chauhan et al. (2003) model:

Piles et al.
(2011)

• SMOS level-2 soil
moisture product

• MODIS products
including NDVI and
LST

1 km: RMSE=0.13m3m−3,
R2= 0.21
10 km: RMSE=0.09m3m−3,
R2= 0.3

1 km: ΔRMSE=0.03m3m−3,
ΔR2=−0.11
10 km: ΔRMSE=0.07m3m−3,
ΔR2=−0.03

Piles et al.
(2012)

RMSE=0.085m3m−3, R2= 0.54
(on average)

ΔRMSE=−0.005m3m−3,
ΔR2=−0.26

Piles et al.
(2013)

RMSE=0.06m3m−3,
ubRMSEc= 0.04m3m−3,
R2= 0.24a

ΔRMSE=−0.01m3m−3,
ΔubRMSE=−0.01m3m−3,
ΔR2=−0.06

Piles et al.
(2014)

Morning orbits:
RMSE=0.07m3m−3,
ubRMSEc= 0.03m3m−3,
R2= 0.17a

Afternoon orbits:
RMSE=0.05m3m−3,
ubRMSE=0.04m3m−3,
R2= 0.34a

Morning orbits:
ΔRMSE=0.01m3m−3,
ΔubRMSE=0.0 m3m−3,
ΔR2=−0.08a

Afternoon orbits:
ΔRMSE=0.02m3m−3,
ΔubRMSE=−0.01m3m−3,
ΔR2= 0.0a

Sánchez-Ruiz
et al. (2014)

Morning orbits:
RMSE=0.07m3m−3,
ubRMSEc= 0.043m3m−3,

Morning orbits:
ΔRMSE=0.0m3m−3,
ΔubRMSE=0.003m3m−3,
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Table 2 (continued)

Downscaling
techniques

Approaches References Main inputs Accuracy Improvement over the radiometer
only measurements

Range of
accuracy
parameters

R2= 0.37a(on average)
Afternoon orbits:
RMSE=0.051m3m−3,
ubRMSE=0.04m3m−3,
R2= 0.52a(on average)

ΔR2= 0.1a(on average)
Afternoon orbits:
ΔRMSE=0.0m3m−3,
ΔubRMSE=0.004m3m−3,
ΔR2= 0.11a(on average)

Song et al.
(2014)

• AMSR-E Ku-band
brightness temperature

• MODIS NDVI and LST
products

RMSE=0.091m3m−3, R2= 0.62
(on average)

–

Song et al.
(2012)

RMSE=0.047m3m−3, R2= 0.74 –

Pablos et al.
(2016)

• SMOS BEC level-3 soil
moisture product

• MODIS products
including NDVI and
LST

LST day: ubRMSEc= 0.04 to
0.06m3m−3, R2=0.3 to 0.72a

(on average)
LST night: ubRMSE=0.04 to
0.07m3m−3, R2=0.2 to 0.64a

(on average)
Ensemble of day and night LST:
ubRMSE=0.04 to 0.07m3m−3,
R2= 0.3 to 0.72a (on average)

–

Piles et al.
(2016)

• SMOS BEC level-3 soil
moisture product

• MSG SEVIRI products
including NDVI and
LST

REMEDHUS:
Instant: RMSE=0.043m3m−3,
ubRMSEc= 0.04m3m−3,
R2= 0.67a

Daytime: RMSE=0.063m3m−3,
ubRMSE=0.06m3m−3,
R2= 0.45a

SMOSMANIA:
Instant: RMSE=0.1m3m−3,
ubRMSE=0.051m3m−3,
R2= 0.41a

Daytime: RMSE=0.109m3m−3,
ubRMSE=0.062m3m−3,
R2= 0.26a

VAS:
Instant: RMSE=0.065m3m−3,
ubRMSE=0.031m3m−3,
R2= 0.79a

Daytime: RMSE=0.072m3m−3,
ubRMSE=0.051m3m−3,
R2= 0.45a

REMEDHUS:
Instant: ΔRMSE=0.013m3m−3,
ΔubRMSE=−0.04m3m−3,
ΔR2= 0.06a

Daytime:
ΔRMSE=−0.007m3m−3,
ΔubRMSE=−0.024m3m−3,
ΔR2=−0.16a

SMOSMANIA:
Instant:
ΔRMSE=−0.021m3m−3,
ΔubRMSE=−0.01m3m−3,
ΔR2=−0.18a

Daytime:
ΔRMSE=−0.03m3m−3,
ΔubRMSE=−0.021m3m−3,
ΔR2=−0.33a

VAS:
Instant: ΔRMSE=0.005m3m−3,
ΔubRMSE=0.014m3m−3,
ΔR2=−0.09a

Daytime:
ΔRMSE=−0.002m3m−3,
ΔubRMSE=−0.006m3m−3,
ΔR2=−0.26a

Knipper et al.
(2017)

• SMOS
CATDS
Level 3 soil
moisture
products

• SMAP
Level 3
(L3_SM_P)
soil
moisture
products

• MODIS
products
including
LST, EVI
and
Albedo

Chauhan et al. (2003):
SMOS:
ubRMSEc= 0.042m3m−3,
R2= 0.31
SMAP:
ubRMSE=0.036m3m−3,
R2= 0.39
Piles et al. (2011):
SMOS:
ubRMSE=0.043m3m−3,
R2= 0.31
SMAP:
ubRMSE=0.037m3m−3,
R2= 0.35
Chauhan et al. (2003):
SMOS:
ubRMSE=0.046m3m−3,
R2= 0.32
SMAP:
ubRMSE=0.037m3m−3,
R2= 0.37

Chauhan et al. (2003):
SMOS: ΔubRMSE=0.008m3m−3,
ΔR2=−0.06
SMAP:
ΔubRMSE=−0.004m3m−3,
ΔR2=−0.13
Piles et al. (2011):
SMOS: ΔubRMSE=0.007m3m−3,
ΔR2=−0.06
SMAP:
ΔubRMSE=−0.005m3m−3,
ΔR2=−0.17
Chauhan et al. (2003):
SMOS: ΔubRMSE=0.004m3m−3,
ΔR2=−0.05
SMAP:
ΔubRMSE=−0.005m3m−3,
ΔR2=−0.15

Soil surface
attributes-
based

Statistical Kim and
Barros (2002a)

• SGP ‘97 experimental
ESTAR L-band
radiometric data

• DEM and rainfall data
set

• AVHRR NDVI products

• Soil texture derived
from AVHRR
observations

Variance= 0.24m3m−3 (on
average)

– RMSE ∈
(0.0224,0.033)
m3m−3

R2 ∈
(0.023,0.86)

(continued on next page)
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Table 2 (continued)

Downscaling
techniques

Approaches References Main inputs Accuracy Improvement over the radiometer
only measurements

Range of
accuracy
parameters

Pellenq et al.
(2003)

• High resolution DEM
data

• High resolution soil
moisture maps from
time domain
reflectometry

• Soil temperature
profile measurements

• Soil heat flux and
meteorological
measurements
including rainfall

• Surface roughness
measurements

• Soils information
including field
saturated hydraulic
conductivity and soil
depth

R2= 0.67a –

Wilson et al.
(2005)

• High resolution soil
moisture data

• Terrain attributes

• Soil and vegetation
properties

Std. Dev.= 0.027m3m−3 (on
average)

ΔStd. Dev.= 0.011m3m−3 (on
average)

Perry and
Niemann
(2007)

RMSE and R2 are not reported as
measures of agreement.

Busch et al.
(2012)

• High resolution DEM
data

• Topographic attributes
including wetness
index and variables
that are contained in
the wetness index
(slope and lnSCA)

Coleman and
Niemann
(2013)

• High resolution DEM

• Topographic indices

• Vegetation and soil
properties

Ranney et al.
(2015)

• High resolution DEM

• Topographic indices

• High resolution
vegetation and soil
properties

Topography:
EMT: RMSE=0.028m3m−3

EOF: RMSE=0.027m3m−3

Topography and soil:
EMT+VS: RMSE=0.029m3m−3

EOF: RMSE=0.027m3m−3

Cowley et al.
(2017)

• High resolution DEM

• Topographic indices

• High resolution
vegetation and soil
properties

• Precipitation and
potential
evapotranspiration
data

RMSE and R2 are not reported as
measures of agreement.

Hoehn et al.
(2017)

The accuracy of downscaled soil
moisture products is not provided
at fine resolution, but at the
resolution of coarse soil moisture
after averaging the values within
the scale of coarse soil moisture.

–

Temimi et al.
(2010)

• AMSR-E Ka-band
radiometric data

• MODIS LAI product

• Topographic attributes
from STRM Digital
Elevation Model

Fort Chipewyan A:
Dynamic TWI: R2=0.49a (on
average)
Classic TWI: R2= 0.14a(on
average)
Prairie River:
Dynamic TWI: R2=0.18a(on
average)
Classic TWI: R2= 0.023a(on
average)

Fort Chipewyan A:
Dynamic TWI: ΔR2= 0.24a

Classic TWI: ΔR2=−0.11a

Prairie River:
Dynamic TWI: ΔR2=−0.09a

Classic TWI: ΔR2=−0.0247a

Ines et al.
(2013)

• SGP’97 experimental
ESTAR L-band
radiometric data

• Synthetic data set
(Walnut Creek WC11)

• Soil hydraulic
properties of Mualem-
van Genuchten
functions

FD bottom-boundary conditions:
RMSE=0.0224m3m−3,
R2= 0.86a(on average)
Variable groundwater conditions:
RMSE=0.0327m3m−3,
R2= 0.74a(on average)

–

Shin and
Mohanty
(2013)

• SGP’97 experimental
ESTAR L-band
radiometric data

LW 13: MBE=−0.203 to
−0.169m3m−3,
R2= 0.52 to 0.83a

–

(continued on next page)
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Table 2 (continued)

Downscaling
techniques

Approaches References Main inputs Accuracy Improvement over the radiometer
only measurements

Range of
accuracy
parameters

• Synthetic data set
(little Washita-LW 13
and 21, Oklahoma)

• Soil hydraulic
properties of Mualem-
van Genuchten
functions

LW 21: MBE=−0.165 to
−0.122m3m−3,
R2= 0.12 to 0.76a

Data
assimila-
tion-based

High resolution
model predictions
combined with
low resolution
radiometric
observations

Reichle et al.
(2001)

• SGP97 experimental
ESTAR L-band
radiometric data

• Synthetic L-band
radiometric data

• Outputs of a land
surface hydrologic
model by (Reichle,
2000)

RMSE=0.03 to 0.038m3m−3 – RMSE ∈ (0.03,
0.09) m3m−3

R2 ∈ (0.07,0.86)
ubRMSEc ∈
(0.0012,0.083)

Draper et al.
(2009)

• LPRM AMSR-E C-band
soil moisture

• Outputs of ISBA model

RMSE>0.09m3m−3 –

Sahoo et al.
(2013)

