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Abstract

Using an ensemble of model forecasts to describe forecast error covariance extends linear sequential data assimilation schemes to nonlinear
applications. This approach forms the basis of the Ensemble Kalman Filter and derivative filters such as the Ensemble Square Root Filter. While
ensemble data assimilation approaches are commonly reported in the scientific literature, clear guidelines for effective ensemble member
generation remain scarce. As the efficiency of the filter is reliant on the accurate determination of forecast error covariance from the ensemble, this
paper describes an approach for the systematic determination of random error. Forecast error results from three factors: errors in initial condition,
forcing data and model equations. The method outlined in this paper explicitly acknowledges each of these sources in the generation of an
ensemble. The initial condition perturbation approach presented optimally spans the dynamic range of the model states and allows an appropriate
ensemble size to be determined. The forcing data perturbation approach treats forcing observations differently according to their nature. While
error from model physics is not dealt with in detail, discussion of some commonly used approaches and their limitations is provided. The paper
concludes with an example application for a synthetic coastal hydrodynamic experiment assimilating sea surface temperature (SST) data, which
shows better prediction capability when contrasted with standard approaches in the literature.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The Ensemble Kalman Filter (EnKF) was introduced by
Evensen (1994) to ameliorate linearisation errors in model state
analyses and error covariance estimates when applying the
Extended Kalman Filter (EKF) to highly nonlinear problems.
The EnKF has been widely applied in oceanography and
meteorology (e.g., Evensen & van Leeuwen, 1996; Keppenne,
2000) and more recently in hydrology (Reichle et al., 2002a)
with demonstrable success.

A significant issue in the application of ensemble forecast
assimilation schemes is to achieve a realistic range of ensemble
members from which the model error covariances are
diagnosed, termed the forecast error here. Failure to achieve
such a set of ensemble members will result in a suboptimal

analysis, as the Kalman gain weighting matrix will place undue
emphasis on either the observations or the modelled forecasts
(depending on whether the forecast error is under or over
estimated) and also affect the correlated states. While the need
for appropriate forecast error is appreciated, it is often difficult
in practice to determine the appropriate level of forecast error to
be used in the assimilation. Consequently it is frequently not
dealt with as rigorously as other aspects of ensemble data
assimilation, such as the type of ensemble filter. The
observation error covariances are assumed in this paper to be
well understood.

There are three factors that contribute to error in a model
forecast and these should be used to achieve variability in an
ensemble forecast. These are i) initial conditions, ii) forcing
data, and iii) model equations. This paper investigates the first
two of these error sources. Model error as a result of equation
choice, domain discretisation and parameter accuracy, is not
investigated in this paper, but a limited discussion is included
for completeness. The methods described in this paper for the
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generation and propagation of an ensemble are demonstrated by
means of an observation system simulation experiment (OSSE)
for the assimilation of sea surface temperature (SST) into a
coastal hydrodynamic model.

2. The Ensemble Kalman Filter

The EnKF accounts for nonlinear models through an
ensemble of model predictions which use the nonlinear model
physics. The ensemble analysis is expressed as

Xa ¼ Xf þ PeH
T ½HPeH

T þ R��1½D�HXf �; ð1Þ
where X is a matrix of n model state realisations [x1, x2,…, xn],
D is a matrix of observation ensembles, subscript e denotes an
ensemble approximation, and superscripts a and f denote
analysis and forecast respectively. In the standard EnKF
(Evensen, 2003), perturbations are added to the observations
to generate a matrix consisting of an ensemble of observations
D, based on the observation error covariance R. The forecast
error covariance P is approximated from the ensemble of model
predictions by

Pe ¼ XVfXVf T

n� 1
; ð2Þ

where

XVf ¼ Xf � P
Xf ; ð3Þ

denotes a matrix of ensemble deviations with the overbar
denoting the ensemble mean, X̄f=Xf1n, and 1n is an n×nmatrix
in which each element has a value of 1

n. The use of an ensemble
approximation Pe is based on the assumption that in the limit of
an infinite number of ensembles members

lim
nYl

Pe ¼ P: ð4Þ

If the spread of the ensemble forecast is too large, then the
forecast error covariance Pe will be overestimated and the
analysis will tend to overfit the observations. Conversely, if the
spread of the ensemble forecast is too small, then the forecast
error covariance Pe will be underestimated and the analysis will
tend to under utilise the observations. In either case, an
inaccurate ensemble representation of forecast error will result
in a sub-optimal filter. For this reason it is necessary to generate
and propagate the ensemble with realistic variability when using
an ensemble sequential data assimilation technique. Further-
more, specification of ensemble correlations may be as
important as the specification of the ensemble magnitude
(spread), however only ensemble spread, and not spatial or
cross-correlation of ensemble members, is discussed herein.

3. Ensemble initiation

The uncertainty of the initial state estimates is represented by
the initial spread of the ensemble members. In the method
outlined by Evensen (2003), ensemble members are generated
by taking an initial best-guess of the states, and then adding

perturbations in the form of random correlated fields to each
ensemble member. Importantly, this approach includes a
recommendation to “integrate the ensemble over a time interval
covering a few characteristic time scales of the dynamical
system” (Evensen, 2003) to ensure dynamic stability and correct
multivariate correlations before commencing the assimilation.
This approach is the basis of several papers (Houtekamer &
Mitchell, 1998; Keppenne, 2000; Reichle et al., 2002a).

An improved sampling scheme has been proposed by
Evensen (2004), based upon the work of Pham (2001). This
method uses an ensemble of randomly generated, spatially
correlated fields, and perturbation independence is sought by
performing a Singular Value Decomposition (SVD). The first n
singular vectors are then combined with another random
orthogonal matrix and the singular values are adjusted
appropriately. Zupanski et al. (2006) attempts to address the
initialisation problem more explicitly, extending on the previous
methods. However, a disadvantage of all the methods
mentioned above is that they are applied prior to the
assimilation period and require a spin up for dynamic stability,
by which time the prescribed error distribution may have been
altered by the model equations.

