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Accurate latent (LE) and sensible (H) heat flux partitioning from Land Surface Models (LSMs) is important for nu-
merical weather prediction. Land data assimilation can play a key role in improving heatflux prediction bymerging
information from a range of remotely sensed products with LSMs. This paper demonstrates this potential for an
open grassland site in Australia via one-dimensional experiments spanning a year-long period. With a focus on
how a LSM is impacted, in-situ field observationswere assimilated. Data types as available from passivemicrowave
and thermal infra-red remote sensors were tested for their impact, with individual and joint assimilation of LE and
H, near-surface soil moisture, and skin temperature observations—all on time scales approximating satellite over-
pass intervals. Assessed against independent data from field observations, the multi-observation approach of
joint near-surface soil moisture and skin temperature assimilation made the greatest improvements to LE
(expressed as daily evapotranspiration; ET), being slightly better than for joint LE and H assimilation. This result
questions the value of using LE and H retrievals from thermal imagery within an assimilation context. Individually,
skin temperature assimilation was one of the best performers for soil temperature estimates but with degraded
root-zone soil moisture estimates andminimal ET improvements. Likewise, near-surface soil moisture assimilation
produced the greatest root-zone soil moisture improvement but with relatively modest ET improvement.
Combined near-surface soil moisture and skin temperature assimilation balanced the improvements to both soil
moisture and temperature states along with strong improvements to ET estimates, highlighting the benefits of
multi-observation assimilation.

Crown Copyright © 2013 Published by Elsevier Inc. All rights reserved.

1. Introduction

Land Surface Models (LSMs) require careful initialisation in order to
achieve accurate latent (LE) and sensible (H) heatfluxprediction. Relative
humidity and temperature in the lower atmosphere are influenced by LE
and H from the land surface (Denman et al., 2007), and hence LSM state
initialisation impacts Numerical Weather Prediction (NWP) model skill
(Beljaars et al., 1996; Case et al., 2008; Chen et al., 2001, 2007; Koster et
al., 2004). Due to spatial and temporal land surface heterogeneity and
the resulting complexity of water and energy exchanges between soil,
vegetation, and the atmosphere, characterising these interactions with
LSMs is inherently uncertain. Thus a challenge for NWP is to obtain the
most accurate LE and H predictions from LSMs whilst maintaining realis-
tic model physics and state estimates. Global coverage and regular tem-
poral repeat of land surface state and flux quantities from current and
emerging remote sensing data provides an opportunity tomeet this chal-
lenge through data assimilation, the processwhereby such information is

combined with model estimates (factoring in uncertainty estimates for
each) to produce the best predictions possible.

Remotely sensed information relevant to LSMs includes micro-
wave brightness temperature, which is related to soil moisture con-
tent (e.g. Gao et al., 2006; Njoku & Entekhabi, 1995) and forms the
basis of global soil moisture data products such as those derived
from Advanced Microwave Scanning Radiometer (AMSR-E/AMSR2)
data (Imaoka et al., 2010; Owe et al., 2008) or the European Space
Agency's Soil Moisture and Ocean Salinity (SMOS) data (Kerr, 2001). Ac-
tive microwave sensor data such as from the Advanced Scatterometer
(ASCAT) are also valuable for deriving soil moisture content (Wagner
et al., 1999) andhave beenused for assimilation research in anNWP con-
text (e.g. Mahfouf, 2010), including use for testing a newly implemented
assimilation scheme in an operational system (de Rosnay et al., 2012)
and for operational forecasting (Dharssi et al., 2011). Thermal infra-red
(TIR) data provide information on skin temperature and hence model
soil temperature states, which are an important part of the land surface
energy and water balance (Entekhabi et al., 1994; Viterbo & Beljaars,
1995). Moreover, skin temperature based on data from sensors such as
the Moderate Resolution Imaging Spectroradiometer (MODIS: e.g. Wan
& Li, 1997) and Landsat Thematic Mapper (TM: e.g. Sobrino et al.,
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2004) can be combinedwith other remote sensing data to derive spatial-
ly distributed LE and H data products using algorithms such as METRIC
(Allen et al., 2007), SEBS (Su, 2002), and SEBAL (Bastiaanssen et al.,
1998).

Inmany coupledNWP systems soilmoisture is treated as a tuning var-
iable and adjusted in non-physical ways to produce fluxes that are con-
gruent with atmospheric observations (Douville et al., 2000; Mahfouf,
1991; Rhodin et al., 1999; Seuffert et al., 2004).With the aim of achieving
more physically realistic LSM predictions of soil states (i.e. soil moisture
and temperature) and heat fluxes (i.e. LE and H), a common assumption
is that more accurate root-zone soil moisture should lead to improved
heat fluxes, due to the role of profile soil moisture in regulating the
partitioning of available energy at the land surface (Reichle et al., 2007).
To this end, and spurred by the emergence of remotely sensed soil mois-
ture products, there has been considerable LSM assimilation research
focusing on soil moisture.

The potential for improving root-zone soil moisture predictions with
near-surface soilmoisture assimilation (remote sensing products charac-
terise the top few centimetres of soil atmost) has been demonstrated via
synthetic studies (Entekhabi et al., 1994; Kumar et al., 2009; Pipunic
et al., 2008; Reichle et al., 2008; Walker & Houser, 2004). Real data on
near-surface moisture has been assimilated in one-dimensional in-situ
field experiments (Li & Islam, 1999; Sabater et al., 2008; Walker et al.,
2001a). Experiments using remotely sensed products have also shown
some potential in terms of improving root-zone soil moisture (Draper
et al., 2009a; Reichle & Koster, 2005; Reichle et al., 2007), but few have
demonstrated impacts on atmospheric prediction (Mahfouf, 2010).
Skin temperature assimilation has also been investigated via synthetic
experiments (e.g. Entekhabi et al., 1994; Pipunic et al., 2008) and real
data experiments involving both in-situ field and remotely sensed data
(Huang et al., 2008; Lakshmi, 2000; McNider et al., 1994; Meng et al.,
2009; Reichle et al., 2010), showing promise for the improvement of
model states and/or heat fluxes.

Assimilating combinations of different observation types is
expected to provide better overall model constraint through direct
impact on different variables simultaneously. Research into such
strategies is important as the availability of different remotely sensed
data increases. Examples include synthetic experiments for combined
assimilation of observations relating to remotely sensed soil moisture
and skin temperature by Entekhabi et al. (1994) and Balsamo et al.
(2007) for an NWP context (whose study also incorporated screen-
level variables). While Balsamo et al. (2007) assessed the contribution
to atmospheric screen-level prediction from different observations,
and highlighted the importance of soil state and land surface heatfluxes
to screen-level prediction, neither study explicitly assessed land surface
flux predictions.

Pan et al. (2008) assimilated both remotely sensed microwave
brightness temperature (linked to soil moisture) and an LE/ET product.
Assessed against independent model predictions there was improve-
ment to soil moisture but not to ET, leading them to conclude that im-
provement from assimilating remotely sensed ET remains challenging.
The strategy of assimilating heat flux observations has received minimal
attention in literature. Other examples are limited to Schuurmans et al.
(2003) who assimilated remotely sensed ET retrievals from the SEBAL
algorithm (Bastiaanssen et al., 1998), showing impacts on modelled ET
that appeared promising but with no independent data for validation,
and the assimilation of both LE and H in a synthetic study by Pipunic et
al. (2008) which showed improved flux predictions. Hain et al. (2012)
assimilated soil moisture estimates which they retrieved using an ET
product derived from TIR remote sensing, along with microwave based
soil moisture estimates. However they did not explicitly assimilate ET
itself and only evaluated assimilation impacts onmodelled soil moisture,
with the soil moisture data derived from the ET product making the best
improvements to modelled root-zone moisture.

Current challenges with remotely sensed data assimilation include
disparate spatial and temporal resolution between data sources available

for model input, assimilation and validation, and considerable errors in
both remotely sensed products and models (Reichle et al., 2007). From
an operational NWP perspective, the ultimate aim is to utilise avail-
able land surface and screen-level meteorological observations for
assimilating into a system where the LSM and atmospheric model
are coupled. The scope of this study covers only LSM assimilation,
as it is important to thoroughly test a LSM offline first and under-
stand the impacts (and limitations) from assimilating different data
types—starting with point-scale scenarios where observational un-
certainties from in-situ measurements are better understood, prior
to testing in more complex spatial scenarios and coupled systems in-
volving greater uncertainty.

This paper examines the impact from assimilating different data
types on soil states and heat fluxes for the CSIRO Biosphere Model
(CBM, Wang et al., 2001, 2007)—a version of the Community Atmo-
sphere Biosphere Land Exchange (CABLE) model (Kowalczyk et al.,
2006; Wang et al., 2011). The work presented here is an extension to
the synthetic twin experiments of Pipunic et al. (2008) which demon-
strated the potential of assimilating remotely sensed product types
other than soil moisture to improve heat flux predictions. That study
was based on simulations limited to a 3 month period forced with data
from summer/early-autumn and with relatively uniform/sparse vegeta-
tion cover (LAI ~0.30–0.40). While it demonstrated that LE, H and skin
temperature assimilation could provide comparable and/or better im-
provement to heat fluxes than near-surface soil moisture assimilation
alone, it also showed that improved soil moisture predictions from
near-surface soil moisture assimilation did not translate to the best over-
all LE and H predictions.

Herewe extend on the proof-of-concept study of Pipunic et al. (2008)
via year-long experiments spanning the full vegetation growth cycle and
using real in-situ observations of LE, H, near-surface soil moisture and
skin temperature. This includes combinations of observations that repre-
sent multi-sensor data assimilation approaches not examined in the
synthetic study. While different temporal scales are taken into account,
including the masking of optical data by cloud, this paper does not ad-
dress the important issue of the contrasting spatial scales between opti-
cal and passive microwave products.

2. Modelling and assimilation

The CSIRO Biosphere Model (CBM, Wang et al., 2001, 2007) used in
this study was developed in Australia by scientists at the Common-
wealth Scientific and Industry Research Organisation (CSIRO), Marine
and Atmospheric Research division. It was used for the synthetic
study by Pipunic et al. (2008), and for consistency, was used in the
extension of that work presented here. As a precursor to the current
Community Atmosphere Biosphere Land Exchange (CABLE) model
(Kowalczyk et al., 2006; Wang et al., 2011), which is planned for use
as the LSM for Australia's NWP (Law et al., 2012), the CBM shares sim-
ilar formulations for the land surface water and energy balances. The
data assimilation scheme used for all experiments in this study was
the Ensemble Kalman Filter (EnKF, Evensen, 1994).

A description of the CABLEmodel by Kowalczyk et al. (2006) provides
details on the energy balance and soil scheme, which are very similar in
the two versions (CBMand CABLE). The CBMsoil profile has a total depth
of 4.60 mand consists of six layers of fixed thicknesswhich are (from the
uppermost to the bottom layer): 2.2, 5.8, 15.4, 40.9, 108.5 and 287.2 cm.
Soil moisture movement is only in the vertical direction between layers
and is calculated based on Richard's equation, with individual prognostic
soil moisture and soil temperature state variables being associated with
each layer. However, only a single set of soil parameter values can be
specified for all soil layers, resulting in uniform properties over the
whole soil profile. Linking with the vegetation scheme is through the
plant root distribution, where the percentage of roots in each soil layer
can be specified by the user. Vegetation in the CBM is represented by a
detailed two leaf canopy model—a “big” sunlit and a “big” shaded leaf
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(Wang & Leuning, 1998)—which includes aerodynamic and radiative in-
teraction between the ground and the vegetation (Raupach et al., 1997).
Also included in the CBM are calculations for photosynthesis, leaf tem-
perature, and stomatal conductance.

The Leaf Area Index (LAI) parameter plays a key role in determining
the relative fraction of canopy cover to bare soil. Net radiation is calcu-
lated separately for the vegetation canopy and soil surface, as is LE andH
where total LE andH outputs are the sumof the canopy and soil compo-
nents. Total skin temperature from the CBM is based on a combination
of the soil and canopy surface temperature components involved in
longwave radiation balance calculations and is summarised as follows:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:0−f LAIð Þf g � Tcan4

� �þ f LAIð Þ � Tsoil4
� �

:
4
q

ð1Þ

The soil component (Tsoil) is the temperature state variable of the
top-most soil layer (0–2.2 cm), while the canopy surface component
(Tcan) is based on a non-prognostic leaf temperature variable which is
determined iteratively at every model time step (after initialisation
with air temperature frommeteorological forcing) as part of the vegeta-
tion canopy energy balance calculations. Relative contributions from soil
and vegetation components to the total skin temperature are deter-
mined by a weighting factor f(LAI), which is a function of LAI that de-
scribes the fraction of radiation (from 0 to 1) transmitted through the
canopy.

The aim with sequential data assimilation techniques, such as the
EnKF used in this work, is to update and correct prognostic state vari-
ables, with an expectation that key diagnostic variables, such as heat
fluxes, will consequently be improved. Updates were applied here to
soil moisture and soil temperature states for each of the six CBM soil
layers. In relation to heat fluxes, the top-most soil layer moisture and
temperature states are closely related to the soil component of LE,
while the soil moisture states for layers which have roots are used in a
water availability term linked to the vegetation component of LE, and
hence also indirectly linked to leaf temperature. The temperature state
variable of the top-most soil layer is closely linked to calculations for
the soil component of H, whereas the vegetation canopy component re-
sults from vegetation energy balance calculations, involving the vegeta-
tion component of LE and the non-prognostic leaf temperature variable
(both indirectly linked to soilmoisture). Details of the EnKF and its appli-
cation to the CBM are contained in Pipunic et al. (2008).

For meaningful comparisons to be made between observation-based
and LSM predicted state data as part of data assimilation, systematic
biases must be removed (Drusch et al., 2005; Reichle & Koster, 2004).
Bias can be due to representative differences, such as differences in soil
depth or spatial scale between observations and model estimates, and
also uncertainties specific to different sources of information. These in-
clude uncertain LSM parameters such as wilting point and field capacity
(amongst others) which influence moisture dynamics (Koster & Milly,
1997), while observation-based data may have different dynamics as a
results of a particular observing instrument or algorithmused to estimate
final quantities from remotely sensed observations. Although instrument
bias is typically of limited concern for well calibrated in-situ installations,
the correct treatment of bias remains a challenge, particularly using LSMs
and remotely sensedproducts in the absence of adequate information en-
abling its source(s) to be accurately identified and quantified.

Rescaling approaches such as cumulative distribution function (cdf)
matching of observed data series to LSM state climatology prior to as-
similation are now considered de rigueur for bias removal (e.g. Draper
et al., 2009a; Drusch et al., 2005; Reichle & Koster, 2004). Reichle and
Koster (2004) demonstrated that rescaling remote sensing derived sur-
face soil moisture to model predictions for a one year period reduced
observation-model bias over a subsequent nine year series, but did
not fully remove it. This highlights the difficulty in thoroughly under-
standing and dealing with such bias, especially if only short data
series are available. Keeping in line with current standard practice,

observation-model bias for land surface states in this study were elimi-
nated by rescaling the observed data series prior to assimilation, by
matching themean and standard deviation to that of the CBMpredicted
series. In the long-term however, research effort should focus on better
understanding and treating bias in LSMs which may involve improve-
ments to model physics and/or better parameterisation—likewise for
remotely sensed land data products given the ultimate aim is operation-
al assimilation.

3. Study site and data

The one-dimensional modelling experiments presented in this
paper were carried out for a flux station site in south eastern Australia,
located on non-irrigated pasture within a mainly agricultural area at
Kyeamba Creek (Fig. 1). Site instrumentation consisted of an eddy co-
variance system, meteorological sensors, soil moisture and soil temper-
ature sensors. Smith et al. (2012) summarises the main instruments
used and briefly describes the landscape of the Kyeamba Creek catch-
ment. Key environmental characteristics and CBM parameter values
that were used for modelling experiments here are summarised in
Table 1.

This site wasmanaged by this paper's lead author and no details have
previously beenpublished on thebasic processing for this data, thus some
are included herein. Kyeamba Creek is a tributary of the Murrumbidgee
River, located in the south of Australia's Murray Darling Basin. The flux
station locationwas on the alluvial flats of the creek valley approximately
20 km south east of an Australian Bureau of Meteorology (BoM) auto-
matic weather station in the town of Wagga Wagga (Fig. 1). Heat fluxes,
meteorological variables, soil moisture and soil temperature datawere all
measured for a full year period from January 1st to December 31st 2005
and processed to a 30 minute time-step. The total percentage of instru-
ment down-time at the site was approximately 10%, with the longest
consecutive gap being about 16 days from day of year (DoY) 59 to 75.
Meteorological data gaps were in-filled using 30 minute meteorological
data compiled from BoM Wagga Wagga automatic weather station data
(Siriwardena et al., 2003), with the exception of rainfall forwhich supple-
mentary data was available from an adjacent OzNet monitoring station
(Smith et al., 2012) approximately 200 m away (http://www.oznet.org.
au/k10.html). Corresponding gaps in the LE,H, soilmoisture and soil tem-
perature data series were not in-filled.