• AMSR-E X-band
radiometer data

• Outputs of Noah land
surface model by
Mahrt and Pan (1984)

RMSE=0.03m3m−3, R2= 0.69a ΔRMSE=0.02m3m−3,
ΔR2= 0.23a

Kornelsen
et al. (2015)

• Simulated brightness
temperature using
CMEM

• Dense soil moisture
measurements from
experimental
watersheds

Little River: RMSE=0.04m3m−3

Little Washita:
RMSE=0.06m3m−3

Little River:
ΔRMSE=0.01m3m−3

Little Washita:
ΔRMSE=0.03m3m−3

Lievens et al.
(2015)

• SMOS Level 3 CATDS
soil moisture

• Outputs of VIC model

• Precipitation, 2-m air
temperature, pressure,
vapour pressure, wind
speed, and incoming
shortwave and
longwave radiation

Mean: RMSE=0.076m3m−3,
R2= 0.51a

SD: RMSE=0.078m3m−3,
R2= 0.47a

• CDF: RMSE=0.077m3m−3,
R2= 0.48a

Mean: ΔRMSE=−0.001m3m−3,
ΔR2=−0.02a

SD: ΔRMSE=−0.004m3m−3,
ΔR2=−0.06a

• CDF:
ΔRMSE=−0.004m3m−3,
ΔR2=−0.05a

Draper and
Reichle (2015)

• Level 3 LPRM AMSR-E
X-band soil moisture
products

• Outputs of the NASA's
Catchment Land
Surface Model

UbMSEc= 0.0012m3m−3 (on
average)

Reichle et al.
(2017)

• SMAP L1C_TB
brightness temperature
observations

• Surface meteorological
forcing data from the
GEOS-5 atmospheric
assimilation system,
Corrected with
precipitation
observation

• Outputs of the NASA's
Catchment Land
Surface Model

All sites:
ubRMSEc= 0.038m3m−3

REMEDHUS:
ubRMSE=0.034m3m−3

Reynolds Creek:
ubRMSE=0.03m3m−3

Yanco: ubRMSE=0.05m3m−3

Carman: ubRMSE=0.05m3m−3

Walnut Gulch:
ubRMSE=0.032m3m−3

Little Washita:
ubRMSE=0.034m3m−3

Fort Cobb:
ubRMSE=0.038m3m−3

Little River:
ubRMSE=0.038m3m−3

St Josephs:
ubRMSE=0.05m3m−3

South Fork:
ubRMSE=0.048m3m−3

Monte Buey:
ubRMSE=0.029m3m−3

Tonzi Ranch:
ubRMSE=0.037m3m−3

Kenaston:
ubRMSE=0.038m3m−3

Valencia:

–

(continued on next page)
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Table 2 (continued)

Downscaling
techniques

Approaches References Main inputs Accuracy Improvement over the radiometer
only measurements

Range of
accuracy
parameters

ubRMSE=0.023m3m−3

Niger: ubRMSE=0.033m3m−3

Benin: ubRMSE=0.047m3m−3

Yanco: ubRMSE=0.041m3m−3

Lievens et al.
(2017)

• SMAP L1C_TB
brightness temperature
observations

• Sentinel-1 C-band
backscatter

• Surface meteorological
forcing data from the
GEOS-5 atmospheric
assimilation system,
Corrected with
precipitation
observation

• Outputs of the NASA's
Catchment Land
Surface Model

Radiometer only assimilation:
Core sites:
ubRMSEc= 0.048m3m−3,
R2= 0.44a

REMEDHUS:
ubRMSE=0.037m3m−3,
R2= 0.28a

Yanco: ubRMSE=0.049m3m−3,
R2= 0.85a

Twente: ubRMSE=0.083m3m−3,
R2= 0.27a

Little Washita:
ubRMSE=0.035m3m−3,
R2= 0.64a

Fort Cobb:
ubRMSE=0.038m3m−3,
R2= 0.55a

South Fork:
ubRMSE=0.052m3m−3,
R2= 0.38a

Valencia:
ubRMSE=0.024m3m−3,
R2= 0.24a

Nigerc: ubRMSE=0.049m3m−3,
R2= 0.22a

Benind: ubRMSE=0.056m3m−3,
R2= 0.55a

TxSON: ubRMSE=0.039m3m−3,
R2= 0.69a

HOBE: ubRMSE=0.051m3m−3,
R2= 0.53a

Sparse networks:
ubRMSE=0.054m3m−3,
R2= 0.44a

SCAN: ubRMSE=0.056m3m−3,
R2= 0.41a

USCRNF:
ubRMSE=0.053m3m−3,
R2= 0.44a

Oklahoma Mesonetg:
ubRMSE=0.058m3m−3,
R2= 0.45a

OzNet: ubRMSE=0.062m3m−3,
R2= 0.71a

SMOSMANIA:
ubRMSE=0.045m3m−3,
R2= 0.38a

Complementary radar and
radiometer assimilation:
Core sites:
ubRMSE=0.046m3m−3,
R2= 0.49a

REMEDHUS:
ubRMSE=0.035m3m−3,
R2= 0.36a

Yanco: ubRMSE=0.049m3m−3,
R2= 0.86a

Twente: ubRMSE=0.08m3m−3,
R2= 0.38a

Little Washita:
ubRMSE=0.035m3m−3,
R2= 0.62a

Fort Cobb:
ubRMSE=0.037m3m−3,
R2= 0.55a

South Fork:
ubRMSE=0.05m3m−3,
R2= 0.45a

Valencia:

–

(continued on next page)
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Table 2 (continued)

Downscaling
techniques

Approaches References Main inputs Accuracy Improvement over the radiometer
only measurements

Range of
accuracy
parameters

ubRMSE=0.024m3m−3,
R2= 0.26a

Nigerc: ubRMSE=0.045m3m−3,
R2= 0.29a

Benind: ubRMSE=0.056m3m−3,
R2= 0.58a

TxSON: ubRMSE=0.039m3m−3,
R2= 0.67a

HOBE: ubRMSE=0.046m3m−3,
R2= 0.69a

Sparse networks:
ubRMSE=0.053m3m−3,
R2= 0.46a

SCAN: ubRMSE=0.055m3m−3,
R2= 0.41a

USCRNF:
ubRMSE=0.053m3m−3,
R2= 0.44a

Oklahoma Mesonetg:
ubRMSE=0.057m3m−3,
R2= 0.45a

OzNet: ubRMSE=0.061m3m−3,
R2= 0.72a

SMOSMANIA:
ubRMSE=0.042m3m−3,
R2= 0.44a

Machine
learning-
based

Relationship with
surface
parameters

Srivastava
et al. (2013)

• SMOS L-band
radiometric data

• MODIS LST product

ANN: RMSE=0.011m3m−3,
R2= 0.75
RVM: RMSE=0.013m3m−3,
R2= 0.69
SVM: RMSE=0.013m3m−3,
R2= 0.69
GLM: RMSE=0.013m3m−3,
R2= 0.69

ANN: ΔRMSE=0.006m3m−3,
ΔR2= 0.33
RVM: ΔRMSE=0.004m3m−3,
ΔR2= 0.27
SVM: ΔRMSE=0.004m3m−3,
ΔR2= 0.27
GLM: ΔRMSE=0.004m3m−3,
ΔR2= 0.27

RMSE ∈ (0.006,
0.16) m3m−3

R2 ∈ (0.37,0.96)

Chai et al.
(2011)

• NAFE'05 experimental
PLMR L-band
radiometric data

• MODIS products
including surface
reflectance, LST and
emissivity

RMSE=0.018 to 0.035m3m−3 –

Chai and Goh
(2013)

RMSE=0.0233m3m−3,
R2= 0.89

–

Chakrabarti
et al. (2015)

• MicroWEXs
meteorological forcing
data

• Land cover map

• Synthetic data set
simulated by using a
coupled LSP-DSSAT
model

PRI method:
RMSE=0.006m3m−3

UTD method:
RMSE=0.079m3m−3

–

Chakrabarti
et al. (2016)

RMSE<0.02m3m−3 –

Park et al.
(2015)

• AMSR2 C-band LPRM
daily soil moisture
products

• MODIS products
including surface
albedo, LST, NDVI,
EVI, LAI and
evapotranspiration

Random forest:
RMSE=0.06m3m−3, R2= 0. 96
Ordinary least square:
RMSE=0.16m3m−3, R2= 0.47

–

Im et al.
(2016)

• AMSR-E C-band LPRM
Level 3 daily soil
moisture products

• MODIS products
including surface
albedo, LST, NDVI,
EVI, LAI and
evapotranspiration

Random forest:
South Korea:
RMSE=0.049m3m−3,
R2= 0.50a

Australia: RMSE=0.057m3m−3,
R2= 0.71a

Boosted regression trees:
South Korea:
RMSE=0.052m3m−3,
R2= 0.56a

Australia: RMSE=0.078m3m−3,
R2= 0.59a

Cubist:
South Korea:
RMSE=0.051m3m−3,
R2= 0.49a

Random forest:
South Korea:
ΔRMSE=0.059m3m−3,
ΔR2= 0.28a (on average)
Australia:
ΔRMSE=−0.004m3m−3,
ΔR2= 0.45a (on average)
Boosted regression trees:
South Korea:
ΔRMSE=0.056m3m−3,
ΔR2= 0.34a (on average)
Australia:
ΔRMSE=−0.025m3m−3,
ΔR2= 0.33a (on average)
Cubist:
South Korea:
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are utilized, could potentially improve the soil moisture estimation in
terms of both accuracy and spatial scale. Several studies have therefore
suggested that the remotely sensed soil moisture from the passive mi-
crowave observations at lower (L- and C-band) frequencies be com-
bined with backscatter or passive microwave emission at higher (Ka-
band) frequency. These combination techniques are briefly introduced
in the radar- and radiometric-based sections below.

2.1.1. Radar-based downscaling techniques
The combination of active/passive microwave observations has

been a preferred approach to downscaling because both sensors re-
spond to changes in the dielectric properties of the soil. Ulaby et al.
(1983) conducted one of the first investigations based on this approach
using L-band radiometer and C-band radar soil moisture estimates over
bare soil and corn fields. They found that it could reduce the estimation
error by up to 30% of the reference soil moisture value. Findings from
this pioneering work motivated Theis et al. (1986), O'Neill and
Chauhan (1992), O'Neill et al. (1996) and Chauhan (1997) to propose
approaches using active and passive microwave techniques in compli-
ment to each other, to optimize the accuracy of the final soil moisture
estimates. Theis et al. (1986) used L-band scatterometer data to com-
pensate for the surface roughness impact on the response of L- and C-
band radiometers to soil moisture. This complimentary combination
significantly improved the passive microwave remote sensing of soil
moisture over bare fields, especially for L-band soil moisture retrievals,
with R2 equal to 0.95. In order to utilize active and passive microwave
data sets in combination, O'neill and Chauhan (1992) retrieved soil
moisture from a radiative transfer model with radar-derived ancillary
data on the vegetation attenuation parameter. This analysis, which was
made for a single field covered by corn, demonstrated that the radar-
derived vegetation attenuation could increase the accuracy of radio-
metric remote sensing of soil moisture. In another study, O'neill et al.
(1996) used L-band radar determination of vegetation transmissivity
and scattering in a radiative transfer model to estimate soil moisture.
They reported successful retrieval of soil moisture within about
0.02m3m−3 of the ground measurements. A dielectric-soil moisture

relation was also employed by Chauhan (1997) to estimate soil
moisture from Fresnel reflectivity, derived from radar-based estimation
of vegetation and surface roughness parameters. The capability of
passive microwave remote sensing in delivering soil moisture maps
consequently improved, with an averaged absolute bias of less than
0.05m3m−3.