Two additional methods have been used in operational
ensemble forecasting: the breeder method (Toth & Kalnay,
1993, 1997) and optimal perturbations (Molteni et al., 1996).
The basis of these two methods is to generate a set of the fastest
growing errors. The two methods have been investigated in a
paper by Miller and Ehret (2002) which studied forecasting of
multimodal systems with small ensemble sizes. They found that
the optimal perturbations (also termed singular vectors) method
performed well, especially for systems with small initial
variance. In cases of larger initial variance the breeder method
performed well, although there were occurrences when it failed
to observe bimodal evolution.

While these two methods may be suitable for ensemble
initialisation in certain circumstances, they are unsuitable for
recommendation as a generic approach. The optimal perturba-
tion method requires an adjoint model to generate the fastest
growing errors, which is typically unavailable unless specifi-
cally developed. For this reason, in spite of the obvious benefits
of the optimal perturbation method, its use is impractical. While
the breeder method is simple to apply, its ability to accurately
estimate forecast error variance is questionable. Because it is a
random method and relies on the model to generate perturba-
tions in the direction of the largest growing error, there is the
possibility that all perturbations generated will cluster towards
one direction, thus reducing the ensemble rank. Moreover, the
method relies on inherent model nonlinearities to breed the
perturbations, making it ineffective for weakly nonlinear
models.

In addition to the ensemble spread, it is important that the
matrix of ensemble deviations have a high rank. This allows for
smaller ensemble sizes, and makes ensemble techniques more
efficient. This can be seen by considering the underlying EnKF
equations. As Evensen (2003) has shown, the EnKF analysis
Eq. (1) can be written as a linear combination of the ensemble
deviations, and therefore an analysis is more efficient if the
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ensemble deviations are independent. Producing ensembles
with deviations that are linearly independent results in a more
efficient assimilation filter.

A set of n initial state vectors [x1, x2,…, xn] should thus be
generated by adding a set of n independent perturbation vectors
[x′1, x′2,…, x′n] to the best-guess initial condition, x. The initial
state vectors xi become the column vectors in X, while the
independent perturbation vectors x′i become the column vectors
of X′f.

A range of physically realistic deviations can be obtained by
taking snapshots of state values from a long model run and
removing the spatial mean from each at those instants in time.
This gives a m×p matrix, F, where m is the number of state
variables at different points in space and p is the number of
snapshots extracted. Each column is a vector representing
physically realistic perturbations about a zero mean. Each
element Fy,k can be expressed as

Fy;k ¼ ½Xk �y � bXkN; ð5Þ
where Xy,k is the state value at position y and time k, and
bXkN=1 /N.∑y=1

N [Xk]y, with N the number of gird points: the
spatial average at time step k.

By extracting snapshots at a time interval less than the
smallest temporal scale and over a time period longer than the
largest characteristic time scale, the full dynamic range of
conditions of the field to be initialised will be covered, thus
spanning a wide range of deviation possibilities. A set of n
ensemble deviations X′f is then taken from the first n spatial
singular vectors of a SVD of F as described below.

The matrix F is decomposed using a SVD such that

F ¼ USVT ; ð6Þ
where U and V are square orthogonal column matrices of
dimensions m×m and p×p respectively and Σ is a diagonal
matrix with diagonal elements that are the singular values of F
arranged in nonincreasing order. The singular values express the
importance of their respective (spatial) singular vector, the
columns of U. As the columns of U are orthogonal, perturbation
independence is assured. By using the singular vectors
contained in the first n columns of U, the range of dynamic
states is objectively, and concisely, represented, as these vectors
explain the most significant spatial variation in the model.

The singular vectors are then scaled so that their standard
deviation is equal to an a priori assumption of the initial state
uncertainty. If the initial variance of the ensemble is unknown,
the average univariate vector standard deviation gives guidance
for the initial spread of the ensemble members. Except for the
last step of scaling the singular vectors to the a priori initial
uncertainty, this method provides an objective means for
initialising an ensemble, ensuring linear independence of each
ensemble deviation.

4. Ensemble size

Determination of the number of ensemble members required
for reliable forecast error estimation is an unresolved issue for

sequential ensemble data assimilation methods. While many
studies have focussed on the sensitivity of an ensemble forecast
system to ensemble size (e.g. Houtekamer & Mitchell, 2001),
there have been no recommendations made based on sound
theoretical evidence. If the ensemble deviations are indepen-
dent, a guide to the upper limit on the number of ensemble
members required is the number of model state elements. A
larger ensemble size would imply some level of perturbation
dependency and the resulting analysis would be inefficient.

Setting the number of ensemblemembers equal to the number
of model state elements is unrealistic for a large distributed
model. For the OSSE case study presented later in this paper, this
would entail an ensemble with between 20,000 and 100,000
members, depending on whether univariate or multivariate
assimilation was pursued. A deterministic thirty-day model run
takes about one hour of real time to compute 1 meaning that it
would take over two years to compute the same forecast with
20,000 ensemble members with the same computing resources.

Such an exercise is also unnecessary in models that contain a
high degree of state interdependence. Where model states are
evolved by similar equations and forced by similar conditions,
their values become highly correlated and consequently the
errors are also highly correlated. When ensemble errors are
highly correlated, fewer independent vectors are required to
describe the range of ensemble perturbations and the ensemble
size can be reduced accordingly.

The degree of state independence can be determined through
the significance of singular values obtained from the SVD
performed in the previous section. For instance, if 95% of the
variance in the system is explained by the first 50 singular
values, using 500 ensemble members would be excessive.