The LE and H were measured with an eddy covariance system
consisting of a CSAT 3D sonic anemometer (Campbell Scientific Inc.,
1998) and LI-7500 open path gas analyser (LI-COR Inc., 2003). They
were elevated 3 m above the ground giving an approximate maximum
fetch of 300 m. A CNR1 four-way net radiometer (Kipp & Zonen, 2002)
measured the incoming and outgoing components of short and longwave
radiation for determining the total net radiation at the land surface (RN).
Groundheatflux (G)was alsomeasuredusing twoHFT3 groundheatflux
plates (Campbell Scientific Inc., 1999) buried 8 cmbelow the surface, and
corrected to represent G at the land surface using temperature thermo-
couple and soil moisture measurements in the 0–8 cm layer of soil as
outlined in the HFT3 manual (Campbell Scientific Inc., 1999).

The LE and H data were filtered for spurious values and conditions
known to compromise the quality of 3D eddy covariance measurements
(e.g. rainfall), and night time data (from 6 pm to 6 am) were discarded.
The energy balance gap between (LE + H) and (RN − G) was approxi-
mately 20% and the technique of Twine et al. (2000) was applied to
achieve closure. This method adjusts LE and H to achieve a closed energy
balance againstmeasured (RN − G) whilemaintaining a constant Bowen
Ratio (H/LE). The root mean square error (RMSE) between the LE and H
data before and after closing the energy balance was just under 40
Wm-2 for each.

Soil moisture observations were made over depths of 0–8 cm,
0–30 cm, 30–60 cm and 60–90 cm using CS615 water content re-
flectometer probes (Campbell Scientific Inc., 1996), and calibrated
using a number of independent gravimetric and TRASE Time Domain
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Reflectometer (TDR, Soil Moisture Equipment Corp., 1989) volumetric
soil moisture measurements made under wet and dry conditions. After
soil temperature correction of raw CS615 data following Western and
Seyfried (2005), a calibration relationship was established with an accu-
racy of ~0.02 vol/vol. Soil temperature was measured at depths of 2 cm,

5 cm, 10 cm, 20 cm, 50 cmand100 cmwithUnidata 6507A temperature
thermistor probes (Unidata Australia, 1997).

The meteorological variables measured at the station include incom-
ing short and longwave radiation, rainfall, air temperature, wind speed,
saturation vapour pressure and station level barometric air pressure—
specific humidity was derived from barometric air pressure and satura-
tion vapour pressure. These were all used for model forcing over the ex-
perimental period (2005). Incoming short and longwave radiation used
for forcing were measured with the two CNR1 upward facing sensors,
whereas all four separate CNR 1 sensor measurements (upward and
downward facing for both short and longwave) were combined for RN
to correct the LE and H data used for assimilation as described above.
Thus the corrections to LE andH partly involved the same incoming radi-
ation data used for CBM forcing, but also the separately measured outgo-
ing short and longwave radiation and G which were not used for any
model input or results validation. Also, measurements from only the
downward facing outgoing longwave radiation sensor, independent of
the forcing data, were used to construct the assimilated skin temperature
data set.

A separatemeteorological series spanning 2004 fromWaggaWagga
BoMdata (Siriwardena et al., 2003), with rainfall data from the adjacent
OzNet station (Smith et al., 2012; http://www.oznet.org.au/k10.html),
was used as forcing for spinning up the model. The total rainfall used
for the 2004 spin up and for the 2005 experiment periods are both
close to the long term average of annual rainfall for the region, based
on comparison with data from BoM records as shown in Table 1.

An actual evapotranspiration (ET) serieswas also derived for 2005 to
provide a data set independent to the eddy covariance measurement
series. This derived ET series was used for assessing LE predictions, as
the assimilated heat flux observations were sampled from the eddy co-
variance series. The site specific data available to achieve this were rain-
fall—also used for model forcing—and root-zone (estimated to be
within the top 60 cm for the grassland) soil moisture data consisting
of both 0–30 cm and 30–60 cm deep probe measurements, which are

Fig. 1.Map showing locations of theKyeambaCreekflux station study site,WaggaWaggaBoMautomaticweather station, andNSWOffice ofWater discharge gauges for KyeambaCreeknear
Ladysmith andBookBook. Grey elevation contour lines are inmetres. TheOznet soilmoisture and rainfallmonitoring site is situated ~200 mwest of theflux station. A broad scale overviewof
the Kyeamba Creek site location in south eastern Australia is shown in the bottom right hand corner with the black boundary delineating the Murray Darling Basin.

Table 1
Summary of Kyeamba Creek flux station site characteristics and key model input data
relevant to numerical experiments.

Managing institution The University of Melbourne

Location (WGS84) 147.56°E, -35.39°S
Elevation—metres above sea level ~233
Vegetation Grass pasture (non-irrigated)
LAI rangea ~0.25 (Summer/Autumn)–3.0

(Spring)
Average canopy height (m) ~0.25
Dominant soil type Silty loam
Soil bulk density (kg/m3) 1475
Soil porosity (vol/vol) 0.450
Soil field capacity (vol/vol) 0.360
Soil wilting point (vol/vol) 0.070
Soil hydraulic conductivity at saturation (m/s) 8.33 × 10−6

Soil suction at saturation (m) 0.505
Long term average annual rainfall (mm/yr)b ~575
Spinup period (simulation repeated 12 times)c

Total rainfall (mm):
Jan 1st 2004–Dec 31st, 2004;
585

Experimental periodd

Total rainfall (mm):
Jan 1st 2005–Dec 31st, 2005;
595

a Based on AVHRR-derived monthly data used for simulations over 2004 and 2005.
b For the period 1941–2012 at theAustralian Bureau ofMeteorology (BoM)WaggaWagga

station (http://www.bom.gov.au/climate/averages/tables/cw_072150.shtml) shown in Fig. 1.
c Most of the meteorological forcing generated from BoM Wagga Wagga station data

(Siriwardena et al., 2003), with rainfall data from the K10 Oznet station (Smith et al., 2012)
~200 m from the flux station site.

d All data are site measured, with small gaps in the forcing in-filled using Wagga Wagga
BoM data and rainfall gaps in-filled using the nearby K10 Oznet data (Smith et al., 2012).
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independent of the 0–8 cm measurements used for soil moisture
assimilation.

This ET series was based on calculating differences between rainfall
totals and root-zone soil moisture storage changes over time. It was cal-
culated on a fortnightly time scale tominimise excessive noise in the se-
ries from moisture probe data, which is likely to be more prominent
with respect to small moisture changes over shorter time scales. Poten-
tial ET calculated frommeteorological data was used as an upper-bound
for truncating any of the calculated actual ET that exceeded it. Of the
twenty fortnightly ET totals that could be calculated from the available
data, 35% of them clearly exceeded the corresponding potential ET and
were hence reset to the potential value—all of these reset totals occurred
consecutively in time spanning from the DoY 169 total through to DoY
302, in the austral winter and spring (mid-June to end of October).
Deep drainage (below the 0–60 cm root-zone) and/or saturation excess
surface runoff are themost likely reasons for the calculated ET exceeding
its potential in this wetter/cooler period of the year when soil moisture
was high. The total for DoY 316 immediately following this period
exceeded the potential ET by a negligible amount (57.8 mm compared
to 57.4 mm).

Outside the period from the DoY 169 total to DoY 316, where cal-
culated ET exceeded potential ET, all of the fortnightly totals were
considerably below potential. Within one of the driest periods of
the year (late autumn) the calculated ET for the fortnight ending at
DoY 141 was −4.1 mm. This negative value is attributed to soil
moisture probe measurement errors in the dry conditions. Over the
60 cmmeasurement depth, 4.1 mmof water represents approximately
0.007 vol/vol moisture content, which is well within the moisture
probe data error of ~0.02 vol/vol. Any ET occurring in the fortnight end-
ingDoY 141 is therefore likely to be at or near theminimum for the year
and close to zero.

This ET series provides for validation, enabling comparisons to be
made between ET determined in two independent ways using the same
rainfall data—from a complex model (CBM prediction with and without
assimilation) and calculated from direct fieldmeasurements of soil mois-
ture storage (supplemented with potential ET where appropriate). A re-
gression between fortnightly rainfall and the calculated ET resulted in
an R2 of 0.07, indicating that the storage processes in the soil largely re-
move any dependence of the calculated ET on rainfall at a fortnightly
time step. In constructing this series there was an assumption that, out-
side the period where calculated ET was limited to potential ET, there
was no surface run-off over unsaturated soil in the pasture field where
measurements were made.

From the station site therewas no visually discernible gradient for at
least a few hundred metres surrounding it. Where calculated ET totals
were below potential, the near-surface and root-zone moisture were
below saturation and 30 minute rainfall intensities (maximum ob-
served was 8.4 mm in 30 min) were less than the estimated saturated
hydraulic conductivity (Table 1), which equates to a 30 minute total
of 15 mm. The hydraulic conductivity estimate comes from regional
soil data analysis byMcKenzie et al. (2003, 2000). Hence all of the rain-
fall for these periods is likely to have infiltrated into the soil.

