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A B S T R A C T

A Neural Network (NN) algorithm was developed to estimate global surface soil moisture for April 2015 to
March 2017 with a 2–3 day repeat frequency using passive microwave observations from the Soil Moisture
Active Passive (SMAP) satellite, surface soil temperatures from the NASA Goddard Earth Observing System
Model version 5 (GEOS-5) land modeling system, and Moderate Resolution Imaging Spectroradiometer-based
vegetation water content. The NN was trained on GEOS-5 soil moisture target data, making the NN estimates
consistent with the GEOS-5 climatology, such that they may ultimately be assimilated into this model without
further bias correction. Evaluated against in situ soil moisture measurements, the average unbiased root mean
square error (ubRMSE), correlation and anomaly correlation of the NN retrievals were 0.037 m3m−3, 0.70 and
0.66, respectively, against SMAP core validation site measurements and 0.026 m3m−3, 0.58 and 0.48, respec-
tively, against International Soil Moisture Network (ISMN) measurements. At the core validation sites, the NN
retrievals have a significantly higher skill than the GEOS-5 model estimates and a slightly lower correlation skill
than the SMAP Level-2 Passive (L2P) product. The feasibility of the NN method was reflected by a lower ubRMSE
compared to the L2P retrievals as well as a higher skill when ancillary parameters in physically-based retrievals
were uncertain. Against ISMN measurements, the skill of the two retrieval products was more comparable. A
triple collocation analysis against Advanced Microwave Scanning Radiometer 2 (AMSR2) and Advanced
Scatterometer (ASCAT) soil moisture retrievals showed that the NN and L2P retrieval errors have a similar
spatial distribution, but the NN retrieval errors are generally lower in densely vegetated regions and transition
zones.

1. Introduction

Soil moisture is a key variable for many surface and boundary layer
processes, such as the coupling of the water and energy cycles

(Seneviratne et al., 2006; Gentine et al., 2011; Bateni and Entekhabi,
2012) or the partitioning of precipitation into runoff and infiltration
(Philip, 1957, Corradini et al., 1998, Assouline, 2013). Soil moisture is
also a key determinant of the carbon cycle (McDowell, 2011; Sevanto
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et al., 2014; Jung et al., 2017). The importance of soil moisture has
been recognized by the World Meteorological Organization by naming
it an Essential Climate Variable (GCOS, 2009) and thus encouraging
efforts to obtain better soil moisture observations, which is challenging
because of its high variability both in space and time.

One avenue to obtain observations of soil moisture is through sa-
tellite instruments that provide global observations with a relatively
short revisit period of 2–3 days. In particular, L-band (1.4 GHz) mi-
crowave instruments exhibit a high sensitivity to soil moisture in the
top ∼5 cm of the soil in sparsely to moderately vegetated areas. This
has led to the launch of two L-band satellite missions to observe soil
moisture, the European Soil Moisture and Ocean Salinity (SMOS) mis-
sion in 2009 (Kerr et al., 2010) and the NASA Soil Moisture Active
Passive (SMAP) mission (Entekhabi et al., 2010) in 2015.

Traditionally, satellite soil moisture retrievals from L-band (and
other) sensors are implemented through the inversion of Radiative
Transfer Models (RTMs) (e.g. Owe et al., 2001; Kerr et al., 2012; O’Neill
et al., 2015), which explicitly formulate the physical relationships
linking surface soil moisture to satellite brightness temperature ob-
servations. The RTM inversion technique is used to produce the official
SMOS and SMAP retrieval products, and is able to provide high quality
soil moisture estimates (Al Bitar et al., 2012; Chan et al., 2016b;
Colliander et al., 2017) with a typical latency of 12 to 24 h. However,
this approach requires accurate knowledge of the physical relationships
between the surface state and the satellite observations as well as their
associated parameters, which are often empirically estimated and thus
uncertain. Moreover, RTM inversions also require explicit information
on other surface states, including surface soil temperature and vegeta-
tion, and are thus typically ill-posed problems. Additionally, for time
critical applications, such as near real time flood prediction or soil
moisture assimilation into weather prediction models, retrieval pro-
ducts with a shorter latency are required.

Data assimilation provides another option to generate improved soil
moisture estimates through the merging of satellite and model in-
formation, and can yield soil moisture estimates that are of higher
quality than estimates from satellite observations or models alone (e.g.
Entekhabi et al., 1994; Walker and Houser, 2001; Liu et al., 2011; Lahoz
and De Lannoy, 2014). For soil moisture assimilation, the observations
and model estimates have to be unbiased with respect to each other,
which is typically achieved by locally matching the mean and varia-
bility of the satellite observations to those of the model (Reichle and
Koster, 2004). While this satisfies the requirements of the assimilation
system, it has the side effect of removing some independent information
in the satellite observations. Given the high quality of soil moisture
observations from SMOS and SMAP this is undesirable.

As an alternative to RTM inversions, statistical Neural Network
(NN) retrieval algorithms have been successfully implemented for a
number of sensors in recent years (Aires et al., 2005; Chai et al., 2009;
Kolassa et al., 2013, 2016; Rodríguez-Fernández et al., 2015; Santi
et al., 2016). Instead of explicitly formulating physical relationships,
NNs are calibrated on a sample of satellite observations and corre-
sponding soil moisture estimates (the target data) to model the global
statistical relationship between the satellite observations and surface
soil moisture. As a result, NN retrievals can offer several general ad-
vantages over traditional RTM inversions. First, they do not require an
explicit parameterization of physical relationships and are thus not
affected by errors in our knowledge of these relationships or their
parameters. Second, after a one-time calibration, NNs are computa-
tionally extremely efficient and can provide soil moisture estimates
almost immediately after arrival of the instrument data, thereby
shortening the latency. Third, training a NN non-locally on target data
from a model, yields NN retrievals that are globally unbiased with re-
spect to the model, with spatial and temporal patterns that are driven
by the satellite observations (e.g. Alemohammad et al. (2017), Jimenez
et al. (2013), Kolassa et al. (2016)). This may reduce the need for bias
correction prior to an assimilation and at the same time retain more of

the independent information contained in the spatial and temporal
patterns of the satellite observations.

In this study, we develop the first NN algorithm to retrieve global
surface soil moisture from SMAP observations. The motivation for this
work is twofold. First, we investigate statistical retrieval techniques as a
possible alternative or supplement to the existing physically-based
SMAP retrieval algorithms. Since statistical techniques require less
ancillary data and are subject to different algorithm-related errors than
physically-based retrievals, NN retrievals may provide useful informa-
tion where and when RTMs are known to be uncertain. For SMOS, the
NN technique has been successfully implemented (Rodríguez-
Fernández et al., 2015). However, it is not obvious that a NN for SMAP
will work equally well, given the differences between SMOS and SMAP
in the observing geometry (multiple vs. single incidence angle) and
instrument error characteristics (De Lannoy et al., 2015). Second, we
aim to investigate the potential of statistical techniques to generate a
soil moisture product with characteristics beneficial to SMAP soil
moisture assimilation. The NN algorithm retrieves soil moisture in the
climatology of the target model and thus may reduce the need for bias
correction prior to data assimilation. In a follow-on study, we will in-
vestigate whether this results in a more efficient use of SMAP ob-
servations during data assimilation.

