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Abstract

Passive microwave sensors (PM) onboard satellites have the capability to provide global snow observations which are not affected by

cloudiness and night condition (except when precipitating events are occurring). Furthermore, they provide information on snow mass, i.e.,

snow water equivalent (SWE), which is critically important for hydrological modeling and water resource management. However, the errors

associated with the passive microwave measurements of SWE are well known but have not been adequately quantified thus far.

Understanding these errors is important for correct interpretation of remotely sensed SWE and successful assimilation of such observations

into numerical models.

This study uses a novel approach to quantify these errors by taking into account various factors that impact passive microwave responses

from snow in various climatic/geographic regions. Among these factors are vegetation cover (particularly forest cover), snow morphology

(crystal size), and errors related to brightness temperature calibration. A time-evolving retrieval algorithm that considers the evolution of

snow crystals is formulated. An error model is developed based on the standard error estimation theory. This new algorithm and error

estimation method is applied to the passive microwave data from Special Sensor Microwave/Imager (SSM/I) during the 1990–1991 snow

season to produce annotated error maps for North America. The algorithm has been validated for seven snow seasons (from 1988 to 1995) in

taiga, tundra, alpine, prairie, and maritime regions of Canada using in situ SWE data from the Meteorological Service of Canada (MSC) and

satellite passive microwave observations. An ongoing study is applying this methodology to passive microwave measurements from

Scanning Multichannel Microwave Radiometer (SMMR); future study will further refine and extend the analysis globally, and produce an

improved SWE dataset of more than 25 years in length by combining SSMR and SSM/I measurements.

Published by Elsevier Inc.
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1. Introduction

Snow plays an important role in the global energy and

water budgets, as a result of its high albedo and thermal and

water storage properties. Snow is also the largest varying
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landscape feature of the Earth’s surface. For example, in

North America, the snow cover extent may vary from

greater than 50% to less than 5% in the course of six months

(Hall et al., 2002), and the snow water equivalent (hereafter

referred to as SWE) of mid-latitude snowpacks can be

reduced by as much as 100 mm in less than 6 days.

Furthermore, snow depth and SWE, as well as snow cover

extent, are important contributors to both local and remote

climate (Gong et al., 2004). Thus, knowledge of snow
ent 94 (2005) 187–203
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extent and SWE are important for climate change studies

and applications such as flood forecasting.

Despite its importance, the successful forecasting of

snowmelt using atmospheric and hydrologic models is

challenging. This is due to the imperfect knowledge of

snow physics and simplifications used in the model, as well

as errors in the model forcing data. Furthermore, the natural

spatial and temporal variability of snow cover is charac-

terized at space and time scales below those typically

represented by models. Snow model initialization based on

model spin-up will be affected by these errors. By

assimilating snow observation products into land surface

models, the effects of model initialization error may be

reduced (Sun et al., 2004).

A critical requirement for successful assimilation of snow

observations into models is an accurate knowledge of the

observation errors. While it is possible to directly replace

modeled states with observed states, this does not take into

account the fact that model predictions and remotely sensed

observations contain different amounts of error. In state-of-

art data assimilation, error statistics of the observational data

are required so that the correct weighting between observa-

tions and model estimates may be applied. Furthermore, in

order for the remotely sensed SWE observations to be useful

for climate modelers, water resource managers, and flood

forecasters, it is necessary to have a quantitative, rather than

qualitative, estimate of the uncertainty. A framework is

needed to estimate SWE and its associated errors over large

geographic areas.

In situ SWE data are poorly distributed globally and

collected irregularly (Robinson et al., 1993). Passive micro-

wave remote sensors onboard satellites provide an all-

weather global SWE observation capability day or night.

Brightness temperatures from different channels of satellite

passive microwave sensors (hereafter referred to as PM) can

be used to estimate SWE (or snow depth with knowledge of

the snow density), and hence snow cover extent. This is a

significant advantage over infrared sensors, which only work

under cloud-free conditions, and visible sensors, which also

require daylight to observe terrestrial features. More impor-

tantly, PM sensors provide estimates of the snow mass and

not just snow cover extent. However, there are errors

associated with the PM measurements. In order for the

remotely sensed SWE observations to be useful for climate

modelers, water resource managers, and flood forecasters, it

is necessary to have both an unbiased SWE estimate and a

quantitative, rather than qualitative, estimate of the uncer-

tainty. This is a critical requirement for successful assim-

ilation of snow observations into land surface models.

For most PM algorithms, the effects of vegetation cover

and snow grain size variability are the main source of error

in estimating SWE. Of lesser concern are the effects of

topography and atmospheric conditions. A major assump-

tion made in a number of PM algorithms is that vegetation

cover does not affect the SWE estimates. In fact, it can have

a significant impact on the accuracy of SWE estimates. In
densely forested areas, such as the boreal forest of Canada,

the underestimation of SWE from retrieval algorithms can

be as high as 50% (Chang et al., 1996). Other factors such

as topography and ice crusts effect PM retrievals but to a

lesser extent than forests and crystal size.

The purpose of this paper is to explore a methodology for

deriving unbiased PM SWE observations and associated

uncertainty estimates. Errors due to simplifying assumptions

of the retrieval algorithm are quantified. The 1990–1991

snow season is examined in detail as an example. PM SWE

data from Special Sensor Microwave/Imager (SSM/I) for

this snow season and their associated uncertainty are

analyzed throughout North America. SSM/I data from seven

snow seasons (from 1988 to 1995) are examined to evaluate

our approach and validate our algorithm. We have focused

on North America due to the availability of extensive in situ

SWE data and abundance of field campaigns relative to the

rest of the world. A future study will extend our analysis

globally.
2. PM radiometry

Microwave emission from a snow layer over a ground

medium consists of contributions from the snow itself and

from the underlying ground. Both contributions are gov-

erned by the transmission and reflection properties of the

air–snow and snow–ground boundaries, and by the absorp-

tion/emission and scattering properties of the snow layers

(Chang et al., 1976; Wiesman & Mätzler, 1999). Snow

crystals essentially scatter part of the cold sky radiation,

which reduces the upwelling radiation measured with a

radiometer (Schmugge, 1980). The deeper or more compact

the snowpack is, the more snow crystals are available to

scatter the upwelling microwave energy. It is this interaction

property that is used to estimate snow mass.