Besides using combined passive and active observations as a means
of improving the retrieval of soil moisture measurement, investigations
were made for combined radar-radiometer downscaling techniques.
This technique attempts to recover the spatial detail of the coarse soil
moisture/brightness temperature through the association of the sub-
pixel distribution of land surface features embedded in the radar ima-
gery. However, the sensitivity of backscatter to surface roughness and
vegetation is the key limitation for applying this technique to radio-
metric soil moisture downscaling (Njoku et al., 2001).

To explore this concept, a radar-radiometer data set was collected
by the Passive-Active L-/S-band (PALS) sensor during the Southern
Great Plains Experiment in 1999 (SGP99). This data set was used by
Njoku et al. (2002) to design a change detection based downscaling
algorithm that employed a linear relationship between the backscatter
and volumetric soil moisture (e.g. Dobson and Ulaby, 1986). The use of
relative changes in backscatter reduces the impact of surface roughness
and vegetation on radar signals, and thus on soil moisture estimates
(e.g. Quesney et al., 2000; Wagner and Scipal, 2000; Moran et al.,
2000). Narayan et al. (2006) modified the Njoku et al. (2002) method
by using the relative radar response to soil moisture suggested by Du
et al. (2000).

In order to conduct a comprehensive assessment of the algorithm's
applicability, coincident active observations and passive microwave
derived soil moisture products were simulated to mimic the gradual
wetting and drying conditions. The spatial variability in soil moisture
and vegetation water content were assumed to be the only factors in-
fluencing temporal changes in the radar signals. This method was used
by Narayan and Lakshmi (2008) to downscale space-borne soil moisture
estimates from the Advanced Microwave Scanning Radiometer (AMSR-
E) and Tropical Rainfall Measuring Mission (TRMM) Microwave Imager

Table 2 (continued)

Downscaling
techniques

Approaches References Main inputs Accuracy Improvement over the radiometer
only measurements

Range of
accuracy
parameters

Australia: RMSE=0.063m3m−3,
R2= 0.37a

ΔRMSE=−0.057m3m−3,
ΔR2= 0.27a (on average)
Australia:
ΔRMSE=−0.01m3m−3,
ΔR2= 0.11a (on average)

Jiang et al.
(2017)

• LPRM, JAXA, and
NASA AMSR-E soil
moisture products

• JAXA AMSR2 soil
moisture products

• SMOS CATDS Level 3
soil moisture products

NASA AMSR-E:
RMSE=0.15m3m−3, R2= 0.55a

LPRM AMSR-E:
RMSE=0.12m3m−3, R2= 0.69a

JAXA AMSR-E:
RMSE=0.081m3m−3,
R2= 0.72a

JAXA AMSR2:
RMSE=0.055m3m−3,
R2= 0.86a

Ascending SMOS:
RMSE=0.081m3m−3,
R2= 0.41a

Descending SMOS:
RMSE=0.047m3m−3,
R2= 0.77a

NASA AMSR-E:
ΔRMSE=−0.012m3m−3,
ΔR2= 0.18a

LPRM AMSR-E:
ΔRMSE=−0.001m3m−3,
ΔR2=−0.02a

JAXA AMSR-E:
ΔRMSE=0.037m3m−3,
ΔR2=−0.05a

JAXA AMSR2:
ΔRMSE=0.071m3m−3,
ΔR2= 0.11a

Ascending SMOS:
ΔRMSE=0.01m3m−3,
ΔR2= 0.1a

Descending SMOS:
ΔRMSE=0.004m3m−3,
ΔR2= 0.09a

Note: negative values of both ΔR2 and ΔRMSE means that coarse passive microwave observations have provided better estimates of soil moisture than the downscaled products.
a The R2 (coefficient of determination) has been calculated by squaring values in R (correlation coefficient).
b Indicates studies where their accuracy parameters have been obtained from digitizing the results shown in figure.
c ubRMSE and ubMSE values are not included in the summary and discussion section. They are added to this table for the information of readers.
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(TMI) with backscatter from the Precipitation Radar (PR). This study
demonstrated the applicability of the radar-based downscaling tech-
nique to represent soil moisture spatial variability. Through inter-
comparison between downscaled TMI and AMSR-E, temporal coin-
cidence between radar and radiometer observations was found to exist,
providing credence to this approach; soil moisture products from the
TMI sensor on the same platform as the TRMM-PR radar were much
better enhanced spatially than those from the AMSR-E.

Research on the integration of radar and radiometer observations
for spatially enhanced soil moisture mapping has not been limited to
the physically based approach of Njoku et al. (2002). For example,
Bindlish and Barros (2002) also produced sub-scale brightness tem-
perature prior to soil moisture retrieval by applying a fractal inter-
polation methodology, combining radar and radiometric observations.
In this approach, the ratio between high resolution HH-polarized
backscatter, and aggregated backscatter to the scale of the coarse
brightness temperature observation, was used as a weighting coefficient
to estimate brightness temperature at the same resolution as the
backscatter observations. In a further approach, Zhan et al. (2006)
developed a Bayesian disaggregation method that merges radar and
radiometer observations with an initial background soil moisture field.
In this study, using synthetic data from an Observation System Simu-
lation Experiment (OSSE), the background states of soil moisture were
first derived using direct inversion of coarse brightness temperature.
The uncertainties in the initial soil moisture estimate and the satellite
observations were then used to merge observed and calculated bright-
ness temperature and backscatter from the background soil moisture
using emission and backscatter models, to get an updated soil moisture
field. Wu et al. (2017) subsequently applied this technique to a time
series of experimental aircraft-based radar/radiometer observations
collected during the SMAPEx-3 field campaign (Panciera et al., 2014) in
south-eastern Australia to produce 1, 3 and 9 km resolution soil
moisture maps. Findings from this study revealed that: i) the perfor-
mance of the Bayesian method depended on the accuracy of the radar
model, and that ii) the Bayesian merging technique performed best over
grassland areas with the radar model used in that study.

The development of radar-based downscaling techniques entered a
new phase with the announcement of a dedicated active/passive sa-
tellite for soil moisture, SMAP, in response to the National Research
Council's Decadal Survey. The SMAP satellite was designed to measure
temporally coincident surface emission and backscatter from a radio-
meter/radar using a single large mesh antenna with a conical scan
configuration. The concept of having a radar and radiometer integrated
into a single system was first introduced by Njoku et al. (2000). The
conical scan provides measurements of the Earth's surface at constant
incidence angle and antenna pattern characteristics across the entire
swath. Accordingly, the data processing, interpretation, and geophy-
sical retrieval become simplified. The SMAP mission aimed to combine
the strengths of the respective radar and radiometer observations - high
spatial resolution for the radar and high sensitivity to soil moisture for
the radiometer - to optimally estimate soil moisture content at an in-
termediate resolution.

The change detection method of Piles et al. (2009b) was among the
first alternative techniques to derive active/passive merged products.
Piles et al. (2009b) made use of the linear correlation between back-
scatter and soil moisture content for formulating a disaggregation al-
gorithm which derived relative changes of soil moisture. This approach
produced the spatial variability of soil moisture by updating the
radiometer soil moisture retrieval from the previous observation with
the corresponding temporal changes in high resolution backscatter. The
approach was applied to airborne data from PALS for the SMEX02
campaign, and to an OSSE. The change detection approach revealed
superiority to radiometer only estimations in terms of both the accuracy
and spatial heterogeneity of soil moisture products.

The active/passive optional algorithm developed by Das et al.
(2011) is an extension to the Piles et al. (2009b) change detection

approach. This technique was also developed based on the linear re-
gression between backscatter and volumetric soil moisture. The major
enhancement of the active/passive retrieval method over the change
detection technique was the estimation of an absolute soil moisture.
Being based on the linear relationship between backscatter and passive-
based soil moisture products, the successful application of these tech-
niques depends to a great extent on how well backscatter and soil
moisture are correlated (Wu et al., 2014), and how sensitive they are to
soil moisture changes.

The SMAP active/passive baseline algorithm by Das et al. (2014),
which established a linear regression between backscatter and bright-
ness temperature for estimation of absolute soil moisture at 9 km, was
an extension of the active/passive optional retrieval algorithm devel-
oped by Das et al. (2011). The baseline algorithm downscaled observed
brightness temperature and then performed the soil moisture retrieval,
as opposed to the optional active/passive retrieval algorithm that
downscaled derived soil moisture at coarse resolution as described
above. An important aspect of the baseline algorithm is that it considers
vegetation and surface roughness heterogeneity in time and space when
calibrating the main downscaling factor β [K/dB] as an added value to
the active/passive retrieval algorithm. The processing steps of the
baseline model currently used by the SMAP science team are described
in Fig. 3.

Wu et al. (2016) applied the active/passive optional (Das et al.,
2011), baseline (Das et al., 2014) and change detection (Piles et al.,
2009b) retrieval algorithms to the SMAPEx-3 airborne simulation (Wu
et al., 2015) of the SMAP data stream to test the robustness of alternate
radar-radiometer combination algorithms over a semi-arid region.
Findings of this study revealed that all the alternate algorithms had only
small differences in average Root-Mean-Square-Error (RMSE) and could
effectively increase the spatial resolution of soil moisture retrievals
from 36 to 9 km. However, the active/passive retrieval algorithm by
Das et al. (2011) showed the best correlation with the reference soil
moisture map. Consequently, Wu et al. (2016) recommended applica-
tion of the optional active/passive retrieval algorithm by Das et al.
(2011) for global soil moisture mapping.

Montzka et al. (2016) developed a linear relationship between
radar- and radiometer- only soil moisture estimates for calibrating a
disaggregation algorithm which enhances the spatial resolution of
passive-based soil moisture retrievals. This approach was applied to L-
band radar and radiometer airborne data from the Tereno campaign
(Montzka et al., 2012). Performance of this method was compared
against the active/passive optional (Das et al., 2011) and baseline (Das
et al., 2014) retrieval algorithms. This analysis revealed superiority of
the baseline algorithm in delivering more accurate high resolution soil
moisture to the optional technique and the new combined radar/
radiometer-only soil moisture technique by Montzka et al. (2016).
However, the spatial pattern of retrieved soil moisture from the new
combined radar/radiometer-only soil moisture technique by Montzka
et al. (2016) was reported to be similar to that of the baseline retrievals.