The NN retrieval algorithm is trained with SMAP brightness tem-
peratures and two ancillary datasets as inputs, and with target data
from the NASA Goddard Earth Observing System version 5 (GEOS-5)
model (Section 2). Using the trained NN, we compute global estimates
of volumetric surface soil moisture for the period April 2015 to March
2017 and evaluate them using a number of different metrics and
techniques (Section 3). We compare the SMAP NN soil moisture esti-
mates to the target GEOS-5 model soil moisture to identify the in-
dependent information provided by the SMAP observations that can
potentially inform the model during data assimilation (Section 4.1).
Next, we assess the SMAP NN retrievals against independent in situ
measurements and compare their skill to that of the SMAP Level-2
passive (L2P) retrieval product and the GEOS-5 model soil moisture
(Section 4.2). Finally, we assess the global error distributions of the
SMAP NN, GEOS-5 and SMAP L2P products using a triple collocation
(TC) analysis in conjunction with soil moisture retrievals based on
observations from the Advanced Microwave Scanning Radiometer 2
(AMSR2) and the Advanced Scatterometer (ASCAT), which have in-
dependent errors with respect to the SMAP and GEOS-5 products
(Section 4.3).

2. Datasets

2.1. Neural Network inputs and target datasets

2.1.1. SMAP observations
The main input to the NN soil moisture retrieval algorithm are the

SMAP brightness temperatures. SMAP was launched in January 2015
and is equipped with an L-band (1.4 GHz) radiometer observing on four
different channels, horizontal and vertical polarization as well as the
3rd and 4th Stokes' parameter. SMAP is in a sun-synchronous, near-
circular orbit with equator crossings at 6 AM and 6 PM local time and a
revisit time of 2–3 days (Entekhabi et al., 2010). Brightness tempera-
ture data have been collected since 31 March 2015.

For our NN retrieval product we use SMAP Level-1C brightness
temperatures (Chan et al., 2016) for the April 2015 to March 2017
period. The data are provided on the 36-km resolution Equal-Area
Scalable Earth version 2 (EASEv2) grid (Brodzik et al., 2012) as daily
half-orbit files. We only use observations from the 6 AM overpass, in
order to minimize observation errors due to Faraday rotation and the
difference between the soil and canopy temperatures (Entekhabi et al.,
2010; O’Neill et al., 2015). A test of different input combinations in-
dicated that using data from all four SMAP channels as inputs to the
retrieval algorithm yielded the best NN retrieval performance (not
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shown). While the 3rd and 4th Stokes' parameters are not directly
sensitive to soil moisture, including them as inputs helps the NN algo-
rithm to distinguish between different observing conditions and thus
determine the weight for a given brightness temperature observation.

2.1.2. GEOS-5 model surface soil moisture and temperature
The model soil moisture estimates used here are generated using the

GEOS-5 Catchment land surface model (Koster et al., 2000; Ducharne
et al., 2000). The Catchment model version used in this study is very
similar to that of the SMAP Level-4 Soil Moisture (L4_SM) version 2
system (Reichle et al., 2015, 2016, 2017b), but SMAP brightness tem-
perature observations are not assimilated. The surface meteorological
forcing data were provided at 0.25° resolution by the GEOS-5 Forward
Processing atmospheric data assimilation system (Lucchesi, 2013). The
GEOS-5 precipitation forcing data were corrected using global, daily,
0.5 ° resolution, gauge-based observations from the Climate Prediction
Center Unified (CPCU) product, which have been scaled to the Global
Precipitation Climatology Project (GPCP) v2.2 pentad precipitation
product climatology (Reichle et al., 2017b; Reichle and Liu, 2014;
Reichle et al., 2017a). The GEOS-5 background precipitation was also
scaled to the GPCP v2.2 climatology. Output fields were produced as 3-
hourly time averages and provided on the 9-km EASEv2 grid.

In this study, we use two model output fields: (1) the surface soil
moisture (0–5 cm soil layer) and (2) the surface soil temperature (0–10
cm soil layer). The GEOS-5 soil moisture fields served as target data in
the NN training (Section 3.1) and were also used in the evaluation
phase to assess the skill of the NN retrieval compared to that of the
target model. The surface soil temperature data were used as an input to
the retrieval algorithm to account for the surface soil temperature
contribution to the observed brightness temperatures (Section 3.1).
Using surface soil temperature estimates from the target model poten-
tially introduces some of the GEOS-5 spatial patterns into the NN es-
timates and could lead to model dependency issues during a later as-
similation of the NN estimates into the GEOS-5 model. The same would
be true, however, for the assimilation of the SMAP L2P product, which
also uses GEOS-5 ancillary soil temperatures (Section 2.2.1). We assume
here that the canopy temperature and surface soil temperature are in
equilibrium for the 6 AM (local time) SMAP observations used here, so
only a single temperature estimate is required. The surface soil tem-
perature data were also used in the data quality control to identify
frozen soil conditions (Section 2.3).

2.2. Validation datasets

2.2.1. SMAP Level-2 passive retrievals
The SMAP L2P soil moisture retrieval product uses SMAP radio-

meter Level-1C brightness temperatures to provide soil moisture esti-
mates on the 36-km EASEv2 grid as daily half-orbit files. The retrieval
algorithm is based on a physical tau-omega model (O’Neill et al., 2015;
Wigneron et al., 1995) to isolate the soil emission from the total ob-
served surface emission (soil and vegetation) and to subsequently
convert it into a soil moisture estimate through the use of soil emission
and mixing models. The surface soil temperature data required by the
tau-omega model are provided by the quasi-operational GEOS-5 For-
ward Processing system (Lucchesi, 2013) with a 0.25° resolution. The
tau-omega model also requires information on the vegetation water
content (VWC), which is estimated from a climatology of the Normal-
ized Difference Vegetation Index based on Moderate Resolution Ima-
ging Spectroradiometer (MODIS) observations using an empirical re-
lationship established from prior investigations. No retrieval is
performed for frozen soil conditions based on GEOS-5 surface soil
temperature. Soil moisture retrievals are flagged as ‘not recommended’
when the VWC within the satellite footprint exceeds 5 kg m−2 (O’Neill
et al., 2015).

In this study, we use version 4 of the L2P ‘baseline’ soil moisture
estimates derived from the SMAP morning (6 AM) overpass vertical

polarization brightness temperatures (O’Neill et al., 2016). Only data
points flagged as having the ‘recommended’ retrieval quality were used.

2.2.2. AMSR2 and ASCAT soil moisture retrievals
The Advanced Multichannel Scanning Radiometer 2 (AMSR2) is a

multichannel passive microwave satellite instrument that has been
collecting data since July 2012. AMSR2 measures brightness tempera-
tures at frequencies ranging from 6.9 GHz to 89 GHz with a revisit time
of approximately 2 days and equator crossings at 1.30 AM and 1.30 PM
local time (Kasahara et al., 2012).

Here we use the Japan Aerospace Exploration Agency AMSR2 soil
moisture product computed from the 10.7 GHz and 36.5 GHz vertical
and horizontal polarization brightness temperatures (Maeda and
Taniguchi, 2013). The data are provided as daily estimates of volu-
metric surface soil moisture on a grid with 0.1° × 0.1° resolution
spacing.

The Advanced Scatterometer (ASCAT) (Figa-Saldaña et al., 2002) is
an active microwave satellite instrument aboard the MetOp satellites,
which have been collecting data since 2006. ASCAT measures surface
backscatter at C-band (5.3 GHz) with a revisit time of 1–2 days and
equator crossings at 9.30 AM and 9.30 PM.

Here we use the ASCAT surface soil moisture product developed by
Wagner et al. (2013). The data are provided in units of surface degree of
saturation with a sampling distance of 12.5×12.5 km and were con-
verted into estimates of volumetric surface soil moisture using the soil
porosity data of Reynolds et al. (2000).

Despite being posted on finer resolution grids, the spatial resolution
of the AMSR2 and ASCAT observations is very similar to the SMAP 36-
km resolution.