If a snowpack is not too shallow (for example, the

thickness of the snowpack is greater than 5 cm or

equivalently, the snowpack contains more than about 10

mm SWE), scattering of naturally emitted microwave

radiation by snow crystals occurs and can be detected at

frequencies greater than about 25 GHz. Otherwise, the snow

will be virtually transparent. By comparing brightness

temperatures detected at an antenna at frequencies greater

than 25 GHz (typically scattering dominated) with those

brightness temperatures detected at frequencies less than 25

GHz (typically emission dominated), it is possible to

identify scattering surfaces. Generally, the strength of

scattering signal is proportional to the SWE, and it is this

relationship that forms the basis for estimating the water

equivalent (or thickness) of a snow pack (Chang et al.,

1976; Kelly and Chang, 2003; Pulliainen & Hallikainen,

2001; Tsang et al., 2000; Ulaby & Stiles, 1980).

From November 1978 to the present, the Scanning

Multichannel Microwave Radiometer (SMMR) instrument

on the Nimbus-7 satellite, and the SSM/I on the Defense
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Meteorological Satellite Program (DMSP) series of satellites

have acquired PM data every other day that can be used to

estimate SWE. The SMMR instrument failed in 1987, the

year the first SSM/I sensor was placed in orbit. On SMMR,

the channels most useful for snow observations are the 18 and

37 GHz channels. For the SSM/I, the frequencies are slightly

different (19.35 and 37.0 GHz). Additionally, an 85 GHz

channel is available on the SSM/I. This frequency has been

demonstrated to be beneficial in detecting shallow snow-

packs (less than 5 cm thick) if the atmosphere is relatively

free of clouds (Foster et al., 1996). PM data from SSM/I for

most places on the globe are available each day. The swath

data (obtained from Remote Sensing Systems) are projected

into 0.58�0.58 longitude Equal Area Scalable Earth Grid

(EASE-grid). These grid cells uniformly subdivide a polar

stereographic map according to the geographic coordinates

of the center of the field of view of the radiometers.

Overlapping data in cells from separate orbits are averaged

to give a single brightness temperature, assumed to be located

at the center of the cell (Armstrong & Brodzik, 1995; Chang

& Rango, 2000). With the launch of Earth Observing System

(EOS) Aqua satellite in May 2002, high-quality PM SWE

observations are available from its Advanced Microwave

Scanning Radiometer for EOS (AMSR-E) instrument. An

overview of the characteristics of the SSMR, SSM/I, and

AMSR instruments is given in Table 1.

There is some question about the effect of polarization on

snow depth and SWE estimation using PM data. From

ground based microwave measurements, Matzler (1987)

showed that horizontally polarized brightness temperatures

at 19 and 37 GHz are slightly more sensitive to snowpack

stratigraphy than the vertically polarized brightness temper-

atures. For spaceborne passive microwave observations over

large footprints, however, Rango et al. (1979) demonstrated

that brightness temperatures at horizontal and vertical

polarization have very similar relationships with snow depth

or snow water equivalent. Furthermore, when using a Tb
Table 1

Characteristics of passive microwave sensors SMMR, SSM/I, and AMSR-E

SMMR SSM/I AMSR-E

Platform Nimbus-7 DMSP F-8,

11, 13

Aqua

Period of

operation

1979–1987 1987–present 2002–present

Data acquisition every other day daily daily

Swath width (km) 780 1400 1600

Frequency (GHz) 18.0 37.0 19.35 37.0 18.7 36.5

Spatial

resolution (km)

60�40

(18 GHz)

69�43

(19.4 GHz)

28�16

(19.7 GHz)

30�20

(37 GHz)

37�29

(37 GHz)

14�8

(36.5 GHz)

Polarization H&V H&V H&V

Orbital timing

(Eq. crossing;

for minimum

temperature)

Midnight 6:00 a.m. 1:30 a.m.

Incidence angle 518 538 538
difference algorithm at these two frequencies, the snowpack

stratigraphy effects in one-channel frequency will be very

similar to the effects in the other (Kelly et al., 2003).

Melt water in the snowpack can raise the microwave

brightness temperature, especially at frequencies above

about 30 GHz, since water droplets emit rather than scatter

microwave radiation. While SWE information can be

difficult to extract under these conditions, it is possible to

use this characteristic to extract information on snowmelt

status (Walker & Goodison, 1993). In order to minimize the

effect of these conditions on SWE estimates, only nighttime

data have been used in this paper. This helps to ensure, but

cannot guarantee, that whatever snow has melted during the

day will be refrozen at night (Derksen et al., 2000).
3. A new retrieval algorithm

3.1. A commonly used SWE algorithm

A commonly used SWE retrieval algorithm was devel-

oped by Chang et al. (1987), where brightness temperature

differences between the 19 (or 18 GHz for SMMR) and 37

GHz channels are multiplied by a constant c0 determined

from radiative transfer model experiments of snow. The

simple algorithm for SWE retrieval is

W ¼ c0 T19 � T37Þ ½mm�;ð ð1Þ

where W is snow water equivalent in mm, c0 is 4.8 mm K�1

for SSM/I (4.77 for SMMR), and T19 and T37 are the

horizontally polarized brightness temperatures at 19 (or 18

GHz for SMMR) and 37 GHz, respectively. Using 19 vs. 18

GHz has a very small effect on the algorithm, since the

penetration for both frequencies is nearly identical at an

incidence angle of 508. In deriving the retrieval algorithm

(1), the snow grain radius and snow density was assumed to

be 0.3 mm and 300 kg m�3, respectively.

The performance of this algorithm is similar when either

vertical or horizontal polarizations are utilized—horizontal

polarization was used in this study (Rango et al., 1979). If the

brightness temperature from the 19 GHz (or 18 GHz) channel

is less than that from the 37 GHz channel, then the snow

depth and SWE are set to 0. To derive snow depth, SWE is

simply divided by the snow density. It has been determined

that, in general, a snow density value of 300 kg m�3 is

representative of mature mid winter snow packs in North

America (Foster et al., 1996). Therefore, the equivalent snow

depth retrieval algorithm can be obtained by modifying the

coefficient c in (1) such that its value is 1.60 cm K�1.