Recently, Rüdiger et al. (2016) downscaled an airborne simulation
of the coarse-scale L-band brightness temperature at 50 km using ESA's
C-band Advanced Synthetic Aperture Radar (ASAR) backscatter ag-
gregated to 2 km. This technique included two changes to the active/
passive optional algorithm: i) calibration of the downscaling factor at
higher resolution than the coarse scale of L-band observations in order
to have an adequate number of regression points for establishing a
linear relationship, ii) the establishment of a linear regression between
the radiometric emissivities and radar backscatter sensitivities instead
of between soil moisture and radar backscatter. The intention of using
backscatter sensitivities and radiometric emissivities was to preserve
the information of vegetation heterogeneity in the downscaling pro-
ducts and to remove the surface temperature impacts, respectively. This
downscaling approach resulted in soil moisture estimates with errors of
0.06 to 0.12m3m−3, which are comparable to other downscaling
techniques.
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Akbar and Moghaddam (2015) proposed a Combined Active-Passive
(CAP) algorithm based on a joint cost function with adaptive regular-
ization by Monte Carlo numerical simulations. To increase the relia-
bility of soil moisture retrievals in terms of accuracy, CAP gave more
weight to radiometric soil moisture but without discarding the com-
plimentary radar-based soil moisture estimates. The novelty of the CAP
model was the merging of the same-scaled and coincident radar and
radiometric soil moisture. This approach was demonstrated using air-
borne PALS and tower Combined Radar Radiometer (ComRad) acqui-
sitions, resulting in soil moisture retrievals with accuracy of
0.038m3m−3 for low noise level measurement scenario.

2.1.2. Radiometer-based downscaling techniques
The downscaling of coarse passive microwave data has not been

limited to the use of backscatter. The use of passive microwave ob-
servations at higher frequencies has also been introduced, with several
systems using the same antenna for multi-frequency measurements;
higher spatial resolutions are available from the higher frequencies.
One such methodology is based on the multi-sensor image fusion
technique known as Smoothing Filter-based Intensity Modulation
(SFIM) by Liu (2000), initially applied for increasing the spatial re-
solution of multi-spectral optical data. The approach was subsequently
applied by Santi (2010) for downscaling brightness temperature ob-
servations from the Advanced Microwave Scanning Radiometer-Earth
Observing System (AMSR-E). Applying the SFIM on pairs of simulta-
neous Ka- and C-band acquisitions from the AMSR-E sensor, Santi
(2010) reported on the SFIM's potential for disaggregating approxi-
mately 50 km resolution C-band (6.9 GHz) brightness temperature to
10 km. Unravelling of spatial variability in soil moisture using this
technique is through heterogeneity captured by the Ka-band (36.5 GHz)
brightness temperature at 10 km resolution in the disaggregation pro-
cedure.

The performance of this method for soil moisture downscaling was
further evaluated by de Jeu et al. (2014) and Parinussa et al. (2014).
While these studies reported on the algorithm success in enhancing the
spatial variability of soil moisture and in capturing dry and wet regions,
their analysis revealed that geophysical accuracy of the high resolution
products remained on the same level as that of coarse AMSR-E soil

moisture products. Their analysis also revealed that rainfall impacts on
the Ka-band observations could diminish the accuracy of downscaled
soil moisture products. Gevaert et al. (2015) recently corrected the Ka-
band observations for precipitation prior to their use in the SFIM
method. This modification involved the application of a precipitation
mask to the Ka-band observations to remove them from the processing.
Disaggregated soil moisture products at 10 km resolution were subse-
quently retrieved from the downscaled brightness temperature (see
Fig. 4).

2.2. Optical-based downscaling techniques

The association of land surface temperature and vegetation para-
meters with soil moisture conditions (Nemani et al., 1993) provides the
basis for optical downscaling. Carlson et al. (1994) and Gillies and
Carlson (1995) developed the universal triangle concept (Fig. 5) which
relates VIS/IR parameters, such as the NDVI and Land Surface Tem-
perature (LST), to the soil moisture status. The sensitivity of surface
temperature change in response to soil moisture is considered to be
different depending upon the surface conditions (e.g. canopy type,
density of vegetation cover). This linkage creates a scatter plot of ve-
getation index - surface temperature in the shape of a triangle (or a
four-sided polygon in the case that wet and dry edges cross beyond the
maximum NDVI value), yielding boundaries of the wet and dry condi-
tions. However, this concept cannot act as a direct methodology for soil
moisture retrieval, due to attenuation of reflected solar radiation from
the soil surface by the opaque overlaying media (e.g. atmosphere and
vegetation), lack of micro-meteorological and atmospheric information,
and the optical observations being affected by clouds.

Several researchers have used the triangle concept as a tool to im-
prove the scale of passive microwave based soil moisture products (e.g.
Merlin et al., 2006, 2008a, 2008b; Piles et al., 2011; Merlin et al., 2012,
2013; Fang et al., 2013), with land surface temperature and vegetation
parameters derived from optical observations at high resolution being
the key factor in the downscaling process. These optical-based down-
scaling techniques combine the strengths of optical and radiometric
observations (i.e. high spatial resolution optical data and high accuracy
passive microwave derived soil moisture). While the high spatial

= + β }

Brightness 
temperature (M)

Brightness 
temperature (C)

- -

VV-polarized 
backsca�er (M) 

HV-polarized 
backsca�er (M) 

+  Г

VV-polarized 
backsca�er (C) 

HV-polarized 
backsca�er (C) 

VV-polarized backsca�er (C)

Br
ig

ht
ne

ss
 te

m
pe

ra
tu

re
 (C

)

β

VV
-p

ol
ar

ize
d 

ba
ck

sc
a�

er
 (M

)

HV-polarized backsca�er (M)

Г

C: Coarse
M: Medium

Fig. 3. Schematic diagram of the SMAP active/passive baseline algorithm (adapted from Dr. Xiaoling Wu personal communication).
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resolution of optical observations provides information on hetero-
geneity of surface features, they have limited application due to being
highly affected by cloud coverage and vegetation.

To calculate soil moisture variations at 1 km resolution, Chauhan
et al. (2003) used optical observations from the Advanced Very High
Resolution Radiometer (AVHRR) to infer spatial variability of surface
features for downscaling coarse soil moisture from the Special Sensor
Microwave Imager (SSM/I), which is not a particularly good frequency
to use, for the Southern Great Plains (SGP-97) campaign. Chauhan et al.
(2003) calibrated a model through which an ensemble of satellite-de-
rived vegetation index, surface albedo and land surface temperature
with soil moisture at the coarse scale of SSM/I, led to reasonable esti-
mates of fine scaled soil moisture in terms of accuracy (0.05 m3m−3).

In this model, which was based on the model by Zhan et al. (2002), a
simple linear average equation was applied to the pixel values of
AVHRR within the passive grid scale. This model was then applied to
high resolution surface feature parameters to retrieve soil moisture
maps at 1 km resolution. The advantage of this approach was its modest
requirement of ancillary data for disaggregation. Later, Choi and Hur
(2012) applied this model to downscale AMSR-E soil moisture products
from 25 to 1 km over a study area in Korea. Disaggregated soil moisture
products in this study were reported to have slightly lower RMSE and
higher correlation of coefficient to ground-based measurements than
those of the coarse AMSR-E soil moisture. This technique was also used
by Zhao and Li (2013a) to downscale AMSR-E soil moisture retrievals
from 25 to 5 km using the METEOSAT Second Generation – Spinning
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Fig. 4. Schematic of the SFIM technique for downscaling coarse passive microwave brightness temperature to yield a medium resolution soil moisture retrieval.
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Enhanced Visible and Infrared Imager (MSG SEVIRI) geostationary sa-
tellite data. The fact that geostationary satellites continuously monitor
the land surface, facilitates capturing of temporal variation of LST
which was correlated to soil moisture instead of an absolute value of
LST in this study. Use of change in LST over time was suggested by
Stisen et al. (2008) as a solution for reducing the mean error in the
thermal information and the impact it had on the accuracy of down-
scaled soil moisture products. The two LST temporal variation para-
meters used in this study were mid-morning temperature rising rate and
maximum temperature time, which are strongly related to soil moisture
(Zhao and Li, 2013b). Retrievals from this downscaling technique re-
vealed no improvement over the AMSR-E soil moisture products when
compared against ground based measurements of soil moisture; how-
ever, they showed better agreement with in situ measurements than the
retrievals from Chauhan et al. (2003) method. Piles et al. (2014) ex-
panded the approach to use the polarimetric multi-angular brightness
temperature observations of SMOS to reflect precipitation impact on
changes in soil moisture. An early version of the Piles et al. (2014)
downscaling scheme was presented in Piles et al. (2011) to downscale
SMOS derived soil moisture maps to 1 km resolution. Piles et al. (2011)
recommended: i) to capitalize the synergy between SMOS and MOD-
erate resolution Imaging Spectro-radiometer (MODIS) observations in-
stead of other optical observations such as the AVHRR and Landsat, and
ii) to average pixel values of MODIS within the SMOS grid scale that
were not masked by clouds. While Piles et al. (2011) suggested the use
of brightness temperature for better estimates of high resolution soil
moisture maps, it was Piles et al. (2012) that added polarimetric and
multi-angular brightness temperature into the model. This adjustment
made the downscaling algorithm more reliable by increasing the tem-
poral correlation and reducing error retrievals from 0.05 to
0.03m3m−3. A schematic of this downscaling model is shown in Fig. 6.
Sánchez-Ruiz et al. (2014) used MODIS Normalized Difference Water
Index (NDWI) at the higher spatial resolution of 500m, rather than the
1 km NDVI in Piles et al. (2014), to derive a better agreement of
downscaled soil moisture with in situ measurements, particularly
during periods of high vegetation activities.

The work of Piles et al. (2014) is capable of downscaling SMOS soil
moisture products from a spatial resolution of 25 km to 1 km. However,
this technique lacks the ability to preserve the temporal resolution of
passive microwave soil moisture data; the temporal resolution of its
retrievals is hampered by the availability of MODIS observations and
their cloudiness. The shortcomings of this model were overcome by
using the MSG SEVIRI optical data in place of MODIS data (Piles et al.,

2016). The Piles et al. (2016) model provided 3 km temporally aver-
aged soil moisture estimates using MSG geostationary satellite ob-
servations, to provide instantaneous soil moisture estimates at time
increments of 15 minutes. The proposed downscaling technique not
only estimated high resolution soil moisture with a similar quality to
SMOS soil moisture, but also minimised the impact of clouds by using
observations throughout the daytime.

Merlin et al. (2005) proposed the use of a physical downscaling
model to derive the spatial variability of the top 0–5 cm soil moisture at
1 km resolution. This model disaggregates the surface soil moisture
according to fine-scale information provided by radiometric surface
temperature and surface coverage condition. Merlin et al. (2006) tested
this algorithm over a semi-arid area and found that the model per-
formed best for high solar radiation and low vegetation density. Merlin
et al. (2008a) then translated space- and time-based anomalies of soil
moisture indices at fine-scale into high resolution soil moisture from
SMOS, by establishing a linear relationship to calibrate a time-invariant
slope at the SMOS scale. Evaporative Fraction (EF; the ratio of evapo-
transpiration to the total energy available at the surface) and Soil
Evaporative Efficiency (SEE; the ratio of actual to potential evapora-
tion), were chosen as the Soil Moisture Indexes (SMIs) for downscaling.
The choice of EF and SEE for soil moisture downscaling was not only
because of their direct dependency on soil moisture dynamics, but also
their constant diurnal characteristic. Both SMIs provided a fine-scale
distribution of soil moisture; however, SEE resulted in more accurate
estimates of 1 km scale soil moisture, due to the higher correlation with
surface soil moisture. The superior performance of this algorithm was
reported for dry-end soil moisture controls and clear sky only condition.
An expansion of this algorithm was presented in Merlin et al. (2008b),
whereby the relationship between SEE and surface soil moisture was
considered to be variable and a function of soil type, wind speed, and
SMOS-scale near-surface soil moisture. Relating the spatially averaged
MODIS thermal observations to 10 km, linearity of the SEE - soil
moisture relationship was improved because sensitivity of coarse
thermal observations to soil moisture was considerably higher. Merlin
et al. (2009) introduced intermediate resolutions, with the range of 3 to
5 km being optimal for soil moisture products in terms of accuracy.
They also suggested a sequential downscaling procedure with the use of
multi-resolution thermal imagery. This procedure improved the spatial
scale of SMOS retrievals from 40 km to 4 km resolution using the ag-
gregated MODIS observations at 4 km, and subsequently used Advanced
Scanning Thermal Emission and Reflection (ASTER) radiometer data to
disaggregate retrievals to 500m soil moisture maps. However,
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application of this sequential downscaling model concept was not re-
commended since combined use of MODIS and ASTER increased un-
certainty of soil moisture retrievals compared to MODIS only dis-
aggregated soil moisture. The low temporal repeat of ASTER
observations was another factor that reduced the functionality of this
approach. Use of the exponential-based SEE model, as opposed to co-
sine-based suggested by Merlin et al. (2010), led to improved spatial
representation of downscaled soil moisture. Developing a Taylor series
of soil moisture with respect to projected SEE was also implemented to
improve accuracy and robustness of the disaggregation model.

Ongoing efforts to improve performance of the SEE-based dis-
aggregation model (Merlin et al., 2008b) led to the emergence of the
Disaggregation based on Physical And Theoretical scale Change (Dis-
PATCh) model by Merlin et al. (2012), in which the use of the universal
trapezoid (Fig. 5) instead of the universal triangle concept was re-
commended for better soil moisture disaggregation. However, the Dis-
PATCh model performance is still related to seasonal and climatic
variations because the strength of the coupling between soil moisture
and surface temperature varies on a seasonal basis. The strength of this
coupling over semi-arid areas during summer resulted in a temporal
correlation of 0.7 when compared to point-measurements. This result is
in stark contrast to the correlation of downscaled soil moisture content
over temperate climate during winter, which had a correlation of zero.
The latest version of the DisPATCh model, including the use of vege-
tation water stress (Moran et al., 1994) and correction for elevation
effects on temperature, was introduced by Merlin et al. (2013). That
study contrasted the DisPATCh model with the linear and non-linear
behaviour of the SEE variable in relation to multi-resolution retrieval of
soil moisture, and revealed preference for the SEE linear behaviour over
non-linear for kilometre resolution. However, the assumption of a
linear relationship between the SEE and soil moisture resulted in poorer
performance at metre resolution. These results also confirmed that at-
mospheric evaporative demand with seasonal variation is the main
factor controlling the quality of the DisPATCh downscaled soil moisture
retrieval. This method is illustrated in Fig. 7 to provide a clear

understanding of how it works.
Using the DisPATCh technique to downscale AMSR-E and SMOS

over the Murrumbidgee catchment in Australia, Malbéteau et al. (2016)
reported that downscaled soil moisture could provide opportunities for
reducing the negative impact of scale mismatch on validation of sa-
tellite soil moisture applications. Malbéteau et al. (2016) also showed
that DisPATCh was efficient in increasing the correlation coefficient of
satellite soil moisture retrievals, especially in semi-arid regions. For
example, in the semi-arid region of Yanco, the correlation coefficient of
SMOS for afternoon overpasses increased from 0.37 to 0.63 after dis-
aggregation. Djamai et al. (2016) proposed combining DisPATCh de-
rived soil moisture with the Canadian LAnd Surface Scheme (CLASS)
simulations of soil moisture in order to estimate a continuous time
series of 1 km soil moisture maps for cloudy and cloud-free days. In that
study, the DisPATCh derived soil moisture was compared with the
CLASS soil moisture simulation for cloud-free days to develop a robust
slope correction function. Results from the application of this calibra-
tion function - assumed to be valid under cloudy sky - indicated the
potential of a DisPATCh/CLASS combination for soil moisture retrieval
under cloudy skies.

The soil evaporative efficiency has also been utilized in a different
approach by Fang and Lakshmi (2014a), for downscaling AMSR-E soil
moisture. In the first step of their soil moisture downscaling procedure,
North American Land Data Assimilation System (NLDAS)-derived soil
temperature was disaggregated to 1 km resolution using the MODIS LST
and fractional vegetation cover. From the disaggregated NLDAS soil
temperature, SEE was estimated using the model of Merlin et al. (2010).
The 1 km SEE estimates were then converted to soil moisture maps at
1 km resolution using models developed by Noilhan and Planton (1989)
and Lee and Pielke (1992). The difference between the AMSR-E derived
soil moisture and up-scaled 1 km soil moisture to the resolution of
AMSR-E were then added to each 1 km soil moisture pixel to estimate
high resolution soil moisture.

Instead of the SEE, which was used in the physical-based down-
scaling technique by Merlin et al. (2010, 2012), Chen et al. (2017) used
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the Normalized Soil Moisture Index (NSMI) as a variance indicator of
soil moisture in space. The dimensionless NSMI with resolution of
250m was derived using the MODIS NIR and red-band land surface
reflectance products. This downscaling technique, named Near In-
fraRed-Red (NIR-Red) Spectral-based Disaggregation (NRSD), was de-
veloped using a semi-physical relationship which related the NIR-Red
triangle space (Huete et al., 1985; Richardson and Wiegand, 1977) to
the soil moisture status. The NRSD technique was formalized to
downscale 36 km SMAP radiometer-derived soil moisture to 250m
using the first-order Taylor series (Merlin et al., 2012) through which
the SMAP soil moisture was corrected with respect to the converted
variance of the NSMI to soil moisture. Accuracy, spatial resolution, and
application scope of downscaled soil moisture products from the NRSD
were reported to outperform the retrievals from DisPATCh.

The contribution of SWI as a weighting factor to disaggregate coarse
AMSR-E surface soil moisture products was evaluated by Kim and
Hogue (2012). The coarse C-band AMSR-E observations were multi-
plied by the ratio of the MODIS-scaled SWI to the mean of MODIS-based
SWI over the AMSR-E footprints. To estimate SWI, the algorithm ap-
plied the Jiang and Islam (2003) model to MODIS temperature and
Enhanced Vegetation Index (EVI) products. The selection of EVI over
NDVI was intended to minimise the soil background interference in the
vegetation index. The performance of this algorithm resulted in a better
approximation of soil moisture than that of the coarse AMSR-E soil
moisture over a semi-arid region in the San Pedro River basin. In ad-
dition, the model showed better performance than the triangle-based
downscaling techniques developed by Chauhan et al. (2003) and
Carlson et al. (1994). However, the correlation of estimates from the
Kim and Hogue (2012) approach with in situ soil moisture measure-
ments was at lower level than products from the physical based model
of Merlin et al. (2008b, and 2009).

By combining LST retrieval from passive microwave brightness
temperature algorithm (McFarland et al., 1990) with an empirical re-
lationship (Choudhury et al., 1987; Meesters et al., 2005; Mao et al.,
2012) between the Microwave Polarization Difference Index (MDPI,
Pampaloni and Paloscia, 1985) and NDVI, Song et al. (2014) developed
a downscaling method which involved brightness temperature down-
scaling prior to soil moisture retrieval. This model was applied to the
AMSR-E Ku-band observations available at 25 km to derive soil
moisture maps at 1 km over the Maque monitoring network in China.
Retrievals from this downscaling technique had a similar temporal
trend to the in situ measurements with RMSE less than 0.12m3m−3.
This technique was suggested to have better performance over bare and
sparsely vegetated soil surfaces where the soil has dry or moderately
wet condition.

Hemakumara et al. (2004) and Peng et al. (2016) found that the
Vegetation Temperature Condition Index (VTCI; Wan et al., 2004) had a
positive correlation with soil moisture, and so developed a VTCI-based
downscaling algorithm similar to Kim and Hogue (2012). Downscaled
soil moisture from the VTCI-based algorithm showed spatially con-
sistent agreement with in situ measurements and land cover, while
maintaining the accuracy of coarse soil moisture products. To increase
the operational efficiency of this approach, Peng et al. (2015) examined
how the VTCI-based algorithm performed when the index is retrieved
from a geostationary optical sensor such as the MSG SEVIRI. The cap-
ability of geostationary sensors to capture optical acquisitions at shorter
time intervals increases the chance of providing more cloud-free ob-
servations, thus leading to a greater continuity of downscaled soil
moisture. However, it comes with a sacrifice on spatial resolution be-
cause the current geostationary optical observations are only available
at the scale of 3 to 5 km. A new VI-based downscaling technique was
recently developed by Kim et al. (2017), which established a linear
relationship between NDVI and temporally averaged coarse passive
microwave derived soil moisture data. For developing this downscaling
model, Kim et al. (2017) used the ESA CCI merged active-passive soil
moisture data available at 25 km together with aggregated 1 km MODIS

NDVI 16-day composite to 25 km. Validation results showed that NDVI
can replace the required LST information for disaggregation when the
LST product is not available or comes with a poor-quality due to cloud
coverage. Therefore, use of the NDVI composite allows to downscale
soil moisture without the cost of losing the temporal variability of
coarse soil moisture due to lack of NDVI information under cloudy
skies.

Wang et al. (2016) swapped the SWI downscaling parameter in the
Kim and Hogue (2012) model for Temperature Vegetation Drought
Index (TVDI, Sandholt et al., 2002) to downscale long time series of
passive microwave observations of soil moisture produced by Dorigo
et al. (2012). The TVDI is a dryness index which was derived from
MODIS LST and NDVI products (Patel et al., 2009). Compared with
retrievals from the triangle based downscaling model by Carlson et al.
(1994), the physical model by Merlin et al. (2009, 2010), and the Kim
and Hogue (2012) model, TVDI-based downscaling retrievals showed
superiority in terms of both accuracy and consistency of temporal
variability with field measurements.