2.2.3. In situ measurements
2.2.3.1. SMAP core validation sites. The SMAP core validation sites
(referred to here as ‘core sites') represent locally dense networks of in
situ soil moisture measurements that are specifically designed for the
calibration and validation of SMAP soil moisture products (Colliander
et al., 2017). Each site features an array of soil moisture sensors to
represent the different spatial scales of the SMAP products (3 km, 9 km
and 36 km). The measurements from each site's sensors are combined
into and area-weighted average to yield one soil moisture time series
per site that is representative of a 36-km satellite grid cell.

Table 1 summarizes the main characteristics of the 36-km core sites
used here. Out of the 14 locations, nine are in North America, two in
Europe, and one each in Asia, Australia and South America. The sites
represent a range of different climatic conditions and land cover types,
and the average number of sensors that contribute to the 36-km re-
ference pixel data ranges between 5 and 32. Fig. 1 shows the dis-
tribution of the SMAP core sites and their corresponding dominant land
cover.

2.2.3.2. International Soil Moisture Network (ISMN). We further
evaluate the NN retrieval product against independent in situ soil
moisture measurements from the International Soil Moisture Network
(ISMN), a database of soil moisture networks hosted at the Technical
University (TU) of Vienna (Dorigo et al., 2011) and referred to here as
the ‘sparse networks'. We used only ISMN networks that are not part of
the SMAP core sites (Table 2). The REMEDHUS network comprises a
different set of sensors for the core site and as a sparse network and thus
appears for both in situ data types. The measurement depth, repeat
frequency, coverage, station density and measurement method depend
on the contributing network. The number of stations in each network
ranges between 1 and 441 (Table 2), but - unlike for the core sites -
there is typically only one sensor per 36-km grid cell. That is, the ISMN
measurements are not necessarily representative of the spatial scale of
the satellite observations. Fig. 1 shows the spatial distribution of the
ISMN stations and the dominant land cover at each location.

For two of the ISMN networks, SCAN (Schaefer et al., 2007) and
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USCRN (Diamond et al., 2013), the data were already available in-
house and had been subjected to additional quality control as described
in De Lannoy et al. (2014) and (Reichle et al., 2015b) (their Appendix
C). Hence, the in-house data were used for SCAN and USCRN instead of
the data provided through the ISMN. As a result, more reliable metrics
could be estimated for these two sparse networks.

2.3. Data preprocessing

2.3.1. Satellite observations and model
We co-located all datasets spatially and temporally, using the 36-km

EASEv2 grid and the SMAP morning (6 AM) overpass times as a re-
ference. The GEOS-5, AMSR2 and ASCAT data were aggregated from
their higher-resolution native grids to the 36-km EASEv2 grid using
simple averaging. The temporal co-location was implemented by using
the GEOS-5 3-hourly average that includes the SMAP morning overpass
for a given location and day. For the AMSR2 and ASCAT retrieval
products, only data from their night-time/morning overpasses for the
same day - at 1.30 AM and 9.30 AM, respectively - were used since
these are closest in time to the SMAP overpass at 6 AM. Likewise, for
the L2P retrievals we used only the morning overpass estimates, and no
regridding was required because the SMAP-based NN and L2P products
are provided on the same 36-km EASEv2 grid.

We additionally applied several quality control steps to the satellite

and model data sets to identify and exclude conditions in which a soil
moisture retrieval was not feasible. Using the GEOS-5 surface soil
temperature, we excluded times and locations with a surface soil tem-
perature below 1°C. The MODIS-based VWC estimates provided with
the L2P data were used to exclude times and locations with a VWC
higher than 5 kg m−2, where the SMAP radiometer is not expected to
provide reliable retrievals. Finally, we excluded all pixels within 72 km
of a water body - defined as a grid cell with a water fraction in excess of

Table 1
Overview of the SMAP Cal/Val core sites. Shown are (from left to right) the site name, reference pixel ID (RPID), location, climate, land cover and the average number of sensors that
contribute to the reference pixel average. Soil moisture is measured at 5 cm depth or over the top 5 cm. (Colliander et al., 2017).

Site (abbreviation) RPID Location Climate Land cover Number of sensors

REMEDHUS (RM) 03013602 Spain Temperate Croplands 14
Reynolds Creek (RC) 04013601 USA (Idaho) Arid Grasslands 5
Yanco (YC) 07013601 Australia Arid Croplands 26
Carman (CM) 09013601 Canada Cold Croplands 19
Twente (TW) 12043602 Holland Temperate Croplands/natural mosaic 9
Walnut Gulch (WG) 16013603 USA (Arizona) Arid Shrub open 20
Little Washita (LW) 16023602 USA (Oklahoma) Temperate Grasslands 16
Fort Cobb (FC) 16033602 USA (Oklahoma) Temperate Grasslands 12
Little River (LR) 16043602 USA (Georgia) Temperate Croplands/natural mosaic 19
South Fork (SF) 16073602 USA (Iowa) Cold Croplands 18
Monte Buey (MB) 19023601 Argentina Temperate Croplands 10
Kenaston (KN) 27013601 Canada Cold Croplands 26
TxSON (TX) 48013601 USA (Texas) Temperate Grasslands 32
Mahasri (MH) 53013601 Mongolia Cold Grasslands 5

YC

MHTWRMLRSFCMKN

RC

FC

LW

WG

TX

MB

Fig. 1. Location of the SMAP core validation sites (blue circles) and ISMN stations (red crosses). The background shows the dominant International Geosphere-Biosphere Program (IGBP,
(Belward et al., 1999)) land cover class for each location.

Table 2
Overview of the ISMN (Dorigo et al., 2011). Shown are the location, number of stations
per network and the network-specific reference.

Network Location # Stations Reference

Dahra Senegal 1 Tagesson et al. (2015)
FMI Finland 27 Dorigo et al. (2011)
iRON USA 6 Taylor et al. (2015)
PBO H2O USA 161 Larson et al. (2008)
REMEDHUS Spain 24 Sanchez et al. (2012)
RSMN Romania 20 Dorigo et al. (2011)
SCAN USA 181 Schaefer et al. (2007)
SMOSMANIA France 21 Calvet et al. (2007)
SNOTEL USA 441 Leavesley et al. (2008)
SOILSCAPE USA 171 Moghaddam et al. (2016)
USCRN USA 115 Diamond et al. (2013)

J. Kolassa et al. Remote Sensing of Environment 204 (2018) 43–59

46



5% according to the GEOS-5 land mask - to mitigate the impact of water
bodies, as their low brightness temperatures cause erroneously high soil
moisture retrievals (O’Neill et al., 2015).

2.3.2. In situ data
The core site measurements are representative of the 36-km spatial

resolution of the retrievals and the aggregated model, however, the
geographical center of the in situ sensors for a given reference pixel
does not generally coincide with the EASEv2 grid cell center of the
satellite and model products. Similarly, the location of a (single point)
ISMN measurement is typically offset from the center of a EASEv2 grid
cell. To account for this, the retrieval and (aggregated) model soil
moisture were linearly interpolated to the in situ location using data
from the nearest EASEv2 grid cell and its 8 surrounding neighbors,
requiring a minimum of 4 data points. Where applicable, ISMN mea-
surements located in the same EASEv2 grid cell were averaged and their
average location was used for the interpolation. For each day, the in
situ measurement closest in time and within a 3 h window of the SMAP
overpass was used.

Using the GEOS-5 surface temperature for the ISMN measurements
and the in situ surface soil temperature observations for the core site
measurements, the in situ data were screened for (nearly) frozen soil
conditions by applying the same 1°C threshold that was used for the
satellite and model data.