In the wavelength range between about 0.8 (~37 GHz)

and 2.0 cm (~15 GHz) and for snow crystal sizes normally

encountered in snowpacks (diameter of about 0.1 to 0.5

mm), nearly all of the microwave radiation emanates from a

layer less than 10 m in thickness (Chang et al., 1976).

Because of low loss when snow is dry, part of the radiation

emitted by the underlying ground is scattered within the
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snowpack and part contributes to the observed signal when

the total snow depth is less than 10–100 times the

microwave wavelength (Rango, 1983). Therefore, in most

cases, additional scattering does not result when snow

thickness exceeds 0.8 m—the approximate bsaturationQ limit

for 37 GHz frequencies. For most locations in North

America, usually, snow does not accumulate to these depths

over an entire PM pixel (37 km�28 km for SSM/I). In

portions of the Rocky Mountains and the Alaska Ranges,

and perhaps in a few isolated areas in the boreal forests of

Quebec, depths of 1 m or more can be reached, but our

analysis indicates that these pixels make up less than 2% of

all the pixels in North America.

3.2. A new retrieval algorithm

To account for the impact of vegetation cover and the

evolution of the snow crystals with the progression of snow

season, we modify the simple retrieval algorithm (1), by

using forest cover information form the International Geo-

sphere–Biosphere Program (IGBP) Land Cover Data Set

(Loveland et al., 2000), and snow crystal information based

on the work by Sturm et al. (1995; see Fig. 1). The details

are described below.

3.2.1. Impact of vegetation cover

The primary source of error in PM SWE retrieval is the

masking effect of vegetation. Microwave emission from

overlying forest canopy can overwhelm the scattering signal

from the snowpack, thus reduce the brightness temperature

difference term in (1) (Chang et al., 1996). In the PM portion

of the electromagnetic spectrum, the underestimation error

in the boreal forest can be as high as 50% (Brown et al.,
Fig. 1. Snow class distribution based on climate variab
2003). In the tundra and prairie areas, the SWE estimates are

more reliable because vegetation is sparse, thus there is little

extraneous emission. In fact, dense vegetation not only

creates problems for snow retrievals in the microwave part

of the spectrum but also in the visible wavelengths as well.

Hall et al. (2001, 2002) found that when employing the

MOderate Resolution Imaging Spectroradiometer (MODIS)

snow algorithm, snow-detection errors were as high as 43%

in densely forested areas of the boreal forest in Canada.

The importance of land cover on SWE algorithms has

been well recognized. The Meteorological Service of

Canada (MSC) has developed a suite of land cover-sensitive

empirical SWE algorithms for passive microwave retrievals

(Goita et al., 2003). The land cover is divided into four

categories: Open, Coniferous forest, Deciduous forest, and

Sparse forest. A different empirical algorithm is applied to

each category. Derksen et al. (2003) evaluated the MSC

algorithms for 18 winter seasons in the western Canada

using data from SMMR and SSM/I. The algorithms perform

well in open and sparsely forested regions as compared to

the in situ SWE data, but have significant difficulty in

densely forested or deep snow-covered areas.

To address continental-scale SWE estimations, we use a

single parameter (percentage of forest cover) to parameter-

ize the effect of vegetation cover. For each forested pixel, a

fractional forest cover is calculated using the IGBP Land

Cover Data Set (Loveland et al., 2000). These data, at 1

km�1 km, are averaged to the 0.58�0.58 latitude/longitude
grid used in this study. The percentage of forest cover in a

PM pixel was calculated from the total number of forest

classification pixels at 1 km divided by the total number of

pixels. Underestimation of SWE due to forest cover is then

parameterized empirically.
les in North America (from Sturm et al., 1995).
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This is a simplified approach since it assumes fractional

forest cover in a pixel is the most relevant factor that affects

the microwave emission by vegetation cover. In fact, forest

inventory variables (canopy volume and stem closure) that

characterize forest structure are more relevant for passive

microwave emission from ground, not simply the fraction

of forest cover. Crown closure, basal area (the cross

sectional area of tree stems per unit ground area), and

foliage biomass are directly related to microwave emission

since they are all inversely related to visible reflectance

(Franklin, 1986). At the northern edge of the boreal forest, a

pixel that is covered by sparsely spaced stunted conifers

might be considered completely forested and can have very

different microwave emissions as compared to a highly

forested taiga pixel covered by large trees in close

proximity of one another. Additionally, a conifer is likely

to be more emissive than a deciduous tree in mid-winter.

Due to lack of in situ data on detailed forest characteristics

in the North America, the influence of latitude or species

was not considered in this study.

For every 10th percentile of the fractional forest cover, an

ad hoc underestimation error of SWE by PM retrieval from

(1) is assigned (Fig. 2a). Since the largest underestimation

error occurs when a pixel is highly forested, i.e., its

fractional forest cover is between 80% and 100%, the

underestimation by (1) in this case is set to 50% of btrueQ
SWE. On the other hand, in tundra regions, where by

definition forests are not present (but shrubs and grasses

thrive in this region), the underestimation error is set to 5%.
ig. 2. (a) Underestimation of SWE due to forest cover. The error bars

enote uncertainty of the underestimation. (b) The forest factor F as a

unction of fractional forest cover.
F

d

f

As we recognize that the underestimation error can vary

depending on the type of vegetation and stem volume for a

given fractional forest cover, which are not considered in the

current approach, we also assign an error bar to the

underestimation error (Fig. 2a). Small error bars are assigned

to small values (below 20%) and high values (above 80%) of

fractional forest cover, while large error bars are assigned to

pixels with medium values of fractional forest cover. This is

because uncertainty is relatively small when a pixel is barely

forested, and for a densely forested pixel, the under-

estimation could be reasonably quantified. When a pixel is

more mixed with bare ground and forest, it is harder to

untangle the contribution of the PM signal due to scattering

from the underlying snow and emission from trees.

These values are currently our best guess, since no studies

exist to provide such bounds. Nevertheless, these under-

estimation errors and error bars were partly assigned based on

previous field work in the BOREAS project (see Chang et al.,

1996) and analysis of visible and microwave satellite

observations in the boreal forests (Foster et al., 1991; Hall

et al., 1982; Robinson & Kukla, 1985; Scialdone & Robuck,

1987). Whenmore accurate limits become available, they can

be replaced and more rigorous uncertainty estimates can be

achieved. Recent field experiments, such as the Cold Land

Processes Field Experiment (CLPX), holds great promise in

rigorously validating passive microwave SWE retrievals and

their error ranges with carefully surveyed in situ SWE.