The period of high root-zone soil moisture storage in the experimen-
tal year spans most of winter and spring with the main increase towards
maximum storage beginning in June from ~DoY 160. By ~DoY 190 the
storage approaches its maximum, and moisture content levels persist
close to field capacity through to ~DoY 290 in mid-October, sometimes
peaking near saturation (values for these properties are in Table 1 and
their origin discussed later in this section). The highest root-zone storage
occurs within the period where potential ET dominates the constructed
ET validation series, with rainfall that exceeded the potential assumed
to have been balanced by percolation below the 60 cm root-zone depth
and/or run-off. The 60–90 cm soil moisture probe data—which were
not used for modelling or quantitative validation in this study—shows
no notable change in moisture content below the root-zone from the
beginning of the year until ~DoY 200.

Possible groundwater interaction at the site is evident in the form of
three separate extreme spikes in the 60–90 cm moisture data series
that correspond with flow events (Table 2) in Kyeamba Creek at Book
Book and Ladysmith (Fig. 1). This is indicative of lateral recharge of
groundwater, followed by discharge (i.e. bank storage processes), relat-
ed to flow events in Kyeamba Creek located ~350 m to the west of the
study site. There are no independent measurements to verify the peak
values of these moisture data spikes (up to and above ~0.55 vol/vol)
which have only been interpreted qualitatively as indicators of ground-
water influence, and while root-zone soil moisture data show some
increases at these times they are not similarly extreme.

Groundwater interaction could have implications for the fortnightly
ET validation series, particularly following the final 60–90 cmmoisture
data spike shown in Table 2 (DoY 311) leading into the spring/summer
transition—the few days after this and beyond is where ET calculated
from changes in root-zone moisture storage were maintained in the
final data series as they were either equal to or less than the potential
ET. In this period there might have been a small groundwater contribu-
tion to ET via capillary rise into the root-zone, whichwould be captured
in the total ET of the validation series via soil moisture data, but which
could not be quantified separately to it.

Soil parameters used in the CBM (see Table 1)were determined from
a combination of samples collected at the site as part of this study, and
soil property interpretations (McKenzie et al., 2000, 2003) relating to a
1:100,000 scale soil landscape map of the region (Chen & McKane,
1997). Particle size analysis performed on site samples determined that
the top 60 cm of soil is fairly uniform and predominantly silty loam
with clay and sand contents of ~12% and ~33% respectively (CSIRO
particle analysis, May, 2007). A-horizon values from the map related
soil interpretations (McKenzie et al., 2003) were used for wilting point
(assumed to be the moisture content at 15 bar), field capacity (assumed
to be themoisture content at 0.1 bar) and saturatedhydraulic conductiv-
ity. Bulk density and porosity were determined using volumetric soil
samples taken from the top 60 cm at the site, and together with the
map related values forwilting point and field capacity, soil suction at sat-
uration and the Campbell's b parameter were calculated.

Vegetation canopy height and the percentage of roots in each model
soil layer were estimated from field observations. Leaf Area Index (LAI)
values used for the site were monthly averages derived from 0.01° reso-
lution Advanced Very High Resolution Radiometer (AVHRR) fPAR
(Photosynthetically Active Radiation) data of Donohue et al. (2008).
The fPAR data were converted through a fractional cover estimate
(fPAR/0.95; see Lu et al., 2003) from which LAI was estimated
(Choudhury, 1989). Values of LAI from such estimates are known to
become less reliable when they are greater than ~3.0 (Carlson &
Ripley, 1997; Lu et al., 2003). Moreover, McVicar et al. (1996) found
thatmore than 90% offield sampled LAI values froma similar pasture en-
vironment in south east Australia were below 3.0. Therefore, any of the
LAI estimates made for this site greater than 3.0 (for August through to
November) were set to 3.0. Other parameter values used were provided
with the CBM/CABLE model (default values; see Abramowitz, 2006)
pertaining to the agricultural/C3-grassland category from a global vege-
tation dataset based on Potter et al. (1993).

4. Methodology

A one-dimensional CBM set-up was used following Pipunic et al.
(2008) but with real field observations from point scale in-situmeasure-
ments, approximately representing overpass times of remotely sensed
product types that can be derived from MODIS and AMSR-E observa-
tions. The grassland site where observations were made represents
a land-cover for which remotely sensed microwave and thermal
infra-red measurements are typically reliable. CBM simulations
were performed using fixed parameters (derived from site specific
information where possible or from regional datasets as outlined at
the end of the previous section) and with the model uncalibrated, as
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is the casewith the current LSM in Australia's NWP system(Dr P Steinle,
pers comm., May 2011).

Numerical experiments performed for this study included
model simulations for 2005 with: i) no assimilation (denoted as
“Open-Loop”); ii) LE and H observations assimilated together (denoted
as “LEH_Assim”); iii) near-surface soil moisture observations assimilated
(denoted as “SM_Assim”); iv) skin temperature—derived from observed
outgoing longwave radiation—assimilated (denoted as “Tsk_Assim”);
v) a combination of all observations assimilated—LE, H, near-surface
soil moisture and skin temperature (denoted as “ALL_Assim”); and,
vi) a combination of near-surface soil moisture and skin temperature
assimilated (denoted as “SMTsk_Assim”). Available field observations
of soil moisture and soil temperature, along with the calculated fort-
nightly ET estimates, were the independent data used for comparing
with simulation outputs and assessing the impact of each assimilation
option on predicted flux and state values.

Initial state conditions used for all the simulations were obtained
from spinning up the CBM through repeated simulation using the one
yearmeteorological forcing data series for 2004. The spin upwas carried
out until differences between model state values of soil moisture and
temperature for the start of the year matched those at the end of the
year for all soil layers to within 0.001 vol/vol and 0.01 ° C respectively.
This took 12 iterations, withmost of this time attributable to minimising
the differences for the deeper soil layers. CBM simulation time steps are
governed by the time scale of forcing data and are therefore 30 min in
this study.

In implementing the EnKF data assimilation algorithm, error esti-
mates of field measurements were used to define the uncertainty range
for generating observation ensembles, and these are summarised in
Table 3. Model uncertainty for the EnKF is defined from the spread of
an ensemble of model predictions, which in this study was the result of
performing simulations with ensembles of key model inputs. Specifical-
ly, these were ensembles of initial state conditions and forcing data
variables that represented error range estimates of each, since
these inputs contribute to overall model error. Inaccurate model
structure and parameterisation are also major sources of model
error, which due to their complexity are very difficult to represent
with ensembles. Hence they have not been treated directly in the en-
semble generation for this study. Ensemble generation is discussed later.

In all simulations for numerical experiments spanning 2005, ensem-
bles of model inputs included perturbed 2005 forcing data (Table 4)
and perturbed initial state conditions, with covariance inflation applied

to model state ensembles just prior to state update calculations. Fixed
values of key parameters are included in Table 1. More detail on
perturbing model inputs and states for ensemble generation follows.
The ensemble mean of each simulation is taken as the modelled esti-
mate of the truth.

4.1. Assimilation observations

The field observations used for assimilation were sub-sampled
from the original one-dimensional observation data sets, guided by
daytime satellite overpass times of MODIS and the night-time over-
pass time of AMSR-E; while AMSR-E recently ceased operation its
successor AMSR2 is expected to provide similar data (Imaoka et al.,
2010). Other studies where the focus incorporated the Kyeamba
Creek region found that AMSR-E soil moisture produced from local
night-time overpass data was of superior quality to that from daytime
data (Draper et al., 2009b; Su et al., 2013). Hence the soil moisture
data were sampled daily at 2 am local time, approximating the
night-time AMSR-E overpass, while it is acknowledged that AMSR-E
data would not always be available every day for this site.

Thermal infra-red related observations—LE,H and skin temperature—
were sampled twice daily at 10 amand2 pm local time to represent data
available fromMODIS for daytimewhen ET is most active. Sampling skin
temperature for assimilation on the same time steps as LE andHprovides
an important insight into the relative merits of assimilating these differ-
ent data types, given that the derivation of instantaneous remotely
sensed LE and H uses remotely sensed skin temperature. While these
data can also be derived at hourly (MTSAT1R) and bi-weekly (Landsat
TM) timescales, only the MODIS timescale is explored here. Pipunic et
al. (2008) explored the assimilation of bi-weekly LE, H and skin temper-
ature and found that they resulted in much poorer results than for
MODIS intervals. Since clouds can obscure remotely sensed TIR data,
which relate to skin temperature and hence also LE and H observations,
further sub-sampling of these observations at MODIS overpass times
was performed for cloud free conditions (defined here as where incom-
ing solar radiation for the site was greater than 90% of expected clear sky
radiation for the day). Cloud screening for real MODIS data would likely
involve greater complexity and uncertainty, especially with partial cloud
cover, compared to the procedure using in-situ ground data adopted
here. The frequency of assimilated observations is displayed on plots of
simulation results in Figs. 2 through 4.