3. Methodology

3.1. Neural Network retrieval algorithm

In this study we use a NN approach to retrieve global surface soil
moisture with a 2–3 day repeat using SMAP brightness temperatures,
GEOS-5 soil temperatures and the MODIS-based VWC climatology that
is used in the generation of the SMAP L2P product. The NN retrieval
algorithm is first calibrated (trained) using a subset of the available
SMAP and model data to determine the statistical relationship between
the satellite observations and surface soil moisture. Once calibrated, the
trained NN is used to retrieve surface soil moisture from the entire set of
satellite observations.

3.1.1. Neural Network architecture
A neural network is a group of computational nodes arranged in a

layered and inter-connected architecture. Fig. 2 shows a schematic of a
basic NN for soil moisture retrievals. The NN used here consists of 3
layers: (1) an input layer that receives the satellite observations and
ancillary inputs, (2) one hidden layer, and (3) an output layer that
produces the soil moisture estimates. This architecture is sufficient to
approximate any continuous function (Cybenko, 1989). The inputs for
the SMAP NN retrieval algorithm are the observations from the four
SMAP channels, the GEOS-5 surface soil temperature and the MODIS-
based VWC estimates. The output from the NN algorithm is an estimate
of the volumetric surface soil moisture.

While the number of neurons in the input and output layers is de-
termined by the number of input and output variables (here, 6 for the
input layer and 1 for the output layer), the optimal number of neurons
in the hidden layer depends on the problem complexity. We found that
for this study 15 hidden layer neurons constituted the lowest number of
neurons that was able to converge to a solution during the NN training.
We use a fully connected feed-forward network, in which all neurons
from one layer are connected to all neurons in the next layer. These
connections are assigned weights - the synaptic weights - used by each
neuron to compute a weighted sum of all its input plus a bias before
applying a transfer function. Neurons in the input and output layers use
a linear transfer function, while hidden layer neurons use the typical
tangent-sigmoid transfer function.

3.1.2. Neural Network training
In order to determine the statistical function that relates the NN

input data, including the satellite brightness temperature observations,
to surface soil moisture, the NN is calibrated on a sample set of NN
inputs and coincident soil moisture estimates (the target data), together
referred to as the training data. This process is referred to as the NN
training and is schematically illustrated in Fig. 3 (a). To generate a
training dataset representative of all expected conditions, we used the
first year (April 2015–March 2016) of our study period for NN training.
The second year (April 2016–March 2017) of the study period was used
for the evaluation presented in Sections 4.1 and 4.2. Model soil
moisture estimates from GEOS-5 are used as the target data, because (1)
the model estimates have a similar resolution as the satellite observa-
tions while providing complete spatio-temporal coverage and (2)
training on a model yields NN estimates in the global model clima-
tology, which could be beneficial for a later assimilation of the retrieved
soil moisture.

The total training dataset is split into three subsets - the calibration,
validation and test data - by sampling the total dataset. The calibration
data constitute 60% of the total training data and are used to optimize
the NN synaptic weights (Note: In the literature these data are often
referred to as ‘training data’. In order to avoid confusion with the total
training dataset, we have decided to use the term ‘calibration data’
instead). The validation data constitute 20% of the total training data
and are used to detect over-fitting of the NN weights (see below). These
are part of the training data and should not be confused with the in-
dependent evaluation data used in Sections 4.1 and 4.2 to assess the
SMAP NN retrieval quality. The test data constitute the remaining 20%
of the training data and are used to assess the NN fit.

The NN training is non-localized, meaning that one NN is fitted to a
global training dataset that contains data from the entire training
period (April 2015–March 2016). Furthermore, no information re-
garding the location and acquisition time of the training points is
provided to the NN. The NN training thus essentially involves an as-
sociation of the same sets of input values (that is, the same brightness
temperatures, Stokes' parameters, and ancillary data) with the mean
value of the corresponding target soil moisture data. If, for example, the
target data in a specific region overestimate the soil moisture, they will
appear as outliers in the NN training, and the NN will thus not inherit
such regional errors (e.g., (Jimenez et al., 2013)). As a result, the spatial
and temporal patterns of the NN estimates are mostly driven by the
input satellite observations. Moreover, the NN estimates match the
global (single-value) mean and variability of the target data, but mean
differences in the spatial patterns between the satellite observations and
the model estimates are retained. These remaining local biases could
represent an issue during an assimilation of the NN product. Further
investigation will be needed to determine whether the disadvantage of
local biases in the assimilation is outweighed by the benefit of retaining
more of the independent information in the assimilated SMAP ob-
servations.

The training itself consists of an iterative optimization of the NN
synaptic weights to minimize the error between the NN output and the
target data (Fig. 3 (a)). Three different scenarios cause the NN training
to stop. First, the training is stopped when the mean squared error
between the NN outputs and the target data is less than 0.001 m3m−3

and the training goal is met. Second, the training is stopped when the
NN training does not converge to a solution after a maximum number of
iterations - set here at 1000. Third, training is stopped when over-fitting
of the NN weights to the calibration data is detected. For this, the error
between NN estimates computed from the validation input data and the
validation model soil moistures is estimated upon each iteration. A
divergence of the validation estimates from the corresponding valida-
tion model soil moisture indicates an over-fitting of the NN weights to
the calibration data and a loss of the NN's generalization ability. When
such a divergence is detected for six subsequent iterations, the training
is stopped and the weights from the last iteration before the occurrence
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Fig. 2. Schematic of a Neural Network with close-up of a
single neuron (adapted from Kolassa (2013)).

Fig. 3. The two phases of the NN soil moisture retrieval approach. (a) NN training and (b) soil moisture estimation using the trained network. NN inputs include the SMAP brightness
temperatures at vertical and horizontal polarization (Tbv and Tbh), the 3rd and 4th Stokes' parameters (Tb3 and Tb4), the GEOS-5 surface soil temperature (Ts), and the MODIS-based
vegetation water content (V WC).
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of the divergence are used as the final solution.
Here we use a Levenberg-Marquardt training algorithm (Levenberg,

1944; Marquardt, 1963) and apply an error back-propagation approach
(Rumelhart and Chauvin, 1995) to update the weights. The Levenberg-
Marquardt algorithm stops when a local minimum is found and thus
does not permit a full exploration of the error surface. To account for
this, the NN training is repeated four times, using a different random
initialization for the NN weights (and thus a different starting point on
the error surface) each time. This corresponds to four repetitions of the
training process illustrated in Fig. 3 (a). After the training is stopped,
we compute the root mean square error (RMSE) between the NN esti-
mates computed from the test data and the corresponding test model
soil moistures to assess the NN fit. The NN with the lowest RMSE error
out of the four repetitions is then retained as the optimal NN and used
to generate the soil moisture retrieval product.

The trained NN is used to compute global estimates of volumetric
soil moisture from the complete set of satellite observations and an-
cillary data (Fig. 3 (b)). The soil moisture estimates are computed for
the period April 2015 to March 2017 and include both the training data
(first year) and the evaluation data (second year) that were not used in
the training phase.

3.2. Evaluation metrics

As part of the NN retrieval development, we evaluate our retrieval
product against in situ soil moisture measurements and assess its fit
with respect to the target model. To quantify different aspects of the
retrieval product and model skill, we use the correlation R, anomaly
correlation Ranom and unbiased root mean square error ubRMSE. These
metrics have been chosen, because they evaluate different aspects of the
retrieval products and provide complementary information on the
product skill. Additionally, they are well-established for the evaluation
of soil moisture retrievals (Al Bitar et al., 2012; Albergel et al., 2013;
Chan et al., 2016b; Colliander et al., 2017). The evaluation metrics are
computed with respect to the model soil moisture estimates
(Section 4.1) and in situ measurements (Section 4.2).