Using the assigned estimation error, a modified SWE

algorithm that is sensitive to vegetation cover can be

derived. Denote the estimated SWE for a pixel by (1) as

W, the SWE value that has been corrected for forest

influence as WF, and the under- or over-estimation error

as E, then

WF �W ¼ eWF ð2Þ

That is,

WF ¼ W= 1� eð Þ ð3Þ

Denote F as

F ¼ 1= 1� eð Þ; ð4Þ

then an algorithm that accounts for vegetation cover is

WF ¼ F c0 T19 � T37Þ mm½ �ð ð5Þ

We refer to F as the bforest factorQ hereafter. Fig. 2b shows

F as a function of fractional forest cover in North America.

3.2.2. Impact due to growth of snow crystals

The second major source of SWE error results from the

assumption that snow crystal size remains constant through-

out the snow season and is uniform globally. This

assumption is reflected in the original SWE retrieval

algorithm (1) where c0 is a constant. In reality, snow crystal

sizes vary considerably over time and space. The microwave

response of snow has been found to be very sensitive to

crystal size, although not sensitive to crystal shapes (Foster



Fig. 3. SWE overestimation or underestimation error (shown in diamonds) for the six Sturm classes due to the assumption of constant grain size. Error bars

denote uncertainty in these error estimates.
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et al., 1999). In most snowpacks, constructive metamor-

phism is greater than destructive metamorphism, so the net

result is that, on average, crystals either grow or stay at

about the same size during the snow season (Colbeck,

1982). Consequently, algorithm (1) generally overestimates

SWE (if vegetation effect is accounted for) because micro-

wave scattering increases as the crystals grow larger.

Here we evolve the coefficient c in (5) temporally and

spatially, based on snow crystal characteristics in different

geographical and climate regions and our understanding of

how they evolve with time. The characterization of seasonal

snowpacks in the North America is from Sturm et al. (1995)

who analyzed relations between textural and stratigraphic

characteristics of snow layers and climate variables, and

categorized snow packs in the North America and Eurasia

into six classes (excluding continental ice caps and ocean/

water bodies): tundra, taiga (Russian word for moist,

subarctic coniferous forest), alpine, prairie, maritime, and

ephemeral (Fig. 1). For simplicity, we will refer to these

classes as Sturm classes hereafter.
To derive a spatially and temporally varying coefficient

c, we start by estimating how much error there is when

using (5), which still assumes constant crystal size of 0.3

mm in radius. Keep in mind, we now assume the influence

of vegetation cover has been taken care of. A monthly error

value c is assigned to each Sturm class (Fig. 3). If the error

is 20%, it means we expect (5) to overestimate the btrueQ
SWE by 20%. Note negative error values of c denote

underestimation of SWE by (5). The btrueQ SWE valueWt is

then

Wt ¼ WF � cWF ¼ 1� cð Þ WF ; ð6Þ

whereWF is the SWE value from (5). The btrueQ SWE value

is

Wt ¼ 1� cð ÞFc0 T19 � T37Þð ð7Þ

Denote a varying coefficient c as,

c ¼ 1� cð Þc0 ð8Þ
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The new algorithm is now

W ¼ Fc T19 � T37Þð ð9Þ

where we have dropped the superscript btQ; F and c are

time- and space-varying coefficients, with F from (4) and c

from (8).

In areas that favor crystal growth, e.g., with large air

temperature gradients, (northern interior climates—taiga,

tundra, and prairie snow classes), the rate of growth and the

associated crystal size errors are typically larger. As the

snow season progresses, the overestimation by (5) in these

classes increases because (5) assumes that snow crystals do

not grow with time. The greatest overestimation occurs in

the tundra snow and the least in maritime or ephemeral

snow. The exception occurs for the months of October and

November, when SWE is mostly underestimated by (5).

That is, because the snow cover is usually shallow (b5 cm)

at the beginning of the snow season, microwave radiation at

all observed frequencies can pass through the snowpack

virtually unimpeded, therefore snow is underestimated.

These error values are assigned in an ad hoc way which

represents our best guess. As with the case of deriving F,

these values are assigned based on various field campaign

results with snow crystal samples collected and analyzed, as

well as subjective analysis based on previous work and field

experiences in Colorado, Wisconsin, North Dakota, Alaska,

and Saskatchewan (see for example, Chang et al., 1982,

1985, 1986, 1996; Hall et al., 1986, 1991). These error

estimates can be refined once new field campaign results

become available.
Fig. 4. Grain size coefficient c (in mm K�1) as a function of time for six Sturm cla

plotted and labeled as bOLDQ.
To quantify the uncertainty in the new algorithm (9),

error bars are assigned to these error estimates (Fig. 3). For

example, the overestimation error for the prairie snow class

in March is set to 20%, yet the actual underestimation could

vary between 5% and 35%. A 15% error bar is thus assigned

to the prairie class in March. The uncertainty of the

overestimation is slightly higher in those classes where

crystal growth is a dominant snowpack characteristic

(tundra, taiga, and prairie classes) and at those times of

year where crystals grow most rapidly.

Fig. 4 shows different values of c for each Sturm class for

each month of the snow season (October to May) for North

America, as calculated from (8). The coefficient c often

decreases from autumn through spring because crystal size

in mature snowpacks usually increases during this period.

The original constant coefficient c0 (4.8 mm) is associated

with an average crystal size of 0.3 mm (radius). For c values

smaller than 4.8, the algorithm assumes larger crystals.