This approach considers an optimal case, which assumes that
the ensemble deviations are independent. In reality, subject to
similar forcing data and model equations, some degree of
ensemble deviation dependence must develop over time,
implying that more ensemble members are needed than the
SVD suggests. For instance, even with one variable, a minimum
number of ensemble members are needed to express the
probability distribution of the error about the state. As such,
ensemble assimilation methods benefit large-state models more
than small-state models.

5. Ensemble propagation

Once the number of initial ensemble members has been
determined and the ensemble members initiated, it is necessary
to propagate them through time. Without a mechanism to
continually introduce realistic forecast error into the ensemble
propagation – errors from model physics, parameter uncertain-
ties and model forcing error – the ensemble spread will tend to
collapse for bounded, i.e. nondispersive and nonchaotic,
models. This is due to the analysis step reducing the ensemble
uncertainty or spread by

Pa ¼ ðI�KHÞP f ; ð7Þ

1 Using a dedicated dual-processor sunfire v60x server.
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each time observations are assimilated. Ensemble variation
should therefore increase with time after an analysis step, in
response to uncertain forcing fields and model errors from
inadequate physics and uncertain parameters. To maintain
appropriate spread in the ensemble forecast, noise must be
added to the forecast. This can be through the addition of
model error either as resulting from uncertainties in model
physics and parameters therein, or through the use of an
ensemble of forcing data. Innovation filters such as those
discussed by Mitchell and Houtekamer (2000) and their
statistical analysis are of use for diagnosing inaccurate model
error covariance information but will not be covered
specifically in this paper. The nonlinear forecast model can
be explicitly represented as

xkþ1 ¼ f ðxk ; hk þ �kÞ þ mk ; ð8Þ

where hk is the forcing data at time k, ϵk and νk are zero mean
random processes representing model error caused by forcing
data error and model physics equation error, respectively.

5.1. Model physics error

Model predictions incorporate error even when forcing data
are perfect due to the choices or limitations in regard to the
model physics and parameters. This includes error associated
with assumptions, theory and or conceptualisations within the
underlying equations, errors due to the computational grid and
its discretisation, numerical errors associated with the timestep
or numerical methods used to solve the mathematical equations,
and uncertainty associated with any model parameters adopted.
In his review paper, Hamill (2002) lists three categories for
adding model error: i) using stochastic equations, ii) adding
noise to the forecast ensemble at the analysis time (without
integrating noise in the model), and iii) using multimodel
ensembles. The methods for dealing with model physics error
are well described in the literature, even though some methods
such as the addition of noise at analysis time can lead to the
creation of physically unrealistic model states. Model physics
error is not included in this paper and will not be discussed
further.

5.2. Forcing error

The impact of forcing data as a source of model error has
usually received less attention than the model structure and
parameterisation. This apparent oversight is probably due to the
mind set of the oceanic and atmospheric data assimilation
community, where work is predominantly undertaken with large
scale chaotic models. Although forcing error may be included in
these models, it is generally of secondary importance and
restricted to the ensemble initialisation; model error due to
chaotic nonlinear equations dominates the forecast error.
However, for other models the influence of forcing data may
be more important, and in fact the dominant source of forecast
error. For example, without external influences diffusive
systems evolve to steady state spatially mean conditions. Errors

in forcing data are associated with the measurement (or
prediction) of forcing data and its spatial representation.

Establishing the uncertainty associated with forcing data is
simpler than establishing model physics (or equation) uncer-
tainty. This is because the uncertainty of recording instruments
is typically well known, and as data are collected at various
locations the spatial uncertainty can be reliably estimated.

While discussion of forcing error is rare in the literature, it
has received some recent attention (Brusdal et al., 2003; Natvik
& Evensen, 2003; Reichle et al., 2002b; Robert & Alves, 2003).
These papers have generally included forcing error by adding
Gaussian random noise to the forcing fields using a specified
standard deviation, although the treatment of perturbed forcing
appears to have been undertaken in a simplistic manner. For
instance, Reichle et al. (2002b) selected the size of perturbations
to be added based on simple order-of-magnitude considerations.
As such, there remains considerable scope to deal with
perturbed forcing data more rigorously. Henceforth, a theoret-
ical framework for generating perturbed forcing data is
developed here.

The aim of the approach is to avoid the addition of bias to the
forcing data while adding perturbations that represent the
forcing data uncertainty. Throughout the discussion the data are
assumed to be point time series, which is appropriate for many
data assimilation applications. However, there would be little
difficulty in extending the techniques described here to spatially
varying fields. As noted previously this paper is focused on
determination of the correct ensemble spread and not on
correlations between the ensembles.

A framework for generating perturbed forcing data for
typical data types is as follows. Consider the vector ho

containing an observed time series of point forcing data hk
(scalar) with p records in time

ho ¼ ½ho1; ho2 N ; hok ; N hop�T ð9Þ
used to force a model with n ensemble members. If the forcing
data are to be unbiased such that E〈ϵk〉=0, then generation of an
ensemble of n forcing data sets h1, h2,…, h j, hn, is required such
that E〈hk〉=hk

o, with hk the kth element (scalar) of the vector h.
This condition ensures that the ensemble of forcing data is
unbiased relative to the original forcing data.

While various forms are possible, an error and offset form
has been adopted to reflect that the data may suffer from both
calibration and sampling errors. The jth ensemble member
realisation for the scalar forcing variable at time step k is
estimated by

h j
k ¼ hok þ fjk þ b j; ð10Þ

with ζk
j indicating the jth ensemble realisation of ζk with k as

time index and β j is the jth realisation of β. ζk is a time
dependent error term of N(0, σ1), being a normally distributed
random number with zero mean and a standard deviation of σ1

applied to individual forcing values, and β is an N(0, σ2) offset
and a single realisation β j is applied to the entire jth ensemble
member time series. While a single realisation of β is used, its
standard deviation σ2 may vary in time. Eq. (15) gives an
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example of this. Applying an offset β, in addition to the error
term ζk, provides an additional mechanism for spreading the
forcing ensemble members while also retaining the structure or
temporal correlation in the original time series. This is useful for
data to which the model is highly noise sensitive, and for data
that has a high degree of structure in its time series. Without β
and relying entirely on ζk may lead to excessive imposed noise
that could generate numerical instability, as well as unrealistic
data values.