Table 2
Summary of major spikes in soil moisture data for below the root-zone (60–90 cm) corresponding to spikes in Kyeamba Creek discharge both upstream and downstream from the
point in the creek closest to the study site.

Period 1
60–90 cm soil moisture spike

Period 2
60–90 cm soil moisture spike

Period 3
60–90 cm soil moisture spike

Data set Increase to peak Days at
peak

Consecutive days
rain total to peak

Increase to peak Days at
peak

Consecutive days
rain total to peak

Increase to peak Days at
peak

Consecutive days
rain total to peak

60–90 cm soil moisture
at flux station

DoY 252–253
0.26–0.63 vol/vol
(~110 mm)

9 DoY 252–253
~56 mm

DoY 270–272
0.29–0.57 vol/vol
(~80 mm)

Data Gap DoY 269–272
~40 mm

DoY 310–311
0.19–0.55 vol/vol
(~110 mm)

1 DoY 311
27 mm

Discharge at Ladysmith
(~14 km Upstream)

DoY 251–253
17–5588 Ml/day

1 – DoY 270–272
77–2046 Ml/day

1 – DoY 310–311
38–1106 Ml/day

1 –

Discharge at Book Book
(~4 km Downstream)

DoY 251–253
11–1754 Ml/day

1 – DoY 270–271
32–937 Ml/day

1 – DoY 310–311
23–291 Ml/day

1 –

Table 3
In-situ observations of remotely sensed data types used in this study, with estimated additive error ranges used for ensemble σ values, and satellite sensor information that each
observation represents.

Observed quantity Additive error (ensemble σ) Corresponding satellite/sensor Temporal resolution used Spatial resolution available

LE (Wm−2) ±50 MODIS Twice daily, filtered for cloud ~1 km × 1 km
H (Wm−2) ±50 MODIS Twice daily, filtered for cloud ~1 km × 1 km
Near-surface soil moisture (vol/vol) ±0.04 AMSR-E Once per day (am) ~25 km × 25 km
Skin temperature (K) ±2 MODIS Twice daily, filtered for cloud ~1 km × 1 km
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The root mean square error between eddy covariance LE and H data
before and after closing the energy balance is ~40 Wm−2 each. A review
of derivation methods for TIR based remotely sensed heat fluxes by
Kalma et al. (2008) found the average root mean square error for such
data to be ~50 Wm−2 based on a survey of validation studies. Conse-
quently, this valuewas usedhere for the assimilated LE andHuncertainty.
For soil moisture, a value of 0.04 vol/vol was used. While in-situ calibra-
tion results indicated an uncertainty of ~0.02 vol/vol, this was increased
for consistency with errors in satellite derived observations for a similar
Australian environment (Draper et al., 2009b). As direct TIR data were
not available, skin temperature observations were derived using mea-
sured outgoing longwave radiation by solving for the temperature term
in the Stefan–Boltzmann equation using an assumed emissivity of 0.98
(Wan & Dozier, 1996). The uncertainty range used for these observations
was 2 K, based on some error range estimates for remotely sensed skin
temperature quoted in literature (e.g. Kaleita & Kumar, 2000; Sun et al.,
2004; Wang & Liang, 2009).

The shallowest volumetric soil moisture measurements made were
0–8 cm and consequently these were the observations assimilated.
They correspond exactly with the depth averaged values over the top
two CBM soil layers (2.2 and 5.8 cm respectively) but exceed the obser-
vation depth of real AMSR-E soil moisture data (~1–2 cm),whichmight
have implications for appropriately representing remotely sensed data
assimilation.

In a synthetic study byWalker et al. (2001b) the depth of assimilated
soil moisture data had no significant influence on the time taken to re-
trieve the deeper root-zone moisture profile, although the authors note
that the ability to impact the deeper moisture profile from assimilating
near-surface observationsdepends on the correlation between soilmois-
ture states over depth. A more detailed synthetic study by Kumar et al.
(2009) spanning multiple years, and using multiple LSMs with different
subsurface physics and soil layer depths, found that when the coupling
between the surface and root-zone is stronger the benefit of assimilating
near-surface soil moisture observations to improve root-zone prediction
is higher.

To the authors' knowledge, no studies using real data for a broad
range of observation depths exist in the literature, thus it is not clear to
what extent the measurement depth can influence root-zone impacts
in real systems. The possibility exists that the 0–8 cm near-surface soil
moisture used here might sometimes have a stronger correlation with
the root-zone compared to the top ~1–2 cm, and thus its assimilation
may also have an overstated impact on the root-zone compared to as-
similating data for the shallower AMSR-E product depth. It was not pos-
sible to investigate this issue here as the 0–8 cmmeasurementswere the
shallowest available, hence why only satellite overpass repeat intervals
were considered in relation to representing remotely sensed moisture
data.

4.2. Observation-model bias removal

Prior to assimilation, the in-situ near-surface soil moisture used
for assimilationwas rescaled, to eliminate systematic differences rel-
ative to the CBM predicted near-surface soil moisture series from

Open-Loop, both in terms of its annual mean and its standard devia-
tion. For skin temperature there was no significant difference in
terms of the mean and standard deviation between observations
and comparable Open-Loop predictions (based on an F-Test for var-
iances followed by a t-Test for means assuming equal variances)
hence this data series was not rescaled. The soil moisture rescaling
was applied using:

θ
0
Obs ¼ θObs−μ θObsð Þð Þ � σ θCBMð Þ�σ θObsð Þ� �þ μ θCBMð Þ ; ð2Þ

Table 4
Meteorological forcing variables perturbed for ensemble generation. Comparisons between
KyeambaCreek andWaggaWagga BoMpointmeasurements assistedwith estimating theσ
(as per Turner et al., 2008) for ensemble generation.

Forcing variable Estimated σ for ensembles

Short-wave in ~15%
Long-wave in ~35Wm−2

Precipitation ~60%
Air temperature ~2 °C
Wind speed ~45%
Specific humidity ~0.0007 kg/kg
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Fig. 2. Plots of fortnightly ET totals for Kyeamba Creek showing: Observed validation series,
Open-Loop simulations, and from top to bottom the assimilation experiment outputs from
a) LEH_Assim; b) SM_Assim; c) Tsk_Assim; d) ALL_Assim; and, e) SMTsk_Assim. Dots along
the top of each plot correspond to the assimilation frequency (right hand axis) for LE, H and
skin temperature observations (black), and soil moisture observations (grey).

321R.C. Pipunic et al. / Remote Sensing of Environment 136 (2013) 315–329



Author's personal copy

where the rescaled near-surface soil moisture observations θObs' used
for assimilation were calculated using the mean (μ()) and standard
deviation (σ()) of the 0–8 cm observed series (θObs), and of the series
of CBM Open-Loop moisture predictions depth averaged over
0–8 cm (θCBM) for coincident time steps in the experiment period.

4.3. Assimilation implementation and assessment

Different ensemble sizes were tested with the EnKF and 20 en-
semble members were found to be sufficient for use with the CBM,
congruent with earlier findings from the synthetic-twin study by
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Fig. 3. Plots of daily averaged (midnight to midnight) soil moisture for Kyeamba Creek showing: Observed validation series, rescaled Open-Loop simulations and in each row the
rescaled assimilation experiment outputs from a) LEH_Assim; b) SM_Assim; c) Tsk_Assim; d) ALL_Assim; and, e) SMTsk_Assim. Dots along the top of each plot correspond to the
assimilation frequency (right hand axis) for LE, H and skin temperature observations (black), and soil moisture observations (grey).
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Pipunic et al. (2008). Ensemble generation involved adding random
perturbations tomodel initial conditions and forcing data, and to obser-
vations as ensembles of observations were assimilated. Perturbations
were derived from random numbers generated with a normal distribu-
tion around a mean (μ) of zero with a standard deviation (σ) equal to
the estimate of the error standard deviation of the particular data
being perturbed. Ensembles were produced such that members were

spread within the 95% confidence interval (C.I.) as determined from
the assumed data uncertainty.

For observations (treated as ensemble means), the σ values were
based on the estimates of observational uncertainties in Table 3. En-
sembles of initial model state conditions were generated from the
spun-up initial soil moisture and temperature values. While initial
state perturbations do not persist in contributing to long-term
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Fig. 4. Plots of daily averaged (midnight to midnight) soil temperature for Kyeamba Creek showing: Observed validation series, rescaled Open-Loop simulations and in each row the
rescaled assimilation experiment outputs from a) LEH_Assim; b) SM_Assim; c) Tsk_Assim; d) ALL_Assim; and, e) SMTsk_Assim. Dots along the top of each plot correspond to the
assimilation frequency (right hand axis) for LE, H and skin temperature observations (black), and soil moisture observations (grey).
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ensemble error representation (unlike forcing perturbations which
apply throughout a simulation time series) they were used for initi-
ating the ensemble spread with values of σ = 0.03 vol/vol selected
here for perturbing initial soil moisture and σ = 3 °C for perturbing
initial soil temperature in each layer. The approach of Turner et al.
(2008) was used as a guide for generating meteorological forcing
ensembles, which factors in measurement error and representative
errors when using forcing data from multiple point locations. Both
flux station site forcing data and data from the ~20 km distant
WaggaWagga BoM station (for gap filling) were used here—discrep-
ancies between the full 2005 series of these two datasets were used
to estimate representative error for each variable (based on Turner
et al., 2008). The approximate errors relating to ensemble generation
are included in Table 4.

Given that model structural error or parameter uncertainty were not
specifically accounted for in the ensemble generation, and with the po-
tential for filter divergence to affect EnKF performance over time, covari-
ance inflation (e.g. Anderson & Anderson, 1999) was applied prior to
updating at assimilation times. It was applied by adding small perturba-
tions to each state ensemble member to slightly increase the spread
about the mean prediction. For the CBM near-surface soil layer (2.2 cm
thick), soilmoisture ensemblememberswere inflated by adding random
perturbations generated with σ = 0.01 vol/vol, while σ = 1 °C was
used for soil temperature. These σ values ensured a small inflation of
ensemble spreads to increase the likelihood that state error quantities as-
sociated with unknown parameter and model structure errors are fac-
tored in at update times. For additive inflation of subsequent deeper
soil layer ensembles, σ values were scaled down fractions of the values
used for the surface layer, with the scaling based on the ratio between
the surface layer thickness and each subsequent layer's thickness. This
was to account for the expectation that random state errors are damp-
ened with the deeper/thicker soil layers, which has implications for
state error correlations between layers, and hence EnKF error covari-
ances and filter performance. The use of covariance inflation and basic
assumptions about error correlations are employed here in the absence
of a complete understanding of all errors that would enable optimal de-
pictions of them with predicted ensembles. A detailed investigation for
understanding all aspects of model error is a major task beyond the
scope of this study.

Assessments of themodel simulations weremade by comparing pre-
dictions with independent field data for the variables of interest—ET,
root-zone soil moisture, and surface and root-zone soil temperature.
Root Mean Squared Error (RMSE) and Nash Sutcliffe coefficient of effi-
ciency (E) metrics for quantifying magnitudes of error, and the coeffi-
cient of determination (R2) for quantifying the goodness of fit in terms
of variance, were used to assess simulation predictions against the inde-
pendent field data. Prior to these assessments, state variable predictions
from all simulations (Open-Loop and assimilation experiments) were
rescaled so that their mean and standard deviation matched that of the
corresponding time series of independent field observed states used for
comparison (by substituting relevant values into Eq. (2)). This ensured
that the subsequent state comparisons were bias free relative to the
best available representation of the true states as observed with in-situ
soil temperature probes and soil moisture probes that were calibrated
for the site.

Soil moisture comparisons were made for two different depths, in-
cluding the near-surface (0–8 cm) representing the depth of the assim-
ilated soil moisture observations (as a sanity check) and the deeper
0–60 cm profile (an average of 0–30 cm and 30–60 cm field observa-
tions) corresponding to the estimated vegetation root-zone. For soil tem-
perature, comparisons were made between the shallowest observation
(2 cm) and the top soil layer in the model (0–2.2 cm), being the
prognostic temperature variable linked to the LE and H soil component
calculations. A weighted average of soil temperature measurements
throughout the soil profile was used for comparison with the model
root-zone (0–60 cm) prediction.

5. Results

Fortnightly totals of ET were calculated from 30 minute simulation
outputs in order to compare with the independent ET series that was
derived directly from field observed data. Therefore a fortnightly scale
was the smallest time unit for which ET comparisons were made. It is
acknowledged that for NWP the diurnal surface heating is very impor-
tant and hence comparisons for the full series of 30 minute heat flux
predictions would be informative. However, it was not possible to
make independent comparisons at a 30 minute time step here, given
the available validation data. Comparisons for soil moisture and soil
temperature were both made using daily averaged (midnight to mid-
night) values from the 30 minute observed and simulated series.
Rescaling the simulated series of these states tomatch the observations
was applied to the daily averages prior to any comparisons.

Figs. 2 to 4 are time series plots showing observed site data together
with simulation predictions and the frequency of assimilated observa-
tions included across the upper horizontal axis. Each vertical sequence
of five plots in the figures shows simulation results from a separate as-
similation experiment. Qualitative descriptions comparing simulated
andobserved time series based on these plots are presented in following
sub-sections. Quantitative comparisons for all experiments in the form
of RMSE, E and R2 values between observed and simulated values are
provided in Table 5. These scores were calculated using the data on
the same time scales on which they are plotted in Figs. 2 to 4 and high-
light the best performing simulation(s) overall relative to observed val-
idation data. Fig. 5 shows the changes made by each experiment in
terms of RMSE between observations and predictions relative to RMSE
between Open-Loop predictions and observations.

5.1. Open-Loop comparisons

5.1.1. Open-Loop ET output
Differences between predicted ET from Open-Loop and the esti-

mates from observations vary across the experiment year (Fig. 2).
From the austral summer at the start of the year through to earlywinter
at aroundDoY 160, the observation derived ETwas over-predicted by as
much as ~20 mm/fortnight (~DoY 40). Therefore, possibly too much of
the rainfall in this period became ET via the model, presumably due to
inaccurate soil and vegetation parameters and/or physical processes in
the model, and hence incorrect soil moisture (in both the near-surface
and root-zone – Fig. 3). As noted in Section 3 the observed 60–
90 cmmoisture series, beneath the root-zone as defined here, is stat-
ic throughout this period ruling out any groundwater contribution.
Another contributing factor may be that time invariant root distribution
in the model over-states the amount of water drawn for transpiration
from deeper soil in periods where grass is shorter and its growth is
sparse around the site (especially where Open-Loop root-zone moisture
is over-estimated). The vegetation cover in this period from the begin-
ning of the year to ~DoY 160 is minimal where LAI values range from
0.39 to 0.85 with a mean of 0.53.

Through the winter andmost of spring (from DoY 160 to 316) where
most of the observation based ET values were set to the calculated poten-
tial ET, in what is predominantly an energy limited period with relatively
highmoisture storage in the soil profile for the year, Open-Loop ETpredic-
tions track the observation series closely with the only noticeable differ-
ence being negligible over-predictions of ~5 mm/fortnight occurring for
the ~DoY 260 and 274 totals. This close match is not surprising given
that with high water availability in the soil profile the CBM is expected
to predict ET close to the potential rate.

After DoY 316 to the end of the year (most of November through
December) is where the largest discrepancies occur, with observed ET
under-predicted by Open-Loop by as much as 30 mm/fortnight. This
period is characterised by warming where the high soil moisture stor-
age of winter/spring transitions to a water limited scenario with
increased incoming radiation, and where high vegetation cover for
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November (LAI of 3.0) declined in December (LAI of 1.21). As discussed
in Section 3 there is evidence indicating possible groundwater interac-
tion around DoY 311 (refer to Table 2). Thus any water added to the
soil profile as a result could have contributed to root-zone water avail-
ability for ET over the following days or weeks. This may explain the
large under-prediction of ET by Open-Loop after DoY 316, as the only
water supply information available for CBM calculations was from rain-
fall forcing data.

5.1.2. Open-Loop soil moisture output
Plots in Fig. 3 also show variation in differences between Open-Loop

soil moisture predictions and observations throughout the experimental
period. Early in the year through summer and autumn (to ~DoY 120),
the depletion of Open-Loop soil moisture compared to observations for
the near-surface assimilation depth (0–8 cm) is from higher peak values
and up to twice as fast in parts, particularly in early February (~DoY
35–40) where the peak is over-estimated by ~0.09 vol/vol. Following
on, between ~DoY 120 and 160, the observations indicate a mostly dry
period where they are increasingly over-estimated. Much of these dis-
crepancies from the beginning of the year to ~DoY 160 are consistent
with Open-Loop over-estimating ET in this period. The response of the
Open-Loop near-surface soil moisture at ~DoY 160 in June to the begin-
ning of themajor increase in winter/springmoisture storage is accurate-
ly timed, with some over-estimation persisting through the first half of
this period. In the spring/summer dry-down period there is another
large discrepancy, with the Open-Loop under-estimating observations
by as much as ~0.15 vol/vol, which is again consistent with the ET
under-estimation in this period (Fig. 2).