The correlation (R) estimates the ability to capture soil moisture
variations at all time scales and is computed as the Pearson correlation
coefficient between the raw soil moisture and reference data time series
in each location. The anomaly correlation (Ranom) estimates the ability
to capture individual drying and wetting events and is computed si-
milarly to the correlation, but using the anomaly time series, with the
anomalies defined with respect to the 30-day moving average centered
on the current day. The ubRMSE measures the RMSE excluding the bias
and is computed after removing the long-term mean from the soil
moisture and reference data time series in each location. When asses-
sing the fit between the NN retrieval product and its target model
(Section 4.1), we use the term unbiased root mean square difference
(ubRMSD) to indicate that the target model is not considered the truth
in this case. Rather, the ubRMSD simply aims to identify differences
between the observed and modeled soil moistures.

When evaluating the skill of the retrieval and model products
against in situ measurements, only data points common to all four
datasets (i.e., the NN and L2P retrievals, GEOS-5 model estimates, and
in situ measurements) contributed to the metric calculations, with a
minimum of 30 data points required. For the evaluation against ISMN
data, we report the average metrics across all stations in a network.
Following the approach used by De Lannoy and Reichle (2016), we
employ a k-means clustering to avoid a dominance of areas with a high
station density and to obtain realistic confidence intervals. The spatial
extent of each cluster is limited to 1° around its center. Additionally, we
report average metrics computed across all sites for the evaluation
against core site data and across all networks for the evaluation against
the ISMN data, applying the same clustering approach.

3.3. Triple collocation analysis

The evaluation of the NN retrieval product against in situ observa-
tions is limited by the availability of the in situ measurements and thus
only covers a limited range of climate regions and land cover types.
However, for most applications, and in particular for data assimilation,
retrieval error estimates are required for every location. Here, we im-
plement a triple collocation (TC) analysis (Stoffelen, 1998; McColl
et al., 2014) in order to compute a global map of error estimates for the
NN soil moisture product.

Triple collocation resolves the linear relationships between three
independent datasets of the same variable (here, soil moisture) in order
to estimate the errors in each dataset independent of a reference. It is a
localized technique that estimates the errors for all three datasets in
each location independently, yielding a map of error estimates. Several
studies have successfully applied TC to estimate soil moisture retrieval
errors (e.g., Scipal et al., 2008; Draper et al., 2013; Su et al., 2014; Chen
et al., 2017). Here, we use TC to estimate the NN retrieval product
errors and, for comparison, the errors of the GEOS-5 model and L2P soil
moisture. However, one of the main assumptions of the TC analysis is
an independence of the errors in the three datasets that constitute the
triplet. In the case of the NN, GEOS-5 and L2P products this assumption
cannot be made, since the NN uses information from the GEOS-5 model
while the NN and L2P retrievals rely on the same satellite input data.
We therefore use the independent soil moisture retrieval products from
AMSR2 and ASCAT (Section 2.2.2) to create three suitable triplets:
[SMAP NN, AMSR2, ASCAT], [GEOS-5, AMSR2, ASCAT] and [SMAP
L2P, AMSR2, ASCAT]. This allows us to derive error estimates for SMAP
NN, GEOS-5 and SMAP L2P.

Following McColl et al. (2014) and Draper et al. (2013), we apply
the extended TC to the anomaly soil moisture time series (Section 3.2)
and compute an error estimate in each location with at least 10
common data points in the three contributing datasets. A bootstrapping
approach with 100 samples is applied to ensure a robust error estima-
tion. To mitigate the error dependence on the (product- and location-
specific) soil moisture variability, we estimate the fractional error
standard deviation (Draper et al., 2013; Gruber et al., 2016), defined
here as the error standard deviation divided by the soil moisture stan-
dard deviation of the corresponding product in each location. The
fractional error standard deviation is an approximation of the noise-to-
signal ratio, with values below 1 indicating that the noise is smaller
than the signal and values greater than 1 indicating that the noise ex-
ceeds the signal.

4. Results and discussion

4.1. Neural Network fit

As a first assessment, we compare the NN soil moisture estimates to
the GEOS-5 modeled soil moisture used as the target data. The purpose
of this is to (1) assess the NN fit with respect to the target data over the
training period, (2) evaluate the NN's ability to generalize beyond the
training data and (3) identify areas of disagreement between the SMAP
driven NN estimates and the model soil moisture. In such areas, an
assimilation of the NN retrievals should result in the largest changes to
the model.

Over the training period, the domain average ubRMSD, correlation
and anomaly correlation between the NN and GEOS-5 soil moistures are
0.037 m3m−3, 0.60 and 0.53, respectively. These fit values are typical
for daily NN soil moisture retrievals (for example (Kolassa et al.,
2016)). For the NN training it is not desirable to obtain a perfect fit with
respect to the target data, since the non-localized calibration results in
spatial and temporal patterns that are driven by the satellite input
observations and are thus expected to differ from patterns in the target
data (Jimenez et al., 2013). Nevertheless, the fairly high correlation and
low ubRMSD values indicate that the SMAP based NN soil moisture
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Fig. 4. (a) Correlation, (b) anomaly correlation, (c) ubRMSD and (d) bias between the SMAP NN soil moisture retrievals and the GEOS-5 model soil moisture for data points from the
evaluation period (April 2016–March 2017). White spaces indicate areas with less than 30 data points, for which no robust metric could be computed.
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Fig. 5. Soil moisture anomalies with respect to a 30-day moving average at the (a) TxSON, (b) Walnut Gulch and (c) Carman core sites for April–September of 2015 and 2016. Shown are
the SMAP NN retrievals (red squares), the GEOS-5 model soil moisture (blue diamonds), the SMAP L2P retrievals (green circles) and the core site in situ soil moisture measurements
(magenta triangles). Gray bars indicate the corrected GEOS-5 precipitation (Section 2.1.2) interpolated to the ground station site. The gray background shading indicates data belonging
to the training period.
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corresponds with the estimates generated by the model in most regions.
To assess the NN's ability to generalize beyond the training dataset

and to investigate the spatial distribution of the differences between the
NN estimates and the GEOS-5 soil moisture, we also compared both
datasets over the evaluation period, i.e., using only data points that
were not part of the training dataset. Fig. 4 shows maps of the ubRMSD,
correlation, anomaly correlation and bias between the NN estimates
and the model soil moisture. Averaging across these maps yields a
ubRMSD, correlation and anomaly correlation of 0.037 m3m−3, 0.61
and 0.55, respectively, which are similar to the average metrics ob-
tained for the training period and indicate that the NN is able to gen-
eralize beyond the training dataset.

The correlations (Fig. 4 (a)) and anomaly correlations (Fig. 4 (b))
exhibit similar spatial patterns, with high values in the transition zones
between wet and dry climates and in regions with strong soil moisture
variability, such as the Sahel, Eastern Brazil and India. However, strong
correlations and anomaly correlations are also observed in semi-arid,
sparsely to moderately vegetated regions, such as the Western US, the
Arabian Peninsula and large parts of Australia. The (anomaly) corre-
lations are lowest in arid regions (e.g., the Sahara and Central Aus-
tralia), where the soil moisture signal tends to be small and noisy, as
well as in extensive cropland regions (e.g., the US corn belt or the
croplands of Argentina, Uruguay and Paraguay), where irrigation and

other agricultural practices are likely to cause differences between the
satellite retrieval product and the model.