Another soil moisture disaggregation method is based on the
thermal inertia principle, which correlated changes of soil temperature
to changes of soil moisture as well as heat capacity (Mallick et al.,
2009). This technique produced absolute volumetric soil moisture at
1 km resolution by converting Soil Wetness Index (SWI) to soil moisture
using prior knowledge on total water capacity and minimum soil
moisture content based on soil type. Compared with a dry soil, water
has a greater heat capacity and thus a greater resistance to temperature
change. The presence of higher moisture content in the soil, therefore,
leads to lower thermal conductivity, with wet soil having a lower day-
night temperature difference than for dry soil. However, it is easier to
apply this linear relationship between soil moisture and diurnal change
of surface temperature to bare soil conditions (Maltese et al., 2013).
When the vegetation layer masks the soil surface, canopies interfere
with fluctuations of soil moisture through water uptake.

Thermal inertia is also the basic concept behind the physically based
optical-passive combination technique developed by Fang et al. (2013).
Relating a time series of daily averaged soil moisture estimates to
diurnal changes of soil temperature, derived from NLDAS land surface
modelling, Fang et al. (2013) calibrated a model for soil moisture
downscaling. Calibration lines were fitted on a monthly basis to reduce
the impact of varied vegetation biomass on retrievals. Increments of 0.3
in NDVI values were used for further modulation of the surface tem-
perature and soil moisture relationship. Using this model, AMSR-E
based soil moisture retrievals at 1 km were derived and corrected by
applying the differences between the original coarse AMSR-E soil
moisture products and high resolution retrievals within the AMSR-E
grid scale. Fang and Lakshmi (2014b) adjusted the temperature dif-
ference between passive microwave and optical sensors (SMOS and
MODIS, respectively), caused by different overpass time, to achieve
better performance of this algorithm. For this purpose, a polynomial
regression was fitted to diurnal changes of hourly NLDAS surface
temperature and their corresponding time. The model was used to es-
timate surface temperature at MODIS and SMOS overpass time at
NLDAS spatial scale to calculate temperature difference between them.
MODIS LST was then adjusted by adding this temperature difference to
MODIS LST pixels within each NLDAS pixel.

2.3. Soil surface attributes-based downscaling techniques

The soil moisture state is determined by precipitation, but it also
reflects space-time scaling behaviour in response to soil surface attri-
butes and structure such as topography and soil properties (e.g. soil
texture, and vegetation cover) (Kim and Barros, 2002b). Consequently,
such information has been used in several disaggregation schemes (e.g.
Kim and Barros, 2002a; Pellenq et al., 2003) to determine the spatial
distribution of soil moisture. Topography provides information about
soil water dynamics controlling soil moisture distribution, while soil
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properties provide information about soil water storage capacity and
possible rates of change. However, the limited access to data on these
properties at global scale imposes a limitation on the development of
these downscaling techniques for global application.

Findings by Kim and Barros (2002b) supported the idea that the
fractal interpolation method proposed by Kim and Barros (2002a),
which used topography, soil texture and vegetation cover, could be an
effective downscaling method. An Empirical Orthogonal Function
(EOF) analysis to assess the impact of ancillary data sets on down-
scaling results showed a close association of soil moisture variability
with soil hydraulic conductivity. However, topography and vegetation
cover were dominant in downscaling results during wet periods and
persistence of dry-down, respectively. Through the coupling of a ra-
diative transfer model to a hydrological model, Pellenq et al. (2003)
developed a downscaling methodology that captured disaggregated soil
moisture patterns as a function of topographic index and soil depth.
Using the infiltration and evaporation concept, the soil moisture profile
was simulated by a radiative transfer model and subsequently coupled
with a hydrological model to explain how soil moisture behaviour in
space is affected by the topography and soil depth. The estimation of
soil moisture patterns based on this approach was in general satisfac-
tory, but it revealed a weak point-scale correlation between simulations
and observations.

Wilson et al. (2005) implicitly developed a topographic attribute-
based downscaling technique for soil moisture estimation at 10 to 40m
from a spatially averaged ground based soil moisture. Using historic
high resolution soil moisture measurement data, Wilson et al. (2005)
first developed an empirical relationship between an ensemble of soil
moisture, topographic attributes (such as elevation, specific con-
tributing area, slope, wetness index, potential solar radiation index,
lowness index, and a multiresolution valley bottom flatness index), and
the residuals patterns. Second, the topographic attributes and residuals
were weighted based on the averaged soil moisture to map high re-
solution soil moisture for each day. However, such relationships were
site specific.

Similarly, Perry and Niemann (2007) used the EOF analysis to de-
compose the priori high resolution soil moisture maps into spatial
patterns of EOF covariation, time series of expansion coefficients (ECs)
and the spatial-average soil moisture. Due to the existence of a strong
relationship between ECs and spatial-average soil moisture, ECs were
estimated from the spatial average soil moisture. A combination of
spatial-average soil moisture, ECs, and time-invariant EOFs was used to
downscale soil moisture. Busch et al. (2012) further developed the
Perry and Niemann (2007) EOF-based downscaling technique such that
it did not require priori information about the high resolution soil
moisture. Busch et al. (2012) deployed high resolution topographic
attributes from a DEM as the only source of information to estimate the
EOF because findings by Perry and Niemann (2008) showed that EOFs
were strongly related to topographic attributes. Such a relationship was
constructed and applied to catchments, revealing that the relationships
were site specific.

An Equilibrium Moisture from Topography (EMT; Coleman and
Niemann, 2013) model, which is based on a conceptual water balance
of the hydrologically active soil layer, is another downscaling technique
using topographic indices for spatial resolution enhancement of soil
moisture retrieval. This model performance outweighed the EOF
method and required only a few soil moisture observations for cali-
bration (Werbylo and Niemann, 2014). Vegetation and soil parameters
were included in the EMT model for downscaling temporal soil
moisture patterns over the Tarrawarra catchment; however, the fine
resolution variations of these properties were not taken into account.
Ranney et al. (2015) improved the performance of the EMT down-
scaling technique by including information about the spatial variation
in vegetation and soil characteristics, and named it the Equilibrium
Moisture from Topography, Vegetation, and Soil (EMT+VS). Vegeta-
tion data were found to be a valuable source of information for soil

moisture downscaling. However, fine spatial scale soil data were able to
further enhance the performance of EMT+VS downscaling technique.
While this model showed good performance for a catchment with a
topographic relief of less than 125m, there is no evidence of its per-
formance over regions with larger ranges of elevation. Large relief,
which has impacts on spectral variation of precipitation (e.g. Cowley
et al., 2017; Lloyd, 2005; Kyriakidis et al., 2001) and potential eva-
potranspiration (PET, e.g. Cowley et al., 2017; Shi et al., 2014a;
Vanderlinden et al., 2008; Shevenell, 1999) will also control the spatial
patterns of soil moisture (Cowley et al., 2017). Accordingly, Cowley
et al. (2017) added temporal average PET and precipitation down-
scaling methods to the Ranney et al. (2015) ETMmodel, in order to take
the spatial patterns of both variables into account for enhancing the
coarse soil moisture downscaling. In the process of developing pre-
cipitation downscaling techniques the spatial heterogeneity of pre-
cipitation was assumed to be linearly related to topographic elevation
(e.g. Castro et al., 2014) and topographic orientation (e.g. Franke et al.,
2008). An interaction between precipitation, topographic elevation and
topographic orientation was also assumed (Hanson, 1982). The PET
downscaling method was based on a linear relationship between PET
and air temperature (Blaney and Criddle, 1950) which decreases with
altitude. Downscaling of PET, which has a predictable temporal pattern,
showed more improvement in soil moisture estimates than precipitation
downscaling did.

Values of fine scale parameters used in previous versions of the
EMT+VS model were the same for all fine pixels lying within the
coarse grid cell of soil moisture. Hoehn et al. (2017) used the shifting
window to calculate fine scale parameters that vary over the coarse
footprint of soil moisture to take development of the EMT+VS model a
step further. The shifting window that provided the spatially varied fine
scale parameters had the spatial scale of the coarse soil moisture and
was centred on each fine grid cell to be calculated. The shifting window
method estimated accurate fine resolution soil moisture for a situation
where the generated errors of coarse soil moisture from a normal dis-
tribution had a standard deviation of 0.01m3m−3 or larger. Otherwise,
the accuracy of soil moisture estimates from the original EMT+VS
model – based on a fixed window method that applied the same value
for all the fine pixels lying within the coarse grid – was higher than that
of soil moisture estimates from the shifting window procedure. Unlike
the fixed window procedure, the shifting window could not maintain
the value of coarse soil moisture in its original state.

Using the temporally dynamic Topography-based Wetness Index
(TWI), Temimi et al. (2010) developed a new topography-based soil
wetness downscaling solution. This study included, for the first time, a
vegetation index at VIS wavelength (the MODIS Leaf Area Index pro-
duct) in the TWI retrieval model, to capture its variation in time. This
technique downscaled the soil wetness index derived from the AMSR-E
37-GHz observations having the greatest sensitivity to soil moisture
changes (Temimi et al., 2007) to help improve estimation of the soil
moisture spatial distribution. Temimi et al. (2010) used TWI as a wet-
ness potential index to spatially disaggregate the soil wetness index and
demonstrated that dynamic TWI is an effective index to increase the soil
wetness correlation to precipitation occurrence by 0.3, on average.

In studies by Ines et al. (2013) and Shin and Mohanty (2013), sub-
pixel variation of remotely sensed soil moisture was estimated using the
heterogeneity of soil texture and vegetation cover. The algorithm pre-
sented by Shin and Mohanty (2013) was inspired by the combined si-
mulation-optimization approach of Ines et al. (2013), which down-
scaled remotely sensed soil moisture products using effective soil
hydraulic properties (e.g. saturated soil moisture, saturated hydraulic
conductivity, tortuosity in the soil) at subpixel scale, and fraction of
soil/vegetation. The Shin and Mohanty (2013) inversion model pro-
duced soil moisture with satisfactory quality under various hydrologic
and climate conditions using a genetic algorithm, which minimized the
difference between observed and simulated soil moisture and evapo-
transpiration. For example, correlation coefficients of subpixel soil
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moisture to in situ measurements and mean bias error were reported to
vary between 0.343 and 0.845, and −0.165 to −0.122m3m−3 for a
silty loam soil covered by winter wheat and short native grass, re-
spectively. While Ines et al. (2013) used soil characteristics and soil-
vegetation fraction without assigning their location within a pixel, Shin
and Mohanty (2013) specified the location of soil characteristics and
vegetation cover. Shin and Mohanty (2013) also scaled evapo-
transpiration maps to infer soil moisture distribution, given that a
strong correlation exists between evapotranspiration and soil moisture.
While retrievals from this approach matched well with the in situ truth
soil moisture content, qualified input data on the environmental factors
(e.g. weather forcing, soil texture, and vegetation) were required under
appropriate weather conditions to achieve such a performance.