An advantage of the adopted formulation is that it is simple
and easily calculated in real time. Moreover, the parameters
controlling spread (the standard deviation of β and ζ) can be
assigned a physical meaning.

The magnitude and form of perturbations added to generate
the ensemble forcing fields are controlled by two standard
deviation terms σ1 and σ2. Realistic values for these parameters
can be obtained by analysing the error in observed data and this
allows control over the introduction of forcing error.

Based on the form of Eq. (10), the generation of three types
of forcing data are considered: i) unrestricted, ii) semi-restricted,
and iii) restricted. The notion of a restricted, or otherwise, data
type relates to whether the data type has a fixed boundary
outside of which values are not physically allowable.

The different data types are considered because the spatial
error distribution varies with data type. In the example
presented in this paper, spatial variability is used as a proxy
for ensemble variability. The specification of error according to
data type aids the generation of unbiased physically realistic
data sets. Essentially, the proposed method is a generic means to
generate a skewed probability distributions by removing the
bias from a Gaussian distribution. For a particular variable
where the (skewed-)distribution (Gamma, log-normal etc.) is
known, it may be used in preference to the proposed method.

5.3. Unrestricted value fields

An unrestricted data type is not physically constrained over
its normal range. An example of an unrestricted data field is
air temperature. As the value of the data can range freely
throughout the domain, the data error is independent of the data
value, and the instrument error in measuring air temperature is
assumed constant irrespective of the actual temperature. Un-
restricted value fields therefore have the standard deviation of
the error term specified as

r1 ¼ n; ð11Þ
where ξ is constant in time. The standard deviation of the offset
is given by

r2 ¼ v; ð12Þ

where χ is also constant.

5.4. Semi-restricted value fields

A semi-restricted data type is physically constrained by an
upper or lower limit. For the lower limited case the domain is

[hmin,∞) and for the upper limited case the domain is (−∞, hmax].
Examples of semi-restricted data fields are precipitation and river
flow: both are lower bounded by the value of zero. In the semi-
restricted case the standard deviation of the error is generally
proportional to the magnitude of the data. For example, the
uncertainty associated with determining a flow value for a river in
flood from a stage measurement is higher than for a low flow
event contained within the river banks, and the uncertainty
associated with the flow value becomes zero as the river dries up.

In addition to increased error with magnitude, there is a
chance that events occur that are not measured. This is
especially true for precipitation. In this case an observation of
zero cannot be assumed to have an uncertainty of zero.
Although this case is not dealt with here, such events may be
added when a rare value is chosen from a random sample.

As a first approximation, the standard deviation of the error
term for semi-restricted value fields can be specified as

r1 ¼ ðhok � hminÞn ð13Þ
for the lower limited case and

r1 ¼ ðhmax � hokÞn ð14Þ
for the upper limited case. Here, σ1 is linearly dependent upon
the difference between the value hk

o and the data limit hmin or
hmax with the proportionality constant ξ. The offset is similarly
formed as

r2 ¼ ð ̂hk � hminÞv or r2 ¼ ðhmax � ̂hiÞv ð15Þ
for the lower and upper limited cases respectively.

Applying a variational error to semi-restricted value data
significantly reduces the bias associated with out-of-range
values. Data such as precipitation have a lower bound of zero
and a significant proportion of zero-valued data. If the
unrestricted perturbation approach were applied, on average,
half of the ensemble values that were originally zero would be
perturbed outside the boundary, requiring truncation to zero to
bring them back within the boundary and thus introducing bias.
Using a variational error avoids this situation, because the
applied error reduces as the boundary is approached, reducing
(but not eliminating) the possibility for perturbed values to
exceed the boundary. If out of range values are produced they
are set to the boundary value.

Using a normally distributed error allows bias to be
minimised through judicious choice of ξ and χ. The value of
ξ and χ needed to reduce the chance of the perturbed data
leaving the lower boundary is guided by the relationship

n; vU
�1
zk

; ð16Þ

where zk is a N(0, 1) random number and ⪯ is taken to indicate
‘generally’ less than or equal to. This equation is exact only if either
ξ orχ is zero. As probabilities can be associatedwith the chance of a
certain value of zk being exceeded, the probability of domain
exceeding values occurring can be estimated. For example, to
reduce the chance of a domain violating error being introduced to
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less than one in one thousand, Pr(zk≤−3.125)=0.0009, which
corresponds to ξ less than 0.32. A similar argument can be
constructed for the choice of χ. Further discussion on this and the
derivation of Eq. (16) is given in Appendix A. While Eq. (16)
calculates an upper limit on possible values of ξ and χ, smaller
values are be used and express that the forcing data is known with
more certainty.

5.5. Restricted value fields

A restricted data type is physically constrained by an upper
and lower bound (hmin, hmax). Applying a perturbation term to
this type of data requires somewhat more consideration be given
to the error distribution. A constant error such as Eq. (12) could
be used, with any bias due to the truncation of domain ex-
ceeding values accepted. A better approach is to assume the
maximum standard deviation occurs at the mid point of the
domain and reduces linearly to zero at the domain boundaries,
giving a triangular shaped distribution by

r1 ¼
ĥi � hmin

hmid � hmin
n; hminV ̂hiVhmid;

hmax �ĥi
hmax � hmid

n; hmidb
̂hiVhmax;

8>><
>>:

ð17Þ

where hmid is
hmaxþhmin

2 . An example of a restricted data type is
cloud cover. Cloud cover data refers to the proportion of the sky
covered by clouds with zero signifying clear skies and eight
indicating completely cloudy skies. It is reasonable to associate
an error distribution following Eq. (17) with cloud cover data, as
it is easy to decide if the sky is completely covered or is
completely free from clouds, but to determine whether cloud
cover is four, five or six oktas is more difficult and subjective.
Moreover, it has been found that cloud cover is more uncertain
for midrange values. The applied error distribution takes this
into account.

The offset is formed in a similar fashion with

r2 ¼
ĥi � hmin

hmid � hmin
v; hminV ̂hiVhmid;

hmax � ĥi
hmax � hmid

v; hmidb
̂hiVhmax:

8>><
>>:

ð18Þ

As with the semi-restricted case, the choice of ξ and χ values
affects the probability that perturbed data leave the domain. For
the restricted case the guiding relationship is

n; vU
hmin � hmax

2zi
: ð19Þ

The derivation of Eq. (19) is given in Appendix A. As with
Eq. (16), probabilities can be assigned to different values of zi.
Thus Eq. (19) indicates that a ξ (or χ) value of less than one
sixth (=2×3.125) of the data range yields a probability of
generating a domain leaving perturbed data value of less than
one in one thousand. As with the semi-restricted case smaller
values can be chosen to reflect the (un)certainty associated with
a particular data.

6. Example application

The two methods described to initiate an ensemble and to
add forcing error to a propagating ensemble are presented
through an OSSE. The application is the assimilation of
synthetic SST observations into a coastal hydrodynamic model.
The proposed methods are tested by comparing results against
those from standard methods taken from the literature.

6.1. Model and experimental framework

The data assimilation experiments presented relate to a hydro-
dynamic model of Port Phillip Bay (PPB), a shallow (approxi-
mately 20 m deep) enclosed bay situated in south eastern
Australia (Fig. 1). The (Australian) Commonwealth Scientific and
Industrial Research Organisation (CSIRO) Model for Estuaries
and Coastal Oceans (MECO) is used to simulate the hydrody-
namics of Port Phillip Bay. MECO is a finite difference model
that solves the primitive equations using standard numerical
techniques and is similar to freely available models such as the
Princeton Ocean Model (Blumberg & Mellor, 1987). The
atmospheric heat flux is applied based on the bulk parameterisa-
tion formulae of Gill (1982). For more details on MECO or the
numerical techniques used, the interested reader is referred to
Walker et al. (2002) and Herzfeld et al. (2002).

PPB has been modelled with 14 vertical depth layers and
a 0.01 degree (∼1 km) horizontal grid (∼100,000 state vari-
ables). The model domain used in the experiments is presented
in Fig. 1, showing an open boundary along the southern edge of
the model. The main fresh water input is the Yarra River that
enters Port Phillip Bay at Melbourne, although other minor
riverine inputs are found in the north of PPB. The horizontal
extent of the model domain is small and so a spatially constant
atmospheric forcing was applied: for each ensemble all surface
cells are forced by the same data. As none of the weather
stations available collected all variables required by the
model, the atmospheric forcing data were taken from different
stations (Table 1). A split mode time step was used with a
6 minute time step for 3-dimensional modes and a 6 second time
step for the 2-dimensional modes, although results were re-
corded 2-hourly.

Two sets of atmospheric data were used. One set was used to
generate the synthetic truth, while the other was used in the
assimilation simulations. A summary of the atmospheric
stations used for the various data is given in Table 1 with
locations shown in Fig. 1. Common data is cloud cover from
Melbourne and incoming solar radiation which is derived
theoretically using the algorithm of Zillman (1972).

Using the truth atmospheric data an initial run was made to
simulate PPB conditions over the month of January 2003. A
long spinup over a 2 year period was made to ensure stable
conditions. Fig. 2 presents some diagnostic results from the long
model run that give confidence in the model producing sensible
results. The largest residual (mean) currents are located at the
mouth of Port Phillip Bay. A small residual current runs along
the eastern boundary of the bay. This in combination with the
higher mean sea level in the north of the bay, suggests a net flux
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of water out of the bay. This is consistent with the river flow
leaving the bay. The higher standard deviation of sea level
outside the bay is also consistent with reality as the entrance to
the bay strongly attenuates the tidal signal.

The results from the month-long simulation were denoted the
synthetic truth. Surface water temperature snapshots were
extracted from the truth every two days to represent satellite
observed sea surface temperature. Independent random noise
with a standard deviation of 0.5 °C was applied to the extracted
field to generate realistic observations. This standard deviation
was based on the advanced very high resolution radiometer
(AVHRR) nonlinear SST algorithm (NLSST) error character-
istics (Nalli & Smith, 1998).

For the assimilation simulation, the model used the second
(assimilation) set of atmospheric forcing data and the states
were initialised with spatially uniform values: temperature, 18 °C;
salinity, 35 practical salinity units (PSU); u- and v-currents,
0 ms−1; and sea level, 0 m. The assimilation analysis has been
performed using an Ensemble Square Root Filter (EnSRF) as
described in Evensen (2004). This filter was selected because
its use of unperturbed observations means that all differences
encountered in the experiments can be attributed to the forecast
error. Based on the SVD of a long model run, an ensemble size
of 20 was chosen for the assimilation. This ensemble size
represents 84% of the system variance (Fig. 3). Testing with
ensemble sizes of 10 and 50 members found that 10 ensemble
members gave a less accurate result. Using 50 members gave a
marginally improved result, however the large increase in com-
putational expense for only a marginal improvement did not
justify the use of 50 ensemble members.