It should be noted that there can be a tremendous size

range of snow crystals from the bottom to the top of a

snowpack. Depth hoar crystals may have a radius of 5

mm, whereas fresh powder snow consists of very fine

crystals (1 mm in radius). While these are extreme cases,

the variety of crystal sizes in a mature mid-winter

snowpack in the interior of North America can nonetheless

be enormous. Reconciling an baverageQ crystal size is

difficult indeed. It may be that the median or the most

frequently observed size (mode) is a better statistic. Yet,

even though a single value for crystal size may not be

entirely representative of the myriad crystals encountered

within a snowpack, nevertheless, we circumvent this
sses. The constant value (4.8 mm K�1) used in the original algorithm is also
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problem by using an empirical and ad hoc approach in

deriving c. To rigorously derive c, extensive calibration

and validation are required between PM estimates and

ground measurements (the bground truthQ).
In summary, to compute PM SWE value for each pixel

using (9), the forest factor F is determined based on the

forest cover fraction of this pixel, and the coefficient c value

is assigned based on its snow class category and time of the

year. The purpose of introducing the forest factor F and

time- and space-varying c in (9) is to correct the systematic

errors in (1). Note that we have assumed that the forest

masking and snow crystal size effect independently affects

the algorithm, and their total effects can be combined in a

multiplicative way to correct the error.
4. Error analysis

We use standard error propagation theory (e.g., Heuve-

link, 1998) to quantify the uncertainty associated with the

new SWE retrieval algorithm (9), and assume that errors

from different sources are uncorrelated, which is defensible.

The uncertainty consists of error propagation terms and

model error terms for unaccounted processes. The error

propagation terms include brightness temperature calibra-

tion errors for the 19 and 37 GHz bands, errors due to forest

cover and snow crystal effects. The model error terms

include errors due to topography (roughness and incidence

angle), atmospheric, and calibration errors in the radiative

transfer model on which (1) is based. The uncertainty in

SWE is calculated as

r2
w ¼

�
BW

Bc

�2

r2
c þ

�
BW

BF

�2

r2
F þ

�
BW

BT19

�2

r2
T19

þ
�

BW

BT37

�2

r2
T37|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Error Propogation Term

þ r2
topography þ r2

atmosphere þ r2
calibration|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Model Error Term

ð10Þ

where r denotes the standard deviation of each of the

component factors (c, F, T19, T37, and W). When retrieving

snow depth from PM measurements, the uncertainty in

snow density also needs to be included as an error

propagation term. This is not considered here since we

focus on SWE retrieval in this study.

Apply (9) into (10), we get

r2
W ¼ F2ðT19 � T37Þ2r2

c þ c2ðT19 � T37Þ2r2
F þ F2c2r2

T19
þ F2c2r2

T37|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Error Propogation Term

þ r2
topography þ r2

atmosphere þ r2
calibration|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Model Error Term

ð11Þ

Evaluation of the error propagation terms in (11) is

relatively straightforward, requiring only differentiation of

the algorithm in (9) and uncertainty estimates for the
algorithm inputs. However, evaluation of the model error

terms is somewhat more difficult, with knowledge of the

effect of each of the nonmodeled terms on SWE estimation

required. A calibration uncertainty for the 19 and 37 GHz

brightness temperature data of 1 K was used, and a

calibration error of 5 mm by the radiative transfer model

was applied (Chang, personal communication).

While atmospheric error is also included as a model

error term, this effect is deemed negligible and omitted

from the uncertainty analysis. This is because during the

period when snow covers the ground, when clouds are

present, they are almost always composed of minute ice

crystals rather than water droplets. Since ice crystals have a

similar response to the microwave signals at the two

frequencies used to derive SWE, the error due to

atmospheric emission is minimized.

Another source of uncertainty is the effect of relief or

topography. Mountain ranges with significant relief (N500

m between adjacent pixels) can alter the microwave

signal received at the antenna (Matzler & Standley,

2000). For example, mountain ranges perpendicular to

the track of the satellite may have slightly lower (b5 K)

brightness temperatures on the side of the range facing in

the direction of the sensor than on the side facing away

from the sensor. Inevitably, mixed pixel effects including

forest cover variations in mountainous terrain and differ-

ences in snow crystal size with elevation will be more

important than relief factors. Nevertheless, if no forests

are present, and if changes in crystal size are negligible,

then errors attributable to relief alone may need to be

considered. This is beyond the scope of this paper and

not considered here.

It is worth mentioning that wind and ice crusts can

adversely affect PM retrievals. However, use of a single

polarization in PM algorithms minimizes this concern, since

this effect is only significant when brightness temperatures

from different polarizations (vertical and horizontal) are

used. Nonetheless, surface crusts occurring over large areas

(multiple PM pixels) for extended periods (weeks), can

confound PM algorithms, although it should be noted that

this phenomenon does not occur routinely. Again, our focus

in this study is on errors associated with forest cover and

crystal size, which are major contributors to the PM SWE

retrieval error.
5. Results

As a case study, we focus on snow season 1990–1991 in

this section. We will examine other snow seasons in the

Validation section later. We first present monthly SSM/I

SWE maps in North America computed from the new

algorithm (9). Then we compare the results between the old

and new algorithms and discuss their differences. Finally,

we evaluate the uncertainty associated with the new

algorithm (9) using (11).
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5.1. Monthly SWE during 1990–1991

Fig. 5 is a series of monthly maps from October

1990 through May 1991 showing the monthly

average SWE in North America using (9). Note that

pixels that mix with large water bodies have been

designated as snow free, because PM measurements are

contaminated by the emission of water in the pixels,

although they may be snow-covered during much of the

snow season. In October 1990, snow was mostly confined to

the tundra region, and the maximum SWE was less than 90

mm. By November, the contiguous snow covered area had

expanded southward toward the U.S./Canada border.

Although SWE values were generally less than 120 mm,

in a few locations in the taiga region (e.g., Yukon Territory

and Alaska), they were over 180 mm.

By December, the area of contiguous snow stretched

from the intermountain basins of the western U.S. across the

central plains and into northern New England. However, the

northern U.S. plains and southern Canadian prairies were

still snow free. It is not unusual to find snow-free areas in

the lee of the Rocky Mountains, because in this semiarid

region, evaporation nearly always exceeds condensation,

and sublimation (accelerated by persistent winds) can
Fig. 5. SSM/I monthly SWE maps from October 1990 through May 1991. G
quickly remove shallow snow cover. While the snowpack

was still thin in the U.S., the snowpacks had grown thicker

in the taiga and Canadian prairies, where some SWE values

were greater than 150 mm.

By January 1991, the snowline had reached its maximum

extent—it was positioned as far south as the southern plains

of the U.S. The SWE had noticeably increased (compared to

December SWEs) throughout North America. A large

proportion of the Canadian taiga region now showed SWE

values in excess of 200 mm. The SWE map for February is

similar to that of January, but the areal extent of the snow

cover is slightly less. Note that the snow-free area of the

Great Plains had reappeared. By March, the snow line had

started to retreat northward, and the snowpack had

diminished in the U.S. Rockies and upper Mid West.