2.4. Model/Data-based downscaling techniques

The downscaling of coarse resolution soil moisture observations has
not been limited to the use of remote sensing data and/or soil surface
attributes. Model predictions have also been used in model/data-based
disaggregation schemes to spatially enhance soil moisture observations.
These techniques, namely data assimilation- and machine learning-
based, have no limitations related to the need for concurrent satellite
overpasses or lost data due to cloud coverage. Descriptions of these
techniques are briefly provided in the data assimilation- and machine
learning-based sections below.

2.4.1. Data assimilation-based downscaling techniques
Data assimilation has been used to improve profile soil moisture

estimates (e.g. Walker et al., 2001; De Lannoy and Reichle, 2016b) from
surface soil moisture observations. Moreover, the physically based hy-
drological models at the heart of data assimilation have been used to
predict the spatial distribution of soil moisture at high resolution
(Reichle et al., 2001). A four-dimensional (spatial update using multi-
temporal observations) data assimilation, which can combine noisy
high resolution model predictions with accurate low resolution ob-
servations, was first introduced by Reichle et al. (2001) as a quasi
downscaling technique to overcome limitations in deriving fine-scaled
information on soil moisture from passive microwave observations.
Downscaling techniques based on the data assimilation concept are
distinguished from other approaches by accounting for both model and
satellite measurement uncertainties and their independence to either
sources of information. Moreover, the philosophy behind this method is
to use spatially coarse soil moisture observations to constrain a high
resolution dynamic model. The RMSE of downscaled soil moisture
products from the assimilation-based downscaling techniques is re-
ported to be ~0.06m3m−3 on average (see Table 2), which does not
meet the accuracy requirement of soil moisture missions.

Draper et al. (2009) focused on AMSR-E C-band soil moisture as-
similation into the Interactions between Surface, Biosphere, and At-
mosphere (ISBA) model, which was the land surface scheme in Météo-
France's Aire Limitée Adaptation Dynamique développement InterNa-
tional (ALADIN) Numerical Weather Prediction (NWP) model. This
model has an irregular spatial resolution, but its estimates were avail-
able at 9.5 km over most of European regions where this study was
conducted. This two-dimensional (spatial update for a single soil layer)
Simplified Ensemble Kalman Filter (SEKF) developed by Mahfouf et al.
(2009) and Balsamo et al. (2004), yielded modelled high resolution
surface soil moisture at ~9 km and with RMSE values larger than
0.09m3m−3.

Sahoo et al. (2013) disaggregated the 25 km gridded AMSR-E soil
moisture products through assimilation into the 1 km resolution NOAH
land surface model using a three-dimensional ensemble Kalman filter.
Increasing the spatial correlation from 0.7 on average to 0.77, the ap-
proach resulted in well matched surface soil moisture retrievals to the
in situ data, including also lower RMSE values. Similar to the Ensemble
Bias corrected Kalman Filter-2 (EnBKF-2) in De Lannoy et al. (2007),

coarse satellite observations were rescaled to the model climatology
prior to the assimilation. The RMSE of downscaled soil moisture
without bias correction prior to data assimilation was reported to be in
the range of 0.08 to 0.17m3m−3, while with the bias correction was
between 0.01 and 0.09m3m−3.

As an extension to data assimilation systems that apply bias cor-
rection as a common practice, Kornelsen et al. (2015) developed a bias
correction technique for soil moisture downscaling. In developing this
downscaling procedure, precipitation and evapotranspiration were ac-
knowledged as a derivative of soil moisture changes. The assumption of
uniform precipitation over a radiometer scale was also made without
making the distribution of soil moisture uniform in that scale. Having
verified the temporal stability of brightness temperature and soil
moisture, a simple mean-variance matching approach – a bias correc-
tion procedure – was applied to the simulated soil moisture over the
SGP97's experimental watersheds. The analysis revealed the de-
pendency of successful application of the bias correction technique to
availability of priori information about the land surface conditions.

SMOS soil moisture products were also assimilated into the Variable
Infiltration Capacity (VIC, Liang et al., 1994, 1996, 1999) by Lievens
et al. (2015) to improve the accuracy and spatial resolution of SMOS
soil moisture estimates from 25 to 12.5 km. This three-dimensional
Ensemble Bias corrected Kalman Filter resulted in reduction of the
RMSE of the simulated soil moisture from 0.058m3m−3 to
0.046m3m−3 and increase of the correlation from 0.56 to 0.71.

Being aware that assimilation can improve the surface soil moisture
estimates at sub-seasonal time frame, Draper and Reichle (2015) as-
similated a long record of AMSR-E X-band soil moisture at 25 km into
the NASA's Catchment Land Surface Model (Koster et al., 2000), which
was run on the 9 km EASE grid for North America. A one-dimensional
bias-blind ensemble Kalman filter was used in this assimilation proce-
dure by applying the coarse scale observations onto the higher resolu-
tion underlying model grid. Results from this study showed that for four
test sites, assimilating a long record of soil moisture not only improved
the ability of the model to represent long-term events such as droughts,
but also increased the spatial skill of the model.

Since 2015, SMAP has provided a Level 4 soil moisture product,
which has surface and root-zone soil moisture values at 9 km. The
Goddard Earth Observing System version 5 (GEOS-5) Land Data
Assimilation System (LDAS, Reichle et al., 2014; De Lannoy and
Reichle, 2016a, 2016b), which is a three-dimensional EnKF based as-
similation technique, assimilates the SMAP 36 km brightness tempera-
ture (from L1C_TB; Chan et al., 2016) into the NASA GEOS-5 Catchment
Land Surface Model (Koster et al., 2000) for soil moisture estimation.
The overall unbiased RMSE (ubRMSE) of the SMAP L4 surface soil
moisture was reported by Reichle et al. (2017) to be 0.037m3m−3,
which meets the SMAP mission accuracy requirements. Results from
this study are not included in the summary section, because they are not
consistent with the other studies which reported regular RMSE values.
Using this technique, Lievens et al. (2017) assimilated Sentinel-1
(Geudtner and Torres, 2012; Geudtner, 2012; Torres et al., 2012) C-
band backscatter simultaneously with SMAP 36 km L-band brightness
temperature to enhance the accuracy of soil moisture estimates. The
complementary assimilation of radar backscatter and radiometer
brightness temperature improved the performance, resulting in better
surface soil moisture estimation than when only radiometer observa-
tions were assimilated.

2.4.2. Machine learning-based downscaling techniques
The machine learning approach seeks to learn the relationship be-

tween the soil moisture and available information on surface para-
meters without requiring continuous data. This makes it a useful tool
for integrating different sources of information about soil moisture
(Notarnicola et al., 2008). Consequently, the way that artificial in-
telligence deals with noisy data from dynamic and non-linear systems
(Remesan et al., 2009) makes it a potential technique to improve the
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scale of soil moisture (Chai et al., 2009). Through a comprehensive
analysis, Srivastava et al. (2013) demonstrated the feasibility of using
the machine learning technique as a downscaling tool. The aim of this
study was to derive a high spatial resolution soil moisture from SMOS
using MODIS land surface temperature in a more functional way than
optical-based downscaling, which its application is hampered by the
sensitivity of optical observations to clouds. They evaluated the per-
formance of a variety of artificial intelligence techniques, including
Artificial Neural Network (ANN), Support Vector Machine (SVM), and
Relevance Vector Machine (RVM). Among these techniques, the ANN
showed considerable potential for deriving accurate soil moisture at
higher resolution, especially when applied to data sets divided based on
growing and non-growing seasons.

Earlier, Chai et al. (2011) had also used the ANN model to down-
scale air-borne passive microwave observations from the National
Airborne Field Experiment held in Australia in 2005 (NAFE’05). Basing
their ANN model on the linear downscaling algorithm (Merlin et al.,
2008b), they acquired soil moisture retrievals with a root mean square
error of 0.018 to 0.035m3m−3. This accuracy, together with the fact
that the approach does not rely on a large number of input data, was
reported by Chai et al. (2011) to be the main advantages of the ANN
model. Chai and Goh (2013) continued to explore the ANN perfor-
mance for soil moisture disaggregation within an ensemble scheme. The
ensemble scheme was recommended to reduce estimation errors
through the combination of results from multiple neural network
models. This finding concurred with the Hansen and Salamon (1990)
suggestion that optimization of neural network models is possible by
ensemble scheme.

Based on a machine learning approach called the Self-Regularize
Regressive Models (SRRMs), Chakrabarti et al. (2016) has delivered
high resolution soil moisture maps at 1 km resolution with an RMSE of
less than 0.02m3m−3. Utilizing a regularized clustering and kernel
regression, the SRRM technique was capable of deriving the desired
variables for all pixels covering the study area. This technique was re-
ported to be efficient in terms of computational time, number of re-
quired samples for training, and accuracy when compared to the earlier
machine learning technique developed by Chakrabarti et al. (2015). It
used a Bayesian transformation process which related the high resolu-
tion auxiliary information to coarse soil moisture through a probabil-
istic relationship on the basis of the Principle of Relevant Information
(PRI). Both SRRM and PRI techniques were developed and tested with
the use of multiscale synthetic data from a coupled Land Surface Pro-
cess-Decision Support System for Agrotechnology Transfer (LSP-
DSSAT) model.

Park et al. (2015) enhanced the spatial resolution of AMSR2 soil
moisture products, retrieved using the VUA-NASA algorithm (Owe and
Van De Griend, 2001; Owe et al., 2008), from 25 km to 1 km using
MODIS optical products in two different machine learning techniques:
i) random forest and ii) ordinary least squares. Both approaches asso-
ciated evapotranspiration and multiplication of LST and NDVI
(LST×NDVI) in their process for soil moisture estimation. The random
forest approach, which had flexibility in randomization and adopted an
ensemble approach, outperformed this technique over the other ma-
chine learning approach. Similar to this study, Im et al. (2016) in-
vestigated the spatial downscaling of AMSR-E soil moisture data from
25 km to 1 km using MODIS 1 km products, including land surface
temperature, surface albedo, NDVI, EVI, Leaf Area Index, and evapo-
transpiration. The intention of this study was to evaluate the perfor-
mance of three different machine learning-based downscaling ap-
proaches including random forest, boosted regression trees, and Cubist
approaches over two regions (South Korea and Australia). Among these
techniques, the random forest showed superiority to the other techni-
ques, yielding a higher correlation coefficient (0.71 and 0.84 for South
Korea and Australia, respectively) of 1 km soil moisture with in situ
measurements than that of the original AMSR-E soil moisture products.

The effective simulation of the nonlinear relationship between soil

moisture and LST/VI by Back-Propagation Neural Network (BPNN)
motivated Jiang et al. (2017) to use it as a tool to improve the scale of
coarse passive microwave soil moisture products. Assuming that the
relationship between soil moisture and LST/VIs was scale-invariant, the
BPNN was trained by taking different combinations of coarsely ag-
gregated MODIS LST and VIs, including NDVI, EVI, and NDWI as the
input, and the coarse soil moisture retrievals from AMSR-E, AMSR2,
and SMOS as the output. The best trained BPNN model was then ap-
plied to the inputs at the MODIS scale to estimate fine scaled soil
moisture. Optimal downscaled products, which showed significant
correlation larger than 0.6 with in situ soil moisture data from the
central Tibetan Plateau Soil Moisture/Temperature Monitoring Net-
work (SMTMN), were achieved when the BPNN was trained using the
combination of LST and EVI.