The spatial patterns of the ubRMSD between the SMAP NN esti-
mates and the GEOS-5 soil moisture (Fig. 4 (c)) are different from those
observed for the (anomaly) correlations, with large portions of the
globe showing a ubRMSD of less than 0.001 m3m−3, including Africa,
Australia and large parts of South America (excluding the Andes).
Larger differences occur near mountainous regions, such as the Rocky
Mountains or the Southern Andes, likely caused by higher uncertainty
in the SMAP retrieval product. High-latitude boreal regions, where the
data availability is low and the model precipitation forcing is less re-
liable (Reichle and Liu, 2014), also exhibit larger differences between
the NN retrieval product and the model. Finally, the ubRMSD between
the NN retrievals and the model estimates is large in the croplands of
the US as well as Southern Russia and Kazakhstan, which is possibly a
result of the missing representation of irrigation and other agricultural
practices in the model that is being corrected by the NN.

The bias between the NN estimates and the GEOS-5 model over the
training period (Fig. 4 (d)) ranges between −0.02 m3 m−3 and 0.02 m3

m−3 and, by design, has a global average close to zero. In arid regions
such as the Arabian Peninsula, Central Australia or the Kalahari, the NN
retrievals tend to indicate wetter conditions than the GEOS-5 model. An
exception is the Western Sahara, where the NN retrievals show a dry
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Fig. 6. (a) Correlation, (b) anomaly correlation and (c) ubRMSE between the core site in situ measurements and the SMAP NN retrievals (red squares), the SMAP L2P retrievals (green
circles) and the GEOS-5 model soil moisture (blue diamonds). Shown are the metrics for each site as well as the average across all sites. The error bars represent the 95% confidence
interval.
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bias with respect to the GEOS-5 estimates, which might be an artifact of
increased surface roughness in this region that lowers the observed soil
emissivity.

In order to illustrate the behavior of the NN retrievals relative to the
GEOS-5 model soil moisture in the training and evaluation periods,
Fig. 5 shows the anomaly time series with respect to a 30-day moving
average of the NN soil moisture estimates (red squares) and the GEOS-5
model soil moisture (blue diamonds) for three SMAP core site stations -
TxSON, Walnut Gulch and Carman. (The figure also shows the in situ
and L2P data, which will be discussed in Section 4.2.1.) For better
readability and to reduce the effect of seasonal differences, we only plot
the months April–September for 2015 and 2016 to represent the
training and evaluation periods, respectively, with the former indicated
through gray background shading. There is no obvious difference be-
tween the behavior of the NN retrieval product in both periods, un-
derlining once more the ability of the trained NN to generalize beyond
the training dataset. For the TxSON (Fig. 5 (a)) and Walnut Gulch
(Fig. 5 (b)) sites, the time series average and dynamic range of the NN
retrieval product and the GEOS-5 soil moisture are comparable, but
there are differences in the response to individual events, illustrated for
instance during the stronger drying in the NN soil moisture at the
TxSON station in June 2015. At the Carman site (Fig. 5 (c)), the NN soil
moisture has a stronger variability compared to the model. This illus-
trates that while the NN estimates globally match the bias and varia-
bility of the target data, local biases and differences in variability be-
tween the NN estimates and the target data occur.

4.2. Evaluation against in situ observations

In this section, we evaluate the skill of the NN retrieval product
against independent in situ soil moisture measurements from the SMAP
core sites and the ISMN (Section 2.2.3). The skill of the NN retrievals is
compared against that of the GEOS-5 model soil moisture and the L2P
retrievals. Only data from the period April 2016–March 2017 are used
in the evaluation, since these data did not contribute to the NN training.

4.2.1. Core site data
First, we assess the skill of the soil moisture products against core

site in situ measurements. The NN retrieval product has a higher cor-
relation than the GEOS-5 soil moisture for most core sites (Fig. 6 (a)),
which is reflected in the higher average correlation of 0.70 for the NN
retrievals compared to 0.64 for the model. The model has higher cor-
relations than both retrieval products at Reynolds Creek and a higher
correlation than the NN retrievals at Carman and Kenaston. The
Carman and Kenaston watersheds are both located at high latitudes
where an incomplete seasonal cycle due to frozen soil filtering could
prevent the NN from accurately learning the SM-Tb relationship for
such conditions in the training phase. The NN retrievals tend to have a
notably higher skill than the model in moderately vegetated regions,
such as the shrub- and grassland sites of Little Washita or TxSON, as
well as at most of the sites characterized by an arid climate (see
Table 1). However, while the results appear to connect the relative
performances of the NN product and model with climate and land cover
characteristics, more sites would be required to draw a firm conclusion.
The poor performance of the model at the South Fork site is partly due
to agricultural tile drainage, which is not accounted for in the model.

The L2P retrieval product has a higher correlation skill than both of
the other soil moisture products for the majority of core sites and
consequently has the highest average correlation of 0.78 (Fig. 6 (a)).
The magnitude of the skill difference between the two retrieval pro-
ducts is not obviously related to the climate or land cover of the in situ
sites. In regions with a moderate to strong seasonal cycle, the correla-
tion (R) primarily reflects the skill of capturing seasonal soil moisture
variations. Hence, the above results indicate a better representation of
the soil moisture seasonal cycle in the two retrieval products compared
to the model.

In terms of the anomaly correlations (Fig. 6 (b)), the NN retrieval
product has higher skill than the model estimates for most core sites
and an average skill of 0.66 compared to 0.57 for the model. The L2P
retrieval product has the highest average skill overall (0.71) as well as
for a majority of the core sites. In terms of the ubRMSE (Fig. 6 (c)), the
skill of all three products is more similar. The NN product has a
somewhat lower error than the L2P product at a majority of the stations
and an overall lower average error of 0.037 m3m−3 compared to
0.041 m3m−3 for the L2P and GEOS-5 model estimates.

Our findings for the L2P skill are consistent (within error bars) with
those of Colliander et al. (2017) (not shown). The only significant dif-
ference occurs at the Twente site, where Colliander et al. (2017) used a
different set of sensors. Compared to Chan et al. (2016b), we obtain
higher correlations and a slightly larger ubRMSE for the L2P product.
This is in part a result of the more refined validation approach used by
Chan et al. (2016b), who generated special L2P retrievals on custom
grid cells that better match the locations of the in situ measurements
and thus did not perform the spatial interpolation that was required for
the published L2P retrievals used here (Section 3.2). Other factors
contributing to the differences in the L2P metrics are the different va-
lidation periods and L2P product versions used here and by Chan et al.
(2016b).

To further investigate the cause for the skill differences between the
retrieval products and the model at select sites, we now revisit Fig. 5. At
the TxSON and Walnut Gulch sites the anomalies for both retrieval
products follow the in situ measurements very closely. The different
average anomaly correlations obtained for these sites are mostly due to
different responses to isolated events. An example is the dry down in
June 2015 at the TxSON site, which is better captured by the L2P re-
trievals than by the NN retrievals.

At the Carman site, both retrieval products are very noisy compared
to the model and in situ measurements (Fig. 5 (c)). The L2P product is
noisier than the NN product, which is also reflected in its higher
ubRMSE at this site (see Fig. 6 (c)). The higher ubRMSE might be
caused by ancillary soil texture data in the L2P retrieval algorithm that
poorly describes the highly variable conditions in the Carman wa-
tershed. This suggests that the NN retrieval approach has the potential
to supplement the physically-based SMAP retrievals in regions where
the ancillary data used in the RTM are uncertain. Additionally, both
retrieval products suffer from using a VWC climatology that does not
accurately describe the rapidly changing vegetation dynamics at
Carman.

The above results show that both SMAP retrieval products have
higher correlations than the model soil moisture with respect to the in
situ measurements (Fig. 6). This is encouraging, given that most of the
core sites are located in North America, where models typically have
been well tested and already have a high skill (e.g. Albergel et al.
(2013)). Additionally, the retrievals are at a slight disadvantage in the
comparison, since for most locations the SMAP emission depth will be
less than the 5 cm depth represented by the in situ measurements and
the model estimates. The better correlations of the retrieval products
thus illustrate the high quality of the SMAP observations and their
potential to provide independent information that is not captured in the
models, likely related to agricultural practices, land use differences or
phenology. This is corroborated by the benefit of the SMAP brightness
temperature assimilation performed in the Level-4 soil moisture algo-
rithm (Reichle et al., 2017b).

Against the core site data, the L2P retrievals generally have a higher
skill than the NN retrievals in terms of the correlations and anomaly
correlations, while the NN retrievals have a better average ubRMSE
(Fig. 6). This behavior could indicate the existence of a conditional bias
in the SMAP NN retrievals, as a result of dynamic range reduction that
is typical for statistical techniques (e.g. (Kolassa et al., 2013)). The
global average of the anomaly soil moisture temporal standard devia-
tions for the SMAP NN retrievals, the SMAP L2P retrievals and the
GEOS-5 estimates are 0.020 m3 m−3, 0.036 m3m−3 and 0.015 m3m−3,
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respectively, suggesting that the lower dynamic range of the NN re-
trievals compared to the L2P retrievals is driven by the lower dynamic
range of the model. At the core sites in Fig. 5, the NN estimates appear
to better match to dynamic range of the in situ measurements than the
L2P retrievals, however, the limited number of core validation sites
does not permit conclusions regarding the general suitability of the
retrieval products' dynamic range.

A notable exception from the typical relative skill ranking is the
Reynolds Creek site, where the NN retrievals have a significantly higher
skill than the L2P retrievals in terms of the correlations and ubRMSE.
Since the retrieval inputs are very similar for both products, the skill
difference is likely caused by uncertainties in the ancillary data used by
the L2P algorithm (for example the soil texture or roughness).

From the NN retrieval perspective, differences in the core site cor-
relation skill between the NN and L2P retrievals can be caused by (1)
errors in the target data, (2) errors in the satellite input data or (3)
missing information in the NN inputs. The first two error sources affect
the quality of the NN fit, whereas the latter would prevent the NN from
capturing the full range of soil moisture variability. Errors in the SMAP
observations would affect both of the retrieval products, such that
target data errors or missing input information are more likely causes
for the slightly lower NN retrieval correlations against the core site
measurements. The results indicate that for the purpose of generating a
‘stand-alone’ soil moisture retrieval product, the L2P retrieval algorithm
is slightly more suitable than the NN approach. However, our findings
also demonstrated the potential of the NN retrievals to supplement the
physically-based approaches in regions where the ancillary data or RTM
parameterization is uncertain. The core site results also show that the
NN retrievals are of sufficient quality to warrant further study into their
assimilation as motivated above.

4.2.2. International soil moisture network
Next, we analyze the NN retrieval skill against in situ measurements

from the ISMN. While these are single point measurements and thus less
suitable than the core site data for evaluating satellite retrievals, they
are more numerous and are available for a greater variety of climate
and land cover conditions. As before, we also estimate the skill of the
L2P retrievals and the GEOS-5 model estimates against the ISMN data
for comparison.

In contrast to the evaluation against the core site data, the corre-
lation skill of the three soil moisture products against the ISMN mea-
surements is more similar, with an average correlation of 0.52 for the
GEOS-5 model, 0.58 for the NN retrievals and 0.56 for the L2P re-
trievals (Fig. 7 (a)). This suggests that at the ISMN sites the NN re-
trievals slightly better capture the soil moisture seasonal variations.
However, the lower correlations compared to the core site evaluation
also illustrate that the single-sensor measurements of the ISMN less
adequately represent the retrieval and model spatial scales.

To further interpret the correlation differences between the three
products, Fig. 8 maps the ranking of the three datasets, with the marker
at each ISMN site indicating the dataset with the highest skill. For better
readability we only plotted sites located in the contiguous US (i.e.,
iRON, PBO H2O, SCAN, SNOTEL, SOILSCAPE and USCRN), which
constitutes the majority of sites used in this study. A large part of the
ISMN stations where a skill assessment was possible are located in the
Western US, as the screening for dense vegetation reduces the data
availability in the Eastern US below the threshold for computing a skill
metric.

The model shows the highest correlation skill at many of the stations
located in or near the Rocky Mountains (Fig. 8 (a)). In mountainous and
rough terrain the microwave retrievals are less reliable, because of the
increased surface roughness at the instrument footprint scale
(Schmugge et al., 1980). Furthermore, the screening for frozen soil
removes a large part of the SMAP time series and reduces the retrieval
algorithm's ability to correctly capture the soil moisture seasonal cycle
in the training phase. In flatter regions away from the mountains, such

as the Central Valley, Arizona, South East New Mexico or North Dakota,
the retrievals mostly have higher correlations than the model (Fig. 8
(a)). Thus, the high station density near the Rocky Mountains slightly
skews the average correlation in favor of the model resulting in a model
correlation that is comparable to those of the retrieval products. Our
clustering approach (Section 3.2) mitigates this skew to some extent,
but with a cluster spatial extent limited to 1°, we still use a higher
number of clusters in the Rocky Mountain region than in other parts of
the US. A longer SMAP time series will allow for more correlations to be
computed for stations in the Eastern US and would likely lead to dif-
ferent relative correlation skill values for the retrievals and the model
estimates.

It is worth noting that our correlation value of 0.65 versus SCAN for
the SMAP NN retrievals (Fig. 7 (a)) is similar to the 0.61 correlation
versus SCAN obtained for SMOS NN retrievals by Rodríguez-Fernández
et al. (2015). However, it is not possible to draw firm conclusions re-
garding the relative quality of the SMAP and SMOS NN products, owing
to the differences in the validation period and data quality control
between Rodríguez-Fernández et al. (2015) and our study.

In terms of the network average anomaly correlations (Fig. 7 (b)),
the L2P retrievals have the highest skill with an average anomaly cor-
relation of 0.50 compared to 0.48 and 0.44 for the NN and GEOS-5
products, respectively. Investigating the ranking in terms of the
anomaly correlations (Fig. 8 (b)) shows that the L2P product has the
highest anomaly correlation for most of the stations leading to the
highest average anomaly correlation.

Finally, the NN retrievals have the lowest average ubRMSE of
0.026 m3 m−3 compared to 0.030 m3 m−3 for the L2P retrievals and
the GEOS-5 estimates (Fig. 7 (c)). This relative behavior is largely
driven by a significantly lower ubRMSE for the NN retrievals against the
DAHRA and RSMN networks. Across all stations, the ubRMSE ranking
of the three products in Fig. 8 (c) is fairly evenly distributed. This also
indicates that the lower network average errors observed for the L2P
product are not consistent, but driven by a few stations with a low L2P
error.

Overall, the correlations of all three products with respect to the
ISMN data are lower than for the comparison against the core site data,
owing to the lower representativeness of the ISMN stations compared to
the core sites.

4.3. Triple collocation analysis

For a global evaluation of the SMAP retrieval products and the
GEOS-5 model estimates, we estimate the fractional error standard
deviations using the TC analysis (Section 3.3).

The fractional error spatial patterns mostly show good agreement
across the three soil moisture products (Fig. 9), corroborated by the
very similar global mean fractional error of∼ 1.1 for all three products.
All products have fractional errors higher than 1 in the arid and semi-
arid regions of the Sahara, the Tibetan Plateau, Northern Mexico and
the Northern Arabian Peninsula, indicating that the noise (even though
it is small in absolute terms) dominates the small soil moisture signal
here and limits the accuracy of all three products. Other arid and semi-
arid regions, however, including most of Australia, Southwest Africa
and the Southern Andes, have low fractional errors for all products.
This indicates that the local fractional errors are driven by a combi-
nation of factors, likely including the mean soil moisture level, the
surface roughness, land cover and soil type.