However, in Canada, there was very little difference in SWE

between February and March.

In April, the snow-covered area had further contracted—

the contiguous snowline was now positioned near the U.S./

Canada border. SWE values remained small (less than 30

mm) across the prairie regions, but were in excess of 90 mm

almost everywhere in the boreal forest—some snowpacks

still have SWE values greater than 150 mm. By May, the

snowline had further migrated northward into the taiga
ray-colored area is Greenland, and brown-colored area is snow-free.
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region. At this time, SWE values were less than 60 mm in

most taiga and tundra locations.

Weekly NOAA snow maps from October 1990 through

May 1991, in general, compared favorably to the snow

cover extent in Fig. 5 (not shown here). Although we

compared monthly SWE maps with the weekly NOAA

snow cover extent maps, nevertheless, the maps were in

very close accord throughout the snow season (NOAA/

NESDIS, 1990 and 1991).

5.2. Comparison of the new and old algorithms

Fig. 6 shows differences in SWE estimates by the

new algorithm (9) and old algorithm (1). Positive

(negative) values indicate new algorithm estimates more

(less) snow than the old algorithm. If we treat the new

algorithm as the bcorrectQ algorithm, then positive values

indicate underestimation by the old algorithm, and negative

values indicate overestimation by the old algorithm. We

should point out that we use the term boverestimationQ and
bunderestimationQ here as if the new algorithm gives the

btrueQ value of SWE. However, this is only accurate when

the new algorithm is rigorously validated with sufficient

bground truthQ data.
Fig. 6. Difference maps between the new and old SSM/I S
Snow was underestimated using (1) in forested areas (the

taiga or boreal forest region) because the microwave

emission from the trees overwhelms scattering from the

underlying snowpack. With the inclusion of a forest factor

in the new algorithm, considerably more SWE was

estimated in these regions. The old algorithm (1) slightly

underestimated SWE (by about 30 mm) in the tundra in

October. In November, (1) overestimated SWE in the tundra

by approximately 30 mm—the snow crystals are typically

larger here in late fall and winter than in early autumn. As

the snow cover extended southward into the taiga, the old

algorithm underestimated SWE in excess of 60 mm in

portions of the Yukon Territory and Mackenzie River Basin.

In other areas of the boreal forests, the underestimation is

less than 30 mm. By January 1991, positive differences are

evident throughout the taiga (greater than 90 mm in places)

and maritime classes as well as in the southern Rocky

Mountains.

The maps for January, February, and March are very

similar to each other. In the extreme northern reaches of the

taiga, the new algorithm showed as much as 180 mm more

SWE than did the old algorithm. In general, the increase was

between about 30 and 120 mm in most forested areas. In

terms of snow depth, on average, this means that in the
WE algorithms for October 1990 through May 1991.
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maritime, alpine and taiga Sturm snow classes, there is

approximately 27 cm more snow on the ground using the

new algorithm than using the original algorithm (using a

density value of 300 kg/m). In April, the differences within

the forested regions were still positive but smaller than in

mid winter. For this month, maximum values in the taiga

were near 90 mm. By May, the tundra was still completely

snow covered, but only the northern portions of the taiga

contained snow. The largest underestimation in the taiga

was approximately 30 mm, whereas in the tundra, the

largest overestimation by (1) was also 30 mm.

5.3. SWE retrieval uncertainty

Here we quantify the uncertainty associated with the new

algorithm (9) using (11). Denoting the retrieval of SWE

from the new algorithm as bobservations,Q as when used in

data assimilation systems that assimilate SWE retrievals, we

estimate the errors associated with retrieved SWE using

(11). Fig. 7 illustrates the uncertainty in SWE estimates

during the course of the snow accumulation and ablation

period of 1990–1991. The errors are typically greatest where

the snow is the deepest, the forests are most dense, and the

crystals are growing the fastest. Of course, errors are
Fig. 7. Uncertainty associated with the new SSM/I SWE
encountered even in open areas where the snow is relatively

shallow; these smaller errors can be significant over

continental-scale areas. The emphasis in this study though

is to minimize the large errors attributable to forests and

grain size.

In October 1990, errors in the tundra zone, were

generally less than 12 mm. By November, the greatest

errors were found in Alaska, and in the Yukon Territory and

the Northwest Territories of Canada—in the tundra and

along parts of the northern fringes of the taiga or boreal

forest. The maximum errors here approached 24 mm. In

these areas, and at this time, the snow rapidly accumulates,

and snow crystals within the snowpack begin to grow as

temperature gradients between the air/snow interface and

the surface/snow interface are considerable (may be in

excess of 258C). By December, in the northwestern

quadrant of North America, the maximum errors were

actually somewhat smaller than in November. However,

rather large errors (greater than about 12 mm) were found

throughout the taiga. The errors in January were similar to

December except that errors in the northern prairies had

increased to between 6 and 9 mm. In February and March,

the error maps were in close accord with the January map;

however, the errors in the northern prairies were slightly less
algorithm (9) for October 1990 through May 1991.



Fig. 8. (a) Total error, (b) forest error, (c) grain error, and (d) Tb error associated with the new SSM/I SWE algorithm for February 1991.
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(less than 3 mm). By April, in the taiga, the geographic area

of the largest errors (greater than 18 mm) was quite a bit

smaller than was the case during the winter months, and by

May, maximum errors exceeded 9 mm only in the northern

reaches of the taiga in north central Canada as well as in

northern Quebec and in northern Newfoundland.

Fig. 8 shows the breakdown of contributions from

different terms in (11) for the SWE estimate by the new

algorithm for February 1991. Fig. 8a shows the total error.

Fig. 8b shows the contribution to this error from the impact

of forest cover. These errors were generally small through-

out North America (b3 mm), except within the taiga, where

errors were as high as 24 mm. Fig. 8c shows that

contribution to the total error due to uncertainty in crystal

size, especially in portions of the tundra, the taiga, and the

southern Rocky Mountains—grain size errors range from 9

to 18 mm. Fig. 8d shows the contribution to the total error

resulting from brightness temperature instrument accuracy.