While all model state variables can be updated during the
analysis, only temperature was updated. The analysis was

performed in all 3-dimensions (of temperature) simultaneously,
rather than treating each spatial unit independently. The analysis
of temperature only is based on an investigation which showed
that geostrophic balance was not maintained in PPB and that
salinity, currents etc. operate independently of temperature. In
general, all variables should be included in an analysis unless it
can be determined that they operate independently.

6.2. Ensemble initialisation

The ensemble initialisation method proposed in this paper
using deviations generated from a SVD of (temperature)
deviations extracted from a long model simulation was tested
against the ensemble method with deviations generated from
correlated random fields. Ensemble deviations were generated
for both methods and added to the model state values of
temperature (initialised at 18 °C) to generate the ensemble
members. An initial ensemble spread of 1 °C was specified for
both methods. At analysis an additional forecast error was
added to the ensembles by means of another set of correlated
random fields with a standard deviation of 0.5 °C. The same
fields were used for both simulations.

Fig. 1. Location of Port Phillip Bay with bathymetry showing model extent. The locations of weather stations used in the experiments are shown (triangles), together
with 3 monitoring locations (squares) denoted a–c.

Table 1
Atmospheric stations used for truth and assimilation simulations

Data type Truth simulation Assimilation simulation

Air temperature Point Wilson Frankston
Atm. pressure Moorabbin Laverton
Precipitation Melbourne Moorabbin
Wind Sth. Channel Island Fawkner Beacon
Relative humidity Frankston Point Wilson
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A comparison of results from these two initialisation
approaches are presented in Fig. 4 and show quite clearly that
the proposed ensemble initialisation method gave superior
results. The RMSE was calculated as the spatial mean squared
difference between the truth and the ensemble mean. At the first
analysis the RMSE of the proposed method rapidly reduced,
while for the correlated random field method there was no
corresponding reduction. Overtime, however the RMSE for
both simulations tended to converge. The reason for this is that
the hydrodynamic model is diffusive so that the impact of
perturbations decay rather than grows overtime. Therefore, as
the simulation progresses, the impact of the initialisation
diminishes and the impact of model error becomes relatively
more important.

6.3. Ensemble propagation

Model error is incorporated through the use of perturbed
forcing data here. A justification for characterising the forcing
data by data type is presented in Fig. 5. The plot contrasts two
semi-restricted data types against two unrestricted data types.
These are obtained by evaluating the spatial variability based on

the data values at a number of atmospheric stations located
around PPB. Individual points indicate individual time steps. As
only two available stations record evaporation (panel b) the
difference rather than the standard error is quoted. While the
variability of the semi-restricted data types increases with value
(panels a and c), the variability of the unrestricted data types
appears constant over the main range of the data values (panels b
and d). This illustrates the need to apply perturbations according
to the error characteristics of the data, as well as allowing an
estimate of appropriate magnitudes of perturbations and veri-
fying which type of perturbation to use.

There are generally three distinct forcing data types used in
hydrodynamic modelling: i) atmospheric forcing, ii) riverine
forcing, and iii) open boundary forcing. Open boundary refers
to the boundary between the model domain and the water body
adjoining or surrounding it.

Atmospheric forcing has three functions within the model:
i) momentum transfer via wind, ii) water level adjustment
through changes in atmospheric pressure, and iii) heating and
cooling of the water body through heat exchange with the

Fig. 3. Cumulative variance of the temperature in the PPB system explained by
singular vectors. The number of singular vectors needed to describe a systems
dynamics is a function of their relative singular values.

Fig. 2. Model results illustrating temporally averaged residual currents together with the mean and standard deviation of sea level η during the 2 year long model run.

Fig. 4. Results of assimilation simulation testing the initialisation of a forecast
ensemble. The method proposed in this paper is compared against initialisation
using correlated random fields. RMSE of the two SST assimilation simulations
is computed relative to a synthetic truth.
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atmosphere. Most of the data are related to the atmospheric
heatflux calculations. Table 2 outlines the requisite data inputs
for the hydrodynamic model together with a classification of its
data type. Values of ξ and χ have been estimated from the
spatial variations of data collected at various automatic weather
stations located around PPB (Table 2). For example the gradient
of the mid point line through the precipitation error value plot
(panel c) has a slope of about 0.3 but this was reduced to 0.25 to
limit the amount of variation at larger precipitation values,
although possibly underestimating the error at lower precipitin
values. For river temperature (panel d) the average error value is
about 0.5 °C. Generally, the χ and ξ values were set equivalent,
although for some data types different values were used to
enhance the temporal correlation within the data. For air
temperature the mean of the error over the standard range was
about 0.6 °C, which was used for the χ value but the ξ value
was set to 1.4 to gain more temporal variance within the
ensemble and help account for the larger error at higher
temperatures. River flow (in Table 3) is another example of

varied ξ and χ values, where the larger χ value maintains the
temporal pattern within the river flow data.

Riverine forcing data provide a source of fresh (or brackish)
water to the model. As the river temperature is frequently
different from sea temperature, rivers also act as a source or sink
for temperature. The data type classification and best guess
values for ξ and χ associated with riverine boundaries are
summarised in Table 3. No ensemble was created for river
salinity as the Yarra discharges fresh (zero PSU) water. For large
saline estuarine systems however, a variable salinity boundary
may be need.

Open boundaries predominantly control the momentum flux
in hydrodynamic models by means of imposed sea level or
velocity at the boundary. In this application a sea level boundary
is used. If a model requires both prescribed elevation and
normal boundary velocities these could be adjusted consistently
using geostrophy. Open boundary conditions also control the
temperature and salinity between the model and surrounding
water bodies. These are also modelled through values imposed
at the boundary. Referring to Table 4, the prescribed temporal
error applied for salinity is zero. This is because a constant
salinity boundary is being specified with the offset providing
the variation between ensemble members.