3. Discussion

This paper seeks to provide a critical review of the available soil
moisture downscaling methods, including an evaluation of the
strengths and weaknesses of their strategies as well as existing chal-
lenges in soil moisture downscaling. As presented, several downscaling
methods exist for combining accurate passive microwave observations
with high spatial resolution information on soil surface features which
include vegetation coverage, soil surface attributes, soil temperature,
etc. to derive high spatial resolution soil moisture. Some of the tech-
niques are able to retrieve soil moisture estimates at an accuracy of
0.04m3m−3, which is the soil moisture accuracy requirement – in the
top 5 cm of the soil for vegetation water content ≤5 kg.m−2 – sug-
gested by the SMAP science team for a wide range of applications
(Entekhabi et al., 2008a).

Existing downscaling approaches are reported to have a range of
accuracy under differing weather and climate conditions. A rigorous
inter-comparison of different downscaling methods would be beneficial
to clarify advantages and disadvantages of each downscaling method.
However, until now there has been no study to thoroughly compare the
various downscaling techniques for a specific set of conditions. Fig. 8
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presents a summary of Table 2 in order to give a concise overview of the
performance of each downscaling technique in terms of reported ac-
curacy. The performance variation of individual approaches may lie in
the disparate characteristics of the data and field sites utilized for the
soil moisture disaggregation evaluation. However, study domains and
seasons are not distinguished in this study, as downscaling techniques
should be applicable for a wide range of surface and climate conditions
if they are to be applied operationally. Moreover, there is a wide var-
iation between approaches, with each having its own advantages and
limitations, and conditions where it works best. For example, the radar-
radiometer microwave combination could be the most promising and/
or robust technique to retrieve soil moisture values under homogeneous
roughness and low vegetation density conditions as it is unaffected by
meteorology, but the lack of concurrent radar and radiometer ob-
servations at the same frequency and platform currently limits its ap-
plication.

The radar-based downscaling techniques have been shown to out-
perform the optical-based techniques (see Fig. 8), in terms of RMSE
(0.04 m3m−3 vs. 0.072m3m−3 on average for radar- and optical-based
downscaling techniques, respectively), due to the greater sensitivity of
microwave observations to soil moisture dynamics under all-weather
conditions. However, the trade-off between wavelength and temporal
coverage of currently available radar imagery, and the impact of clouds
on optical observations require consideration when evaluating their
effectiveness in estimating accurate soil moisture from coarse passive
microwave observations. The use of geostationary based optical sensors
could alleviate some of the meteorological limitations of typical polar
orbiting sensors due to high frequency optical acquisitions (0–30 min-
utes), increasing the chance of obtaining cloud-free observations
(Zhang et al., 2014; Piles et al., 2016). However, it comes at the cost of
estimating soil moisture at the lower spatial scale of the geostationary
based optical sensors (being on order of 3 to 5 km) than typical polar
orbiting sensors (being on order of 1 km resolution).

Radiometric emissions at higher microwave frequencies (i.e. Ka-
band) can penetrate through non-raining clouds similar to radar ob-
servations. Their advantage over the backscatter method is the avail-
ability at regular repeat coverage and reduced impact of surface
roughness. These characteristics make them a potentially more reliable
source of information on surface spatial heterogeneity for mapping
variability of soil moisture compared with optical and radar observa-
tions. However, the radiometer-based downscaling technique has so far
been found to result in less accurate soil moisture products than the
radar-based technique. While the radiometer-based technique has
shown similar performance to the optical-based downscaling techni-
ques (Fig. 8), optical observations have the advantage of producing
disaggregated soil moisture at finer resolution (1 km) than currently
available Ka-band passive microwave observations (10 km) when there
is no cloud coverage. The superiority of radiometer-based to optical-
based downscaling lies in the applicability of the radiometer-based
technique under all weather and climate conditions, unlike the optical-
based techniques that are more applicable to areas where there is no
such limitation (Garcia et al., 2014). Using a bigger antenna for scan-
ning brightness temperature at Ka-band, or developing methods to re-
sample the Ka-band observations to resolutions finer than 10 km while
preserving the accuracy of medium scaled Ka-band brightness tem-
perature observations, could be potential solutions to overcome this
drawback and make the radiometer-based techniques operational.

Providing that spatially detailed information on soil surface attri-
butes and a universal relationship was available at the global scale, the
soil surface attributes-based downscaling technique could be a suitable
alternative to the radar-based technique for disaggregation of soil
moisture. This technique owes its performance to the information about
soil water dynamics and soil water storage capacity, which are re-
presented in the soil moisture downscaling process through the use of
topography and soil properties, respectively. As shown in Fig. 8, soil
surface attributes-based downscaling technique is a more accurate

technique in terms of RMSE than either the radiometer- or optical-based
techniques, with an averaged accuracy of 0.028m3m−3.

Use of high resolution land surface models together with data as-
similation and/or machine learning could provide a more robust
downscaling approach, as there are no limitations related to the need
for concurrent satellite overpasses, or lost data due to cloud coverage.
Moreover, the advantages of a data assimilation-based downscaling
technique may outweigh the machine learning-based technique because
dynamically varying uncertainties of both the model predicted and
satellite observed soil moisture, and the temporal interpolation of
coarse soil moisture retrievals, are implicitly included. Data assimila-
tion has the additional advantage of providing root zone soil moisture
content. However, based on the available literature the machine
learning technique (with RMSE of 0.056m3m−3 on average) seems not
only to be superior to the data assimilation-based technique but also
superior to the other currently available downscaling techniques, apart
from radar-based techniques in terms of RMSE. The performance of the
machine learning technique also appears to be superior to other
downscaling techniques in terms of correlation between the downscaled
and in situ soil moisture. However, further testing and research are
required to increase the computational efficiency of this technique and
to overcome its global training requirements before it could be con-
sidered for use operationally.

In addition to the further development requirements of the above-
mentioned, there are several unresolved challenges facing soil moisture
downscaling that need to be addressed. In order to meet the spatial
resolution requirement of agricultural production and efficient man-
agement of water resources, there is a need to improve the spatial scale
of downscaled products to higher than 1 km (Fig. 1). This highlights the
need for high resolution ancillary data which usually dictates the spa-
tial scale of downscaled products. These ancillary data should not only
be at a high spatial resolution, but should also be precise in order to
assure an accurate disaggregation of soil moisture.

Reduction of uncertainty in the coarse passive soil moisture re-
trieval process is another key factor for downscaled soil moisture im-
provement. The radiative transfer models used for soil moisture re-
trieval from passive microwave remote sensing has reached a mature
level (Das et al., 2011). However, the variation of ancillary parameters
(e.g. vegetation properties, surface roughness and scattering albedo) in
space and time make the model parameterization and retrievals un-
certain. Evaluation of the radiative transfer model across a wide range
of climate and land surface conditions may assist in quantifying and
clarifying such uncertainties.

For satisfactory application of high resolution soil moisture in
agriculture and water resources management, continuous time series of
soil moisture are required at temporal frequencies better than 3 days.
The development of downscaling techniques that are applicable to
multi-satellite coarse soil moisture data could potentially be a prag-
matic solution to satisfying this demand. In this case, merged multi
satellite soil moisture products could be developed, and be downscaled
across all the low resolution passive microwave satellites using the best
downscaling methodology. A harmonized ensemble of disaggregated
soil moisture products from different retrieval algorithms might provide
another solution, with the added value of providing more frequent soil
moisture than the individual downscaled products alone. An ensemble
of downscaled soil moisture products might also result in more accurate
soil moisture products, recognising strengths of alternative products
under varying climate and land surface conditions.

4. Summary

This paper has provided a comprehensive discussion of alternative
soil moisture downscaling techniques. While the reasons and motiva-
tion for downscaling soil moisture and the concept behind each
downscaling technique have been extensively described, this study has
also provided an overview of the resources required for each
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disaggregation technique and the expected accuracy of the approach.
This paper argues that downscaling techniques can deliver sub-

stantially greater spatial detail about soil moisture spatial variability, as
compared to the original remotely sensed passive microwave data, to
meet the requirements of a growing number of applications. Moreover,
the combination of remotely sensed land surface features with passive
microwave observations has been successful in deriving fine-scaled soil
moisture with reasonable accuracy. A considerable contribution to
combined techniques was made by the optical acquisitions that are
available at high resolution on a daily basis, but cloudy skies and sea-
sonality significantly affect the functionality of optical-based down-
scaling methods. The use of geostationary based optical sensors which
process a much higher (every ~10–15 minutes) imaging capability than
their polar orbiting counterparts could help alleviate the issues, thus
increasing the chance of providing cloud-free observations. However,
combined L-band radar and radiometer (radar-based) downscaling ap-
proaches have demonstrated the best success in deriving multi-sensor
soil moisture maps, but at a resolution of approximately 10 km.
Aggregation of fine resolution SAR radar observations to medium re-
solution, to decrease the impact of speckle noise, provides an oppor-
tunity for downscaled soil moisture to be derived at medium resolution
with reasonable accuracy, but is limited by the time interval of repeat
overpasses and the current wavelengths available.

Utilizing the soil surface attributes and structure, including topo-
graphy and soil texture, is also beneficial to the space-time scaling of
soil moisture. Topography and soil texture impacts the soil water dy-
namic and thus distribution of soil moisture. Both soil water dynamics
and storage capacity exert effective impact on soil moisture variation.
However, the limited access to such data imposes a limit on the ap-
plication and development of these downscaling techniques for global
soil moisture monitoring.

Alternative downscaling approaches that use high resolution model
predictions together with data assimilation of coarse scale observations
– and/or machine learning-based techniques – provide an opportunity
to overcome issues related to the lack of concurrent overpasses by re-
quired satellites or lost data due to cloud coverage. However, there is
considerably more work required to increase the accuracy of high re-
solution soil moisture prediction models, the computational efficiency
of these innovative techniques, and the global training required for the
machine learning technique.

Soil moisture downscaling to spatial resolutions higher than 1 km
should also be considered an issue for advancing the practical use of soil
moisture in agriculture and water resources management. These must
also be provided at the time scale of 1 to 3 days in order to provide
information about the temporal dynamics of soil moisture. The devel-
opment of applicable downscaling techniques under all weather and
climate conditions and across all current passive microwave observa-
tions will hopefully fill this gap. Prior to reaching this milestone, the
merger of multi satellite soil moisture products should reach a level of
maturity. Thus, harmonized downscaled soil moisture products from
different downscaling techniques could be able to produce a consistent
time series of high resolution soil moisture.
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