Deeper root-zone (0–60 cm) soil moisture content from Open-Loop
shows a similar relationship in terms of variationwith respect to observa-
tions as for the near-surface moisture plots, albeit with the magnitude of
variations being less pronounced. In particular, the over-estimation and
more rapid depletion of root-zone moisture compared to observations
for instances in the first ~100 days and under-estimation around ~DoY
320–330 (Fig. 3) are consistent with the respective over-estimation and
under-estimation of ET for periods incorporating these times (Fig. 2). As
noted in relation to ET predictions, inaccurate model parameters could
have contributed to discrepancies between Open-Loop predictions and
observations here, while the inability to prescribe different soil parame-
ters with depth for different model layers might also be a contributing
factor.

5.1.3. Open-Loop soil temperature output
Surface soil temperature plots (0–2 cm) in Fig. 4 show a general pat-

tern of Open-Loop predictions under-estimating observations in the
drier austral summer/autumn period up to ~DoY 150. Then across the
first half ofwinter from June tomid-July (~DoY150–200)which includes
some of the coolest temperatures of the year the Open-Loop tracks the
observations very closely. From mid-winter until the end of the year as
the temperature increases, predictionsmainly over-estimated the obser-
vations with the largest differences (up to 6 °C) occurring in November
between ~DoY 310–330—the period in which Open-Loop soil moisture
and ET predictions under-estimated their respective observations by

relatively largemagnitudes (Figs. 2 and 3) andwhere groundwater inter-
action is a possibility (Table 2).

As with soil moisture, the deeper 0–60 cm root-zone soil tempera-
ture predictions from Open-Loop exhibit a similar pattern of discrepan-
cy with observations as for the near-surface soil temperature. The main
difference being the root-zone series has less day-to-day variation, as
expected, and the differences with observations are sometimes slightly
less in magnitude than the corresponding differences for near-surface
soil temperature.

5.2. Assimilation comparisons

5.2.1. Assimilation ET output
From the beginning of the year up to early winter at ~DoY 160,

where Open-Loop ET predictions over-estimate observations (Fig. 2),
the best overall improvements to ET were from simulations where the
assimilation involved skin temperature observations and combinations
of variables (i.e. Tsk_Assim, ALL_Assim and SMTsk_Assim). The only
notable impact from LEH_Assim here was in the summer with some
improvement within the first ~60 days. When only soil moisture was
assimilated (i.e. SM_Assim), no notable impact or improvement was
made to ET estimates for this entire period.

Through the mainly energy limited period with increased moisture
availability that covers most of winter/spring (between ~DoY 160 and
316), where observed and Open-Loop ET series are at or near potential
ET with no notable differences between them, the predictions from
every experiment were maintained at approximate potential ET values.
While each assimilation experiment made clear improvements to ET in
the period between DoY 316 and ~DoY 330–340, where Open-Loop
under-estimated the observed series most. All of the experiments
except for SM_Assim resulted in very close matches to the maximum
observed ET at ~DoY 330 although unlike SM_Assim they caused
over-estimation from ~DoY 340 onwards where Open-Loop and obser-
vations were relatively close.

5.2.2. Assimilation soil moisture output
From the beginning of the year through to ~DoY 160, being before

the major winter/spring moisture storage period, predictions of

Table 5
Statistics for comparisons between simulations (rows) and independent observations over the 2005 experiment period, calculated after removing biases for state variables. Bold
values indicate most improvement to simulated values of interest (columns).

ET (mm/fortnight) SM 0–8 cm (vol/vol) SM 0–60 cm (vol/vol) ST 0–2 cm (°C) ST 0–60 cm (°C)

R2 RMSE E R2 RMSE E R2 RMSE E R2 RMSE E R2 RMSE E

Open-Loop 0.71 10.8 0.63 0.83 0.052 0.82 0.84 0.042 0.83 0.86 2.1 0.86 0.88 1.6 0.88
LEH_Assim 0.88 8.6 0.76 0.88 0.044 0.87 0.85 0.041 0.84 0.86 2.1 0.86 0.87 1.7 0.86
SM_Assim 0.83 9.4 0.72 0.94 0.032 0.93 0.95 0.024 0.95 0.87 2.0 0.87 0.90 1.4 0.90
Tsk_Assim 0.85 9.8 0.70 0.94 0.031 0.94 0.83 0.043 0.82 0.89 1.8 0.89 0.93 1.2 0.93
ALL_Assim 0.87 9.0 0.75 0.94 0.030 0.94 0.80 0.047 0.79 0.88 2.0 0.88 0.89 1.5 0.89
SMTsk_Assim 0.89 8.2 0.78 0.94 0.030 0.94 0.87 0.038 0.87 0.89 1.9 0.88 0.94 1.1 0.94
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Fig. 5. Comparative improvements over Open-Loopmade by each assimilation experiment
in terms of RMSE reduction for heat flux and soil state predictions.
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near-surface soil moisture (0–8 cm) were improved overall by each
data assimilation approach compared with Open-Loop. SM_Assim im-
provements were themost consistent (Fig. 3) while for other approaches
where either skin temperature or LE andH observationswere involved in
the assimilation, soil moisture was slightly degraded by over-correction
at ~DoY 40–50 during the dry-down after high rainfall. Improvements
to near-surface soil moisture were also made by each simulation
over the remainder of the year after ~DoY 160, with simulations in-
volving skin temperature observations (i.e. Tsk_Assim, ALL_Assim
and SMTsk_Assim) performing particularly well over the spring
to summer dry-down period post ~DoY 310. The consistency of
SM_Assim in making some improvement across all seasons of the exper-
iment year in relation to near-surfacemoisture observations (the 0–8 cm
series which assimilated observations were sampled from) instilled con-
fidence in the assimilation scheme.

For root-zone soil moisture, SM_Assim produced the best overall
improvement across the year. Predictions from the other simulations
which involved skin temperature and/or heat flux observations in the
assimilation were poorest and most degraded in drier periods within
the first half of the year and at the end post ~DoY 320 (Fig. 3a, c, d
and e). During the wetter winter/spring period these simulations
performed reasonably well, improving parts of the root-zone moisture
series andwithout any extremedegradation. In this period themoisture
content was more uniform over the root-zone and near-surface mois-
ture dynamics were more strongly correlated with dynamics through
the root-zone depth.

A possible reason for the better and more stable results in the
wetter period is that the ensemble generation might have produced
more adequate error representations for predicted observations and
predicted root-zone moisture states here. In which case the resulting
EnKF error covariances would have been a good reflection of actual
error correlations between these predictions, hence the more rea-
sonable root-zone moisture state updates. Compared to wetter sea-
sons, moisture dynamics were more weakly connected through the
root-zone in drier periods where greater contrasts in moisture over
depth occurred—e.g. such as wetter near-surface soil from isolated
rain events compared to drier deeper soil. The degraded root-zone
moisture in drier periods from most simulations may have been
due to poorer error representations for these particular conditions,
such that EnKF covariances did not adequately reflect error correla-
tions between predictions of assimilated observations and the differ-
ent root-zone soil moisture states.

5.2.3. Assimilation soil temperature output
Fig. 4 illustrates soil temperature outputs from all simulations for

the CBM surface soil layer (0–2.2 cm) and root-zone (0–60 cm). The
relevance of the surface soil layer temperature here is its use in the
soil component of the CBM calculated total skin temperature (Eq. (1)),
and also in the calculation of soil components of LE and H. Assimilation
impacts on the surface soil layer temperature appear relatively minor
across all of the simulations, and any impacts that were made are
most noticeable for warmer periods, including from ~DoY 40 to 100 in
the first half of the year and towards the end of the year from ~DoY
300 to 340 where the impact on ET was greatest from all assimilation
approaches. The best improvements for these periods were from
Tsk_Assim, which is expected due to the surface soil layer temperature
being linked directly to skin temperature in the CBM.

For periods of high vegetation cover, such as the second half of the
year (where LAI is 2.4 for July, 3.0 from August through November, and
1.2 for December), the direct impact on heat fluxes from any surface
soil layer temperature state adjustments wereminimal. The adjustments
to ET at the end of the year (>~DoY 316) from Tsk_Assim are assumed to
be related to impacts on soil moisture (compare Figs. 2c and 3c). This is
likely due to the vegetation canopy components of LE and H in the CBM
dominating the total predicted values of LE and H in this period, where
the vegetation canopy surface temperature used in the CBM vegetation

heat flux calculations (also for the vegetation component of skin temper-
ature—see Eq. (1)) is based on the non-prognostic leaf temperature vari-
able. Hence, for the LEH_Assim simulation there is very little impact on
surface soil layer temperature for the period at the end of the year from
~DoY 316 onwards (Fig. 4a), which coincides with some of the greatest
adjustments to ET predictions (Fig. 2a). While for ~ DoY 40 where
LEH_Assim had some noticeable impact on correcting surface soil layer
temperature, coinciding with an adjustment to ET, there is minimal veg-
etation cover (LAI of 0.6) and therefore surface soil layer temperature
values feature more prominently here in calculated LE and H totals
from the CBM.