They were greatest where the snow was the deepest in

forested areas. Maximum errors in taiga, maritime, and

alpine classes exceeded 12 mm. Note that since errors due to

forest cover and snow crystal evolution have been corrected

in the new algorithm (9), the major error left is the

contribution of measurement error by the instruments.
Fig. 9. Meteorological stations used in the in situ SWE dataset produced by

the Meteorological Services of Canada.
6. Validation

We first compared the SSM/I retrievals from the old and

new algorithm with in situ SWE data for the snow season

1990–1991. We then validated (9) using SSM/I data and

ground SWE data from MSC for the years 1988–1995. For

the purpose of validating our results, we obtained biweekly

meteorological SWE data from both meteorological stations

and snow courses, which were collected and analyzed by

MSC (Brown et al., 2003). The snow depth data from

meteorological observing stations have been converted to
SWE using snow density values interpolated from the

smaller number of snow survey courses—spatially and

temporally sensitive constants of density were used (Brown,

1996). The Brown et al. (2003) SWE dataset is considered

the most reliable large-scale snow dataset available for

Canada (Brown & Goodison, 1996). It was found by Brown

et al. (2003) that SWE values from the snow depth network

agreed very closely with SSM/I-derived SWE over the

Canadian prairies. Mote et al. (2003) reached a similar

conclusion; however, the agreement was not as favorable in

forested environments.

Fig. 9 shows the location of these meteorological

stations in the MSC SWE dataset. Although there are

hundreds of reliable meteorological stations in southern

Canada, comparatively few stations (less than 100) exist

north of 558N. However, there are sufficient stations to

quantitatively evaluate the SSM/I passive microwave

estimates of SWE in the above listed Sturm classes, except

the ephemeral class that does not exist in Canada. Because

our interest and focus is on the impact of both vegetation

cover and crystal size differences, we have slightly

modified the map derived by Sturm in the boreal forest
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region. Despite the nomenclature in the Sturm classes

(taiga, tundra, alpine, prairie), they are not necessarily

defined by vegetation characteristics (Sturm et al., 1995).

For example, seasonal snowpacks with forest cover less

than 80% also comprise the taiga class in the Sturm

classification. After the modification, the taiga class now

includes only those areas that are over 80% forested, and

the tundra class includes only those less than 50% forested.

A pixel classified as taiga but with less than 80% forest

cover, or a pixel classified as tundra but with over 50%

forest cover, is now binned into a separate tundra/taiga

class.

For each station, the nearest SSM/I pixel was identified.

If there exists multiple stations in one SSM/I pixel, the

station data were averaged. Then, the in situ SWE data were

compared to the satellite SWE retrieval using the old

algorithm (1). We used this comparison during the 1990–

1991 snow season to fine-tune the new SWE algorithm (9)

and the uncertainty associated with it. Fig. 10 shows the

comparison among SSM/I retrieval from (1) and (9) and

how they compared with station SWE in each Sturm class

during the 1990–1991 snow season. The number of stations

with data in 1990–1991 season in each Sturm class is: 67
Fig. 10. Comparison of biweekly observed in situ SWE (red line) and SSM/I retrie

the 1990–1991 snow season. Red color bars denote standard deviations of the in
(tundra), 116 (taiga), 319 (prairie), 476 (alpine), and 838

(maritime). The separate class tundra/taiga (for fractional

forest cover less than 80% but greater than 50%) includes

131 meteorological stations.

In general, the new algorithm (9) performs well and

captures the timing of snow accumulation and ablation

phases in most Sturm classes, which is very important for

water resource management and flood forecasting. The

SWE estimates using the old algorithm (1) compare favor-

ably to the station data and the new algorithm (9) in the

tundra and prairie classes, but systematically underestimate

SWE in the taiga, alpine, and maritime classes. In the

tundra, (1) actually matches the station data a little more

closely than does (9) during the 2nd half of the snow season.

This may be explained by the paucity of data (snow courses)

here compared to the other classes, resulting in interpolated

densities that are not characteristic of late winter tundra

snowpacks. For example, it can be seen that the station data

shows in excess of 50 mm SWE at the end of May. While a

number of stations likely reported snow on the ground, it

would be unusual for the entire tundra area to be snow-

covered this late in the spring to a depth that would result in

50 mm of SWE.
vals using the new (solid blue line) and old algorithms (dotted blue line) for

situ data. Blue error bars represent SSM/I SWE uncertainty.



Fig. 11. Comparison of biweekly observed in situ SWE (red) and SSM/I retrieval using the new algorithm (blue) for the 1988–1995 snow seasons. Red color

bars denote standard deviation of in situ data. Blue error bars represent SSM/I SWE uncertainty.
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Note the considerable improvement in (9) compared to

(1) in the taiga class, and to a lesser extent, the performance

of (9) is better in the alpine and maritime classes.

Nonetheless, the new algorithm (9) still has difficulty in

adequately compensating for SWE underestimation in very

dense forests of the maritime class of eastern Canada as well

as alpine areas adjacent to the Great Lakes. Part of the

reason for this may be attributed to the fact that many of the

SSM/I pixels in the maritime and alpine class are in close

proximity to water bodies—pixel contamination by open

water adversely effects the evaluation. Moreover, this class

is generally warmer than the other classes (except for the

ephemeral class), and the warmer and wetter snow, results in

smaller brightness temperature differences between the 19

and 37 GHz frequencies, and therefore lesser PM-derived

snow amounts. Further study on this issue is needed.

Fig. 11 shows the comparison of SSM/I SWE and ground

SWE data using (9) for different Sturm classes during the

1988–1995 period. The root-mean-square (RMS) errors of

the observed SWE and our uncertainty estimates for SSM/I

SWE are also shown. While year-to-year differences can be

observed for each of the classes, nevertheless the passive

microwave derived SWE is, in general, concordant with

SWE obtained from station data. Note that, for almost every

year, the SWE retrieval from the new algorithm (9) matches

very well with the station data in the Tundra and Taiga

classes.