Despite a general similarity of the fractional error spatial patterns of
all three soil moisture products, several differences between the re-
trieval and model error patterns exist. For example, the GEOS-5 esti-
mates have higher errors than the retrieval products in the high latitude
boreal regions of Alaska and Eastern Siberia, where the precipitation
forcing is less reliable (Reichle and Liu, 2014). In contrast, both re-
trieval products have higher fractional errors than the model in areas
surrounding the tropical forests, where a denser vegetation cover limits
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the canopy penetration of the microwave signal and the higher surface
roughness increases the signal noise.

The NN and L2P retrieval products show a generally good agree-
ment of the fractional error spatial patterns, but differences in the ab-
solute values exist (Fig. 10). For example, the L2P retrievals tend to
have lower fractional errors (or noise-to-signal ratios) in the arid re-
gions of Central Australia, the Kalahari or the Southern Sahara, possibly
indicating that the ancillary soil data used by the L2P algorithm allows
it to better account for the effect of surface roughness, which can be
significant in arid regions. However, this behavior is not observed in
other arid areas, such as the Central Sahara or the Arabian Peninsula.
The NN retrievals have a lower fractional error in moderately to densely
vegetated regions and transition zones, such as India, Central Africa,
Eastern Brazil and Northern Australia. This suggests that in these re-
gions, the NN method can produce soil moisture estimates with a higher
certainty and could be used to supplement or improve the L2P re-
trievals. However, due to the lack of in situ stations in these areas, this
finding cannot be further corroborated.

While the characterization of the global error distributions is in-
formative, it is important to keep in mind that the error estimates de-
rived from the TC analysis here are also subject to uncertainties. These
are related to (1) differences in the overpass times between AMSR2 and
ASCAT relative to SMAP and the simulation times of the model, (2) the
slightly lower emission depth of the higher frequency AMSR2 and
ASCAT data compared to SMAP and the depth of the model's surface
layer, and (3) potential errors in the porosity data used to convert the
ASCAT data into volumetric surface soil moisture estimates.

5. Summary

In this study we developed and evaluated a NN based retrieval al-
gorithm to estimate global surface soil moisture from SMAP brightness
temperatures. The SMAP NN retrieval product was trained on GEOS-5
model estimates and evaluated against in situ measurements from the
SMAP core validation sites and the ISMN. The skill of the NN retrieval
was compared against that of the GEOS-5 estimates and the SMAP L2P
retrievals.

The comparison of the SMAP NN retrieval product against the
GEOS-5 model soil moisture showed that globally the two datasets
agree well. Differences occur in mountainous regions, where the mi-
crowave satellite retrievals are uncertain, and in agricultural areas,
where the satellite retrieval product possibly captures the result of
agricultural practices (such as irrigation, tilling and harvesting) that are
not represented in the model. Combined with the generally higher skill
of the SMAP retrievals against in situ measurements, the results confirm
the potential for the SMAP observations to inform a model through data
assimilation, as has been shown with the SMAP Level-4 products
(Reichle et al., 2017b).

The SMAP NN soil moisture estimates compare favorably against
the SMAP core site in situ measurements with an average correlation
and anomaly correlation of 0.70 and 0.66, respectively, and an average
ubRMSE of 0.037 m3m−3. Evaluated against ISMN sparse network in
situ measurements, the correlation and anomaly correlation were 0.58
and 0.48, respectively, and the ubRMSE was 0.026 m3m−3. The core
site data better represent the spatial scales of a satellite footprint or
model grid cell, leading to the higher skill of the NN retrieval against
core site data than against ISMN data.
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The NN retrievals had a higher correlation (by 0.06) and a higher
anomaly correlation (by 0.09) against core site in situ measurements
than the GEOS-5 model estimates, which were used as the NN target
data. The corresponding average ubRMSE of the NN retrievals was
0.004 m3m−3 lower than that of the GEOS-5 estimates. Evaluated
against ISMN data, the relative skill of the NN retrievals and model
estimates was comparable to that found during the core site evaluation.

Overall, the results suggest that (1) the NN retrievals are able to use
the SMAP brightness temperatures to correct potential errors in the
model-based target data and (2) the NN retrievals capture soil moisture
information not present in the model, resulting in better agreement
with the core site and ISMN in situ measurements. The latter indicates
that the NN retrievals may be beneficial in data assimilation, in parti-
cular for the short-term soil moisture variations (captured by the
anomaly correlations against the cores sites) for which the skill differ-
ence between the retrievals and the model estimates is the highest.

Generally, the (anomaly) correlation skill of the NN retrievals
against core site measurements is lower than that of the SMAP L2P
product (by 0.08 and 0.05 for the correlations and anomaly correla-
tions, respectively). The ubRMSE of the NN retrievals, however, is
lower than that of the L2P retrievals by 0.004 m3m−3. Evaluated
against ISMN data, which represent a more diverse set of local condi-
tions but only provide point-scale information, the NN and L2P

retrievals have a very similar (anomaly) correlation skill, but the NN
retrievals have a lower ubRMSE (by 0.04 m3m−3) than the L2P re-
trievals. The slightly lower (anomaly) correlation skill of the NN re-
trievals at the core sites is most likely related to errors in the training
target data or missing information in the input data, whereas the higher
ubRMSE of the L2P retrieval at the core sites is likely related to the
higher time series variability of this product.

A triple collocation analysis using AMSR2 and ASCAT soil moisture
retrievals as the additional two datasets showed that at the global scale
all three products have comparable errors relative to their respective
soil moisture dynamic range. The NN and L2P retrieval products have
very similar error spatial patterns, but the NN retrievals have a better
skill than the L2P product in densely vegetated regions and transition
zones outside of CONUS. The GEOS-5 model has a slightly different
error spatial patterns compared to the retrievals, with notable differ-
ences in high latitudes, where the model has higher errors owing to the
increased uncertainty in its precipitation forcing, and in densely vege-
tated areas, where the retrieval products are less reliable owing to the
lower soil moisture sensitivity of SMAP brightness temperatures in the
presence of dense vegetation.

Overall, the skill of the SMAP NN retrievals is only slightly worse
that of the SMAP L2P retrieval product, but the NN retrievals are pro-
vided in the global climatology of the GEOS-5 model, which may reduce
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the need for further bias correction before data assimilation. Local
biases between the NN retrievals and the model, however, are retained
in the NN retrievals, which would violate typical data assimilation re-
quirements. Additionally, local discrepancies between the dynamic
range of the NN retrievals and the model estimates could result in non-
orthogonal errors between the observations and the model estimates,
which would also violate typical data assimilation requirements.
Consequently, further investigation is needed to determine the impact

of such violations on the quality of the hydrological fields and surface
flux estimates obtained from data assimilation, and whether the as-
similation system can use NN retrievals more efficiently than standard
retrievals or brightness temperatures.

The natural next step is thus to assimilate the SMAP NN retrieval
product and compare the resulting analysis skill against that of assim-
ilation experiments using traditional localized or other non-localized
bias correction techniques, and against the assimilation of L2P
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Fig. 9. Fractional error standard deviations estimated from
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retrievals and brightness temperatures. Another possible extension to
this study would be to use the higher-resolution SMAP Enhanced Level-
1C brightness temperature product (Chaubell et al., 2016) to generate
SMAP NN soil moisture retrievals at a higher spatial resolution.
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