Sea level data were treated separately to avoid introducing
high frequency noise to the model. This is because the sea level
data were recorded more frequently than other data sets: every
six minutes rather than 3-hourly or daily. For the sea level data,
normally distributed random numbers with a standard deviation
of 0.05 m were generated at 12 hour intervals and a cubic spline

Fig. 5. Scatter plots showing spatial variation of a) evaporation, b) air temperature, c) precipitation, and d) river temperature.

Table 2
Data types and values of ξ and χ for various atmospheric variables. The final
column indicates the number of weather stations used to derive the ξ and χ
values

Variable Units Data type ξ χ No. of data sets

Air temperature °C Unrestricted 1.4 0.6 4
Wind vector m s−1 Unrestricted 2.5 0.7 8
Air pressure Pa Unrestricted 204 204 3
Precipitation mm d−1 Semi-

restricted
0.25 0.25 4

Evaporation mm d−1 Semi-
restricted

0.2 0.2 2

Short wave
radiation

W m−2 Semi-
restricted

0.038 0.038 6

Relative
humidity

% Restricted 5.0 5.0 5

Cloud cover oktas Restricted 0.4 0.3 2

Table 3
Data types and best guess values of ξ and χ for riverine variables

Variable Units Data type ξ χ No. of data sets

River flow m3 d−1 Semi-restricted 0.05 0.2 N/A
River temperature °C Unrestricted 0.5 0.5 3
River Salinity PSU N/A N/A N/A N/A

1429M.R.J. Turner et al. / Remote Sensing of Environment 112 (2008) 1421–1433



was fitted through them. This produced a temporal correlation
in the perturbation series which was then added to the original
sea level time series.

6.3.1. Application
A sensitivity analysis has been performed on the values in

Tables 2–4. The spread of water temperature predictions for
ensemble members were most sensitive to open boundary water
temperature, air temperature and short wave radiation values.
However, the forecasts were fairly insensitive to changes of up
to 50% in the χ and ξ values.

Fig. 6 shows some of the ensemble members generated from
the original forcing set using the methods described here. These
panels represent only a small time window of a longer time
series and illustrate some of the details discussed above. As air
temperature is unrestricted the range of the perturbed values
(panel a) about the original value does not vary with time. For
precipitation which has a lower boundary of zero, the generated
perturbations are seen to increase with magnitude as the origi-
nal precipitation values increase (panel b). Relative humidity
(panel c) is a restricted data type (between 0 and 100) and the

figure shows the magnitude of the applied perturbations
reducing as the original value approaches the boundary.

To illustrate the effect of forcing data ensemble on model
prediction ensembles, a 20 member ensemble run was made
with each member using a different set of perturbed forcing
values. In this case, members started from the same initial
condition (16 August 2002). Three time series plots of water
temperature are shown in Fig. 7 with the locations indicated in
Fig. 1. These time series demonstrate the spread of ensemble
members over time due to the perturbed forcing data alone.

The largest initial ensemble spread is observed at the open
boundary (b) driven by the perturbed water temperature forcing
at the open boundary. This spread is constant in time,
constrained by the open boundary. Over time a gradual increase
of variation in water temperature is observed throughout the bay
(c). The effects of the perturbed atmospheric forcing data act
more slowly than the open boundary. The spread grows
according to the perturbations in the various atmospheric
forcing data. The spread does not continue indefinitely but finds
a limit based on the size of the perturbations. This spread due to
atmospheric forcing was most pronounced at the edges of the
bay and especially in the western arm (a). Thus the forecast
error is not spatially uniform and varies depending upon the
location. The variation will also depend on the state considered
and the uncertainty of the forcing data type that dominates that
particular state; i.e. the relative size of the forecast error may be
significantly different for salinity or velocity.

The utility of perturbed forcing method described in this
paper is demonstrated through a data assimilation experiment.

Table 4
Data types and best guess values of ξ and χ for various open boundary variables

Variable Units Data type ξ χ No. of data sets

Elevation m Unrestricted N/A N/A N/A
Water temperature °C Unrestricted 0.25 0.25 N/A
Water salinity PSU Unrestricted 0.0 0.5 N/A

Fig. 6. Examples of forcing data field ensembles for a) air temperature, b) precipitation, and c) relative humidity using ξ and χ values from Table 2. Thin lines represent
the ensemble and thick lines the original.
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Here a simulation using perturbed forcing data method is
compared against two other simulations: one where the same
forcing data is used for each ensemble member but with random
correlated fields added to the forecast at the analysis time,
simulating the incorporation of model error, the other
simulation used perturbed forcing data but with all of the data
treated as an unrestricted type. This simulation allowed the
possibility of biased forcing data to be introduced via the
truncation of boundary exceeding perturbations. The correlated
random fields were generated with a standard deviation of
0.5 °C. To adequately compare the perturbed forcing examples
the ξ and χ values of the semi-restricted data needed to be
adjusted. This was done by multiplying the existing values by
the mean of the data value. The adopted values are listed in
Table 5. The proposed ensemble initialisation methods
described in this paper were used in all cases.

The results of the experiment are presented in Fig. 8. These
results show that the assimilation with perturbed forcing has
easily out performed the assimilation with correlated random
fields and slightly out performed the assimilation using

perturbed forcing with all data types treated as unrestricted. A
reason for this is that introducing random correlated noise
directly to forecast states at analysis time affects their dynamic
relationships and possibly the numerical stability of the model.
Introducing the error at the model boundaries, through
perturbed forcing, alleviates this and allows the model to
distribute the error dynamically through its domain. Also, (see
Fig. 7) the error distribution for the perturbed method is
spatially nonuniform whereas the random correlated fields
impose a spatially uniform error. Thus forecast error would be

Fig. 7. Time series illustrating the effects of forcing data ensembles on model predictions of temperature at surface monitoring locations a) western arm, b) open
boundary and c) centre of bay. Light lines represent the ensemble and dark lines the truth.