The experiments Tsk_Assim and SMTsk_Assim made the greatest
changes/improvements to root-zone soil temperature predictions
reinforcing that skin temperature observations are the main driver
for soil temperature state impacts. From Fig. 4c and e, the greatest im-
provements were made in the first half of the year between ~DoY 80
and 160 where vegetation cover was low and the Open-Loop under-
estimated observations, and also towards the end of the year post ~DoY
280 incorporating the period where vegetation cover was highest and
also where ET adjustments were greatest. LEH_Assim and SM_Assim
had minimal overall impact on root-zone temperature across the year
by comparison (Fig. 4a and b), with root-zone soil temperature generally
lacking a strong relationship with heat fluxes, particularly as vegetation
cover increases (in the second half of the year).

6. Discussion

Based on the results presented, the overall differences between
simulations are summarised and interpreted here. From the R2 and
E scores for Open-Loop predictions (Table 5) the dynamics of the val-
idation ET data series in this study were generally more difficult to
simulate than near-surface and root-zone soil moisture and tempera-
ture observations. LEH_Assim was expected to produce amongst the
best ET predictions given that state updates were driven only by
heat flux observations. While it led to a strong reduction in RMSE of
20% compared to predictions from Open-Loop, the level of improve-
ment trailed that made by SMTsk_Assim which reduced RMSE by 24%
but was greater than improvements from ALL_Assim which reduced
RMSE by 17%. The comparative improvements between these three
simulations are supported by all of the metrics used. Although these
were the top three performers for ET amongst all of the experiments,
their impact on root-zone soil moisture predictions were varied, with
ALL_Assim producing the most degraded results of all experiments,
SMTsk_Assim making fairly solid improvements, and LEH_Assim mak-
ing only minor overall improvement.

The relatively poor impact LEH_Assim had on state variables in con-
trast to strong ET improvements as per the quantitative scores high-
lights the challenge of simultaneously improving all state variables
and heat fluxes given the inherent uncertainties associated with com-
plex relationships between them in LSMs. Scores for SM_Assim and
Tsk_Assim indicate they made amongst the greatest improvements to
soil moisture and temperature state variables respectively along with
SMTsk_Assim which performed well for both. This supports the expec-
tation that assimilated observationswill usually lead to strong improve-
ments for the most directly related model variables.

Despite SM_Assim producing the best root-zone soil moisture
with a reduction in RMSE of over 40%, the corresponding reduction
in RMSE of 13% for ET indicates only a modest improvement relative
to validation data compared with other experiments. When consid-
ered together with the top three experiments for ET improvement
which had varied impacts on root-zone soil moisture, it is clear
that specifically improving root-zone moisture will not necessarily
optimise the heat flux predictions. Moreover, the inconsistency be-
tween quantitative soil temperature scores for SMTsk_Assim and
LEH_Assim, which both strongly improved ET, and between the
strong soil temperature and only modest ET improvements from

326 R.C. Pipunic et al. / Remote Sensing of Environment 136 (2013) 315–329



Author's personal copy

Tsk_Assim compared to those from LEH_Assim, supports the qual-
itative time series interpretations (discussed in the previous section)
that improved soil temperature prediction does not always make a
strong contribution to ET improvement throughout the whole year—
particularly as vegetation cover increases.

Comparing the impacts on ET from LEH_Assim and from experi-
ments using skin temperature and no heatflux observations is of partic-
ular interest when considered in a remote sensing context. LEH_Assim
represented the assimilation of LE and H data which would first need
to be derived from thermal and visible remote sensing imagery using
an energy balance model separate to the LSM. However, remotely
sensed skin temperature represented in Tsk_Assim and SMTsk_Assim
is more directly available from the thermal imagery used in deriving
LE and H. The results for ET prediction from both SMTsk and LEH_Assim
(Table 5 and Fig. 5) indicate that there may be no significant benefit
from assimilating remotely sensed LE and H over using skin tempera-
ture together with an observation directly related to the water balance
(i.e. soil moisture) for improving heat flux prediction, especially when
considering the additional modelling required to produce remotely
sensed LE and H.

Quantitative results for the SMTsk_Assim experiment highlight some
clear benefits of multi-observation assimilation. It produced the greatest
improvements to ET relative to validation data of any experiment, pre-
sumably due to cumulative positive impacts from the different observa-
tions used, which when assimilated separately each improved ET to
lesser degrees (through Tsk_Assim and SM_Assim experiments). The
multi-observation approach of ALL_Assim also produced relatively
strong ET improvements, but was inconsistent in terms of state variable
improvements, with root-zone soil moisture having been degraded
more than from any other experiment. This may be due to the combined
impact of LE,H and skin temperature (which produced poor or degraded
root-zone soil moisture via LEH_Assim and Tsk_Assim) outweighing any
beneficial impacts from the soil moisture observations. The worst im-
pacts on root-zone moisture from ALL_Assim were mainly for drier pe-
riods, which is congruent with the worst impacts from LEH_Assim and
Tsk_Assim (compare Fig. 3a, c and d).

The SMTsk_Assim multi-observation approach and SM_Assim
were the only simulations in this study which simultaneously im-
proved predictions of all of the assessed variables against validation
data (Table 5 and Fig. 5). This demonstrates that assimilating soilmois-
ture and directly impacting the model water balance improved soil
state variables and ET, while incorporating an additional observation
type linked directly to model energy balance calculations (skin temper-
ature) could still lead to improved state variables, andmost importantly
in the NWP context, also produce optimal ET predictions. The added
benefit of SMTsk_Assim is of course the potential for good ET prediction
while avoiding the intermediate modelling step to estimate LE and H
from thermal and visible imagery when assimilating remotely sensed
data.

The varying assimilation results during the year, and particularly the
degradation caused by some of the assimilation scenarios, point to the
likelihood of systematic model errors. As an example, the root distribu-
tion in CBM soil layers is represented by user prescribed parameter
values which are time-invariant. With a seasonally varying vegetation
cover (see LAI range in Table 1) it is likely that rooting depth varies
with different growth phases, and thus the connection between ET
and deeper layer soil moisture in the model may be overstated for pe-
riods of sparse vegetation cover. This may also explain the excessive re-
duction in root-zone soil moisture from LEH_Assim and Tsk_Assim in
the first half of the year, coinciding with reductions in ET (Figs. 2a–3a
and 2c–3c). These errors are likely to be quite intricate and require
more detailed data than is available here to properly address. It is also
worth noting that in this respect uncertainties in the subsurface (soil
properties, root water extraction profiles, etc.) are severe. Progress in
this area may result in more accurate estimates of error covariances
and hence better assimilation outcomes overall.

7. Conclusions

This paper has presented one-dimensional Open-Loop and various
data assimilation runs of the CBM for a temperate grassland site in
southern New South Wales, Australia. Comparisons between Open-
Loop and validation data suggest that accurate modelling of heat fluxes
is most difficult for water limited scenarios where ET rates are below
potential. This is evident from the poorer Open-Loop predictions of ET
in the first ~60 days of the year spanning late summer and through all
of autumn where the soil profile is mostly at its driest, and for a period
towards the end of the year around the spring/summer transition
where moisture storage is below maximum. Exact causes of the poorer
predictions are likely to be varied, including parameter uncertainty,
model structural limitations, and possibly isolated instances of ground-
water contribution where rainfall forcing data may not have accounted
for the total water supply for the LSM water balance.

Five different assimilation runs were conducted using real field
data for a selection of times corresponding to approximate satellite
overpasses relevant to each data type: latent and sensible heat
(LEH_Assim); 0–8 cm soil moisture (SM_Assim); skin temperature
(Tsk_Assim); all four of these (ALL_Assim); and 0–8 cm soil mois-
ture combined with skin temperature (SMTsk_Assim). Itwas demon-
strated that the multi-observation approach of SMTsk_Assim produced
the greatest improvements to ET relative to validation data constructed
from independent field observations. This is to be contrasted with the
traditional SM_Assim approach which led to the strongest root-zone
soil moisture improvements but with relatively modest ET improve-
ments. Thus accurate root-zone soilmoisture prediction does not neces-
sarily translate to optimal heat fluxes.

The LEH_Assim approach made strong improvements to ET as
expected, second only to those from SMTsk_Assim. From a remote sens-
ing perspective this implies that incorporating skin temperature from
thermal imagery together with soil moisture observations in the data
assimilation may be more beneficial to LSM heat flux accuracy than as-
similating LE and H alone, which first needs to be derived using the
same thermal imagery via a separate energy balance model. A major
strength of SMTsk_Assim in this study was in balancing impacts on
the model energy and water balances to improve both soil moisture
and temperature states in addition to ET.

Consequently, this study demonstrates the value ofmulti-observation
assimilation into a LSM using real observations. This provides a sound
basis for further multi-observation assimilation studies using remotely
sensed data products, including remotely sensed LE and H assimilation,
to better understand and draw stronger conclusions about its potential
benefits.
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