In only a few instances are the SSM/I SWE values clearly

outside of the RMS limits, in the taiga class during 1994–

1995 and in the prairie class during 1993–1994, for

example. Note the difference in the prairie class between

1993, 1994, and 1995. The greater disagreement in 1992–

1993 and 1993–1994 may be attributable to larger temper-

ature gradients during those winters, which resulted in

bigger crystals (and or more extensive depth hoar). If this

were the case, then the SWE derived from the SSM/I

observations would have overestimated the actual SWE.
7. Discussion

It should be noted that the in situ SWE dataset has been

quality-controlled, and that the agreement between the

station data and satellite-derived estimates give credence to

the quality of our new algorithm as a first step towards a

more comprehensive estimation of SWE. However, it needs

to be emphasized that care is required when comparing point

data (from meteorological stations) with areal measurements

(from satellites) since point data, particularly in data sparse

areas of central and northern Canada, may not be represen-

tative of the area covered by large PM footprints. The large

standard deviations of point data in Sturm classes are pro-

minent in Figs. 10 and 11, especially for the tundra, alpine,

and maritime classes. Although using point data may not be

ideal, nonetheless, for sufficiently large number of point data

in a pixel, a meaningful validation could be achieved. A
snow dataset for all of North America, using density values

from a simple snowpack model has been developed by the

Meteorological Service of Canada; it may be more advanta-

geous for future evaluation of SWE over the entire continent

(Armstrong & Brown, personal communication).

The impact of vegetation cover on the SWE measurement

by passive microwave sensors depends on the type and

density of vegetations, not only the percentage of forest

cover at each pixel. In this study, we take a simple approach

by parameterzing the error based on fractional forest cover at

each pixel. When better forest density data emerges, the

impact of vegetation on passive microwave emission can be

better modeled or parameterized. Furthermore, the forest

factor derived here does not vary with latitude or with

species. A more detailed classification of forests may be

necessary to account for the impact of vegetation cover on

SWE retrieval by passive microwave sensors. Derksen et al.

(2003) empirically derived PM SWE separately for four

kinds of land cover within each pixel, and found that the

predominantly forested areas were most difficult to get

accurate estimates of PM SWE. As more complete data on

forest density becomes available, separate forest factors

could be prescribed for taiga, alpine, and maritime subclasses

to better account for SWE in densely forested areas.

In the most densely forested areas of the taiga class of

eastern Canada as well as the maritime class of eastern

Canada and the northeastern U.S. and in the alpine class in

south central Canada, SWE is still underestimated using the

new algorithm. To correct for PM underestimation of SWE

in densely forested areas is a very challenging problem.

Because very little work has been done thus far in terms

of collection and analyzing crystals in the different Sturm

classes of North America, a rigorous validation of the PM

errors due to crystal evolution is not yet possible. While

crystals have been collected in each of the Sturm classes,

only a few samples have been collected for quantitative

examination by electron microscopy. Moreover, the samples

that have been collected have only been gathered in late

winter and early spring, not throughout the snow season.

Nevertheless, the results presented here give us confidence

regarding the validity of PM-derived snow estimates,

especially during the accumulation and ablation phases of

snow season.

Analyzing data collected during the Cold Land Pro-

cesses Field Experiment (CLPX) in the winter of 2002 and

2003 in the Colorado Rocky Mountains will help quantify

the uncertainty in the PM-derived snow estimates (Cline et

al., 2002). One reason the Colorado Rocky Mountain area

was selected is that it encompasses several Sturm snow

classes (taiga, alpine and prairie). In addition, aircraft

experiments planned during the winter of 2006 in northern

Alaska and Canada should be useful for better character-

izing snow crystals in the tundra region. The methodology

proposed in this study can be applied to the AMSR-E SWE

data to obtain error estimates, and CLPX observations

should significantly enhance these estimates. The potential
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benefits of using AMSR-E data have been discussed in

detail in Kelly et al. (2003).

We only presented the results from SSM/I data for North

America here, since there are more in situ SWE data on this

continent than anywhere in the world, and the relative

abundance of field campaigns and in situ SWE measure-

ments provide insight to snow crystal structure. A future

study will extend our analysis to the rest of the world

(Eurasia and South America). Methodically, it is straight-

forward to apply it globally, but careful validation and

tuning of empirical error estimates based on the bground
truthQ are needed. To produce a long time series of

continuous SWE data and coherent error estimation, by

combining SMMR and SSM/I data, some consideration is

needed to merge them seamlessly (see for example Derksen

& Walker, 2003). Instrument differences between the

sensors and small differences in the overpass time and

incidence angle between SMMR and SSM/I (Table 1) could

influence SWE retrieval in a systematic manner (Derksen et

al., 2000). Armstrong and Brodzik (2001) have shown that

a 5K difference in the (T19–T37) term exists between

SMMR and SSM/I SWE retrieval when using (1). Never-

theless, the methodology used here could be easily applied

to SSMR to study its SWE retrieval and associated errors.

This subject is the focus of an on-going study.
8. Conclusions

We propose a new passive microwave SWE retrieval

algorithm based on the original algorithm by Chang et al.

(1987) that accounts for the effect of vegetation cover and

snow morphology in the North America. The contributions

to the microwave response of snow by various factors are

examined and evaluated. Dense vegetation is shown to be

the major source of systematic error in the old algorithm; the

assumption of constant snow grain size also contributes

significant errors. Simplified empirical formulas are used to

quantify the impact of vegetation cover and grain size

growth during the snow season.

The results have been evaluated in tundra, taiga, prairie,

alpine, and maritime Sturm classes in Canada using in situ

SWE data from the Meteorological Service of Canada. The

new algorithm reduces known biases in the old algorithm in

most areas (particularly in taiga) and is shown to capture

the accumulation and ablation phases of snow season well.

The snow season during 1990–1991 is used as a case study.

Seven snow seasons from 1988–1995 are evaluated. There

is still some difficulty with the alpine and maritime Sturm

classes, and partially forested areas. Recent field campaigns

such as CLPX will help improve the parameterization of

the passive microwave SWE retrievals. The improved

spatial resolution and expanded range of channels at lower

frequencies of the AMSR-E instrument will help curb the

problems associated with mixed pixels and enhance the

detection of shallow snowpacks.
We applied a methodology based on error estimation

theory to quantify SSM/I SWE retrieval errors when using

the new algorithm (9). The assessment of impact by forest

cover and snow grain size are empirical based on our

understanding of the nature of passive microwave emission

from the ground. These empirical formulas need to be

rigorously validated and updated when more extensive and

accurate in situ observations become available; nonetheless,

the methodology proposed here provides a means to

evaluate the uncertainty in passive microwave SWE

retrievals. Future study will investigate global application

of our methodology and extend back to SSMR data (1979)

to produce a long time series (over 25 years) of PM SWE

data and coherent error estimates.
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