Table 5
Adopted values of ξ and χ for semi-restricted data types when treated as
unrestricted to examine the impact of bias induced by boundary exceeding
perturbations

Variable ξ χ

River flow 1.4 0.35
Precipitation 0.4 0.4
Evaporation 0.6 0.6
Short wave radiation 10 10

Fig. 8. Results of assimilation simulations testing the incorporation of forecast
error. The use of perturbed forcing data generated by the procedure outlined is
compared against adding forecast error using correlated random fields and
against perturbed forcing with all data types treated as unrestricted. RMSE of the
three assimilation simulations is computed relative to a synthetic truth.
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underestimated at some locations and overestimated at others
when using the correlated fields method. Furthermore, with the
addition of a random correlated field, each forecast state
element is perturbed by one random value introducing the
possibility of sampling error. Using the perturbed forcing
approach allows a state element to be influenced by a time series
of random values, reducing the potential for sampling error to
distort the results. This is particularly important where a small
number of ensemble members are used. While the use of
perturbed forcing data has clear benefits, the reduction of bias
induced from boundary exceeding perturbed values by treating
each variable according to its type (unrestricted, semi-restricted
and restricted) also gave improvements over a simulation that
treated all data as unrestricted allowing the introduction of bias
from boundary exceeding perturbed values. This demonstrates
the importance of attention to the unbiased generation of
perturbed forcing data.

7. Discussion and conclusion

Use of an ensemble of model predictions to estimate model
forecast error covariance is a common approach for nonlinear
sequential data assimilation. While much attention in the
literature has concentrated on the analysis, there is little
direction given on the rigorous generation of the ensemble
members and to the generation of ensembles of forcing data.
This paper has described techniques to generate unbiased
ensemble forcing data. A method of estimating appropriate
ensemble size and generating domain spanning initial condi-
tions was also introduced.

A framework for ensemble initiation and propagation that is
applicable to practical data assimilation across a range of
environmental fields has been outlined, and has been shown to
achieve more accurate predictions and better estimates of error
than standard approaches in the literature for an example
application. The ensemble initiation uses the SVD of a long
model integration to determine the optimal ensemble size and
create an ensemble of independent model state conditions.
Ensemble propagation uses an ensemble of model forcing data
created using a perturbation and an offset term.

The importance of forcing ensemble members in data
assimilation is that they can consistently and logically introduce
model forecast error into an ensemble. However, the original
forcing data used should provide a guide as to the appropriate
levels of uncertainty for each particular forcing data type, and
excessive addition of noise to the forcing data to generate larger
model forecast uncertainty should be avoided. The values used
in the example application for the ensemble generation
framework presented here (Tables 2–4) are based on the
observed variation of forcing data across the study area. The
values adopted for a particular data assimilation exercise should
likewise reflect the actual variation of the respective forcing
data of that area. If large scale adjustment to the forecast
uncertainty is required, both model structure error and forcing
error should be explicitly included. Alternatively, the inflation
factor method of Anderson and Anderson (1999) may be
considered.

The methods presented in this paper apply to spatially
uniform forcing data. While this is justified for the small area of
application in the example given, a typical characteristic of
many data assimilation applications, the method can be easily
extended to account for spatially varying forcing. Extension to
the two-dimensional case can be achieved by interpolating
ensemble members at spatially distributed locations.
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Appendix A. Choice of ξ values in semi and restricted data
types

For the semi-restricted data type we require that the
stochastic data point remain above a lower bound or below an
upper bound. The following derivation of Eq. (16) is made by
substituting Eqs. (13) and (15) into Eq. (10) for a realisation at
the lower bound.

hminVhok þ ðhok � hminÞnzk þ ðhok � hminÞvz ðA:1Þ

Z
hmin � hok � ðhok � hminÞvz

hok � hmin
V nzk ðA:2Þ

Z
�1� vz

zk
zn ðA:3Þ

and since ξkN0, zkb0. For a given time series, χz is constant
and has an expected value of zero. In which case Eq. (A.3)
becomes

nU
�1
zk

; ðA:4Þ

but the exact relationship still depends on the value of χz, and
with this value being random, it is only known when the
equation is applied. A similar derivation can be constructed for
the upper bounded case.

Table A.1
The probability that a normally distributed random number zk is less than a
particular value as a function of ξ for semi-restricted and restricted variables

Semi-restricted ξ Restricted ξ zk Exceedence probability

1.0 hmin�hmax
2 −1 0.1587

0.5 hmin�hmax
4 −2 0.0228

0.33 hmin�hmax
6 −3 0.0014
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As zi is a normally distributed Gaussian random number,
probabilities can be assigned to the possibility of zk being less
than a given value (Table A.1). Using the data in Table A.1 it
can be seen that to reduce the probability of a domain exceeding
value being generated to one in a thousand, ξ should be less
than 0.33.

Similarly a derivation can be constructed for the restricted
data type that limits values exceeding the restricted boundary. In
this case the effect of the offset term has been ignored for
simplicity, although as with the semi-restricted case it will have
a small effect. Eq. (19) is derived by substituting Eq. (17) into
Eq. (10)

hminUhok þ
hok � hmin

hmaxþhmin
2 � hmin

nzk ðA:5Þ

Z hmin � hokU
2ðhok � hminÞ
hmin � hmax

nzk ðA:6Þ

Z
ðhmin � hokÞðhmin � hmaxÞ

2kðhok � hminÞ v nzi ðA:7Þ

Z
ðhmin � hmaxÞ

2zk
v n: ðA:8Þ

Values of ξ can be associated with probability of exceedence
values as indicated in Table A.1. These exceedence values refer
to the probability of exceedence of one of these limits. The total
probability to exceed either the upper or lower limit is twice as
large.
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