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[1] The contrast between the point-scale nature of current
ground-based soil moisture instrumentation and the ground
resolution (typically >102 km2) of satellites used to retrieve
soil moisture poses a significant challenge for the validation
of data products from current and upcoming soil moisture
satellite missions. Given typical levels of observed spatial
variability in soil moisture fields, this mismatch confounds
mission validation goals by introducing significant sampling
uncertainty in footprint-scale soil moisture estimates
obtained from sparse ground-based observations. During
validation activities based on comparisons between ground
observations and satellite retrievals, this sampling error can

be misattributed to retrieval uncertainty and spuriously
degrade the perceived accuracy of satellite soil moisture pro-
ducts. This review paper describes the magnitude of the soil
moisture upscaling problem and measurement density
requirements for ground-based soil moisture networks. Since
many large-scale networks do not meet these requirements,
it also summarizes a number of existing soil moisture
upscaling strategies which may reduce the detrimental
impact of spatial sampling errors on the reliability of satellite
soil moisture validation using spatially sparse ground-based
observations.
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1. INTRODUCTION

[2] Soil moisture data sets are of potential value for a wide
range of geophysical applications including the analysis of
long-term terrestrial water cycle trends [Jung et al., 2010],
sources and impacts of climate variability [Seneviratne et al.,
2010], terrestrial contributions to the global carbon cycle
[Falloon et al., 2011], drought processes [Cai et al., 2009],
short-term weather prediction [Drusch, 2007], streamflow

generation mechanisms [Berg and Mulroy, 2006], disease
vector abundance [Githeko et al., 2000], and terrestrial dust
emissions [Laurent et al., 2008]. Unfortunately, the impact
of soil moisture measurements on these applications has
historically been marginalized by the relative scarcity of
long-term, large-scale soil moisture data sets [Robock et al.,
2000]. Within the past 20 years, however, this observational
gap has been progressively filled by the parallel develop-
ment of remote sensing technologies and the establishment
of ground instrumentation networks. In particular, the
availability of soil moisture products from the recent Soil
Moisture and Ocean Salinity (SMOS) and Aquarius mis-
sions and the Soil Moisture Active Passive (SMAP) mission
planned for launch in 2014 will inaugurate a new era in the
application of remote sensing observations to hydrology,
water resource, and climate applications. These three mis-
sions are based on utilizing a variety of L band microwave
radar and radiometry instrumentation to estimate volumetric
soil moisture content in the top 5 cm of the soil column.
Using land data assimilation techniques, these superficial
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observations can, in turn, be vertically extrapolated to con-
strain root zone (surface to �1 m) soil moisture estimates
and the impact of soil water limitations on vegetation func-
tioning and surface energy fluxes over moderately vegetated
land surfaces [Reichle et al., 2008].
[3] All three missions (SMOS, Aquarius, and SMAP) are

characterized by relatively coarse scale soil moisture retrie-
vals. The SMOS mission, for example, retrieves surface soil
moisture using L band radiometer observations acquired at
multiple incidence angles within an average instantaneous
field of view (IFOV) resolution of 432 km2 [Kerr et al., 2010;
European Space Agency (ESA), 2010]. Successfully launched
in November 2009, SMOS is currently producing a global
surface soil moisture product with a 1 to 3 day revisit interval.
Here IFOV resolution is defined as the ground-projected area
within which 50% of the ground signal (integrated by the
antennae) originates. Depending on the instrument type, the
instrument IFOV can assume a range of shapes including
ellipses (for real aperture radiometers); rhomboids (for radar
retrievals based on Doppler range detection); and highly
irregular, nonpolygonal shapes (for synthetic aperture sensors
like SMOS).
[4] Similarly, Aquarius uses a push broom L band radi-

ometer and real aperture radar to measure surface ocean
surface salinity [Lagerloef et al., 2008]. Because it is pri-
marily designed to retrieve ocean salinity, Aquarius instru-
mentation acquires only very coarse resolution (i.e., IFOV
resolution of �1002 km2) measurements. Nevertheless, mis-
sion plans include the retrieval of an Aquarius soil moisture
product over land (T. J. Jackson, personal communication,
2012). Finally, the SMAP mission concept is based on the
simultaneous acquisition of L band radar (12 to 32 km2 IFOV
area depending on swath position) and radiometer (�402 km2

IFOV area) observations from a shared conically scanning
antenna to provide both a radiometer-only soil moisture
product and a gridded 92 km2 product based on the fusion of
radiometer and radar information [Entekhabi et al., 2010a].
[5] In addition to these three L band missions, there are

other active and passive microwave instruments operated at
shorter wavelengths (C and X band), including the Metop-A
Advanced Scatterometer [Bartalis et al., 2007], the Envi-
ronmental Research Satellite Scatterometer [Naeimi et al.,
2009], and the Advanced Microwave Scanning Radiometer
(AMSR-E) [de Jeu et al., 2008; Jackson et al., 2010].
Although they are not optimally designed for soil moisture
remote sensing and are generally based on IFOV resolutions
generally greater than 302 km2, they form an important com-
plement to L band missions and provide the basis of existing
long-term, satellite-based soil moisture data sets [Wagner
et al., 2007]. Validation during extensive field campaigns
suggests root-mean-square errors (RMSEs) of between 0.03
and 0.07 m3 m�3 for these products [e.g., Jackson et al.,
2010; Champagne et al., 2010; Brocca et al., 2010a]. Note
that here and throughout the review, all soil moisture values
are given in volumetric soil moisture fraction units or m3 m�3

(i.e., the volume of soil water per total volume of soil).
[6] The accuracy of all remotely sensed soil moisture

products is impacted by a range of error sources including

antennae noise, structural uncertainty in surface backscatter
and emission modeling, and error in ancillary parameters
required to parameterize these models. The satellite missions
mentioned above are (or will be) tasked with meeting specific
baseline standards for the accuracy of their soil moisture
products. These standards are typically expressed via a
maximum RMSE threshold for footprint-scale soil moisture
retrievals. Both the SMOS and SMAP missions have a spe-
cific moisture retrieval RMSE goal of 0.04 m3 m�3 for land
surfaces free from dense vegetation cover, frozen soil, snow
cover, and complex topography [ESA, 2010; Entekhabi et al.,
2010a]. These RMSE thresholds are generally interpreted to
reflect the accuracy of a single, near-instantaneous satellite-
based retrieval and not some average in time. For this reason,
all RMSE and/or standard deviations values given below
should be interpreted as instantaneous values referring to a
single moment in time. In addition, RMSE thresholds typi-
cally do not make allowances for the removal/correction of
long-term bias in satellite products.
[7] In response to this progress, recent international

activities, coordinated by the Global Energy and Water
Cycle Experiment in cooperation with the Group of Earth
Observation and the Committee on Earth Observation
Satellites, have focused on the promotion of soil moisture as
an environmental data record. A key part of this process is
assuring that quality control and validation procedures for
soil moisture products meet standards defined by the Quality
Assurance for Earth Observation (QA4EO) initiative (http://
QA4EO.org). Such standard are based on verifying the
traceability of observations (or higher-level retrieval pro-
ducts) to accepted reference data sets to support credible
quality control assurances. For remotely sensed soil moisture
retrievals, such traceability requires establishing a robust
linkage to ground-based soil moisture observations obtained
at a point. While nonlinearities in microwave emission and
backscatter processes are not negligible, experience in
observing system simulation experiments and success in
regional field campaigns suggests that they have a relatively
modest impact on footprint-scale soil moisture retrievals
[Drusch et al., 1999a; Zhan et al., 2008]. Consequently, the
appropriate target variable for large-scale soil moisture
retrievals is generally considered to be the linear spatial
average of true surface soil conditions within the instrument
IFOV. However, relative to other geophysical variables
commonly retrieved from satellite instrumentation, the
remote sensing of soil moisture is challenged by the partic-
ular combination of coarse instrument resolution (due to its
reliance on relatively long wavelength microwave emission/
backscatter) and soil moisture’s notable tendency to exhibit
large amounts of extremely fine scale (<12 m2 to 12 km2)
spatial variability. As a result, establishing credible ground
validation approaches for soil moisture requires bridging the
scale contrast between the IFOV resolution of satellite sen-
sors and the (essentially) point-scale spatial support of cur-
rent ground-based instrumentation.
[8] Ground-based soil moisture observations are increas-

ingly available from long-term operational soil moisture
measurement networks (Tables 1 and 2), and significant
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efforts have been made to unify observations from various
networks into a common database [Robock et al., 2000;
Dorigo et al., 2011]. However, the spatial characteristics of
these networks are not ideal for the evaluation of coarse-
scale satellite soil moisture products (or to construct con-
tinuous, coarse-resolution soil moisture products in general).
As shown in Table 1, “large-scale” networks (i.e., ones with
spatial coverage greater than several SMOS or SMAP foot-
prints or �10,000 km2) typically lack required sampling
densities to provide multiple measurements per footprint.
For instance, one of the densest networks listed in Table 1,
the Oklahoma Mesonet, provides (on average) a single
point-scale soil moisture observation per 402 km2 area. This
density equates to an average of about one observation per
402 km2 SMAP IFOV (or �432 km2 SMOS IFOV) and
considerably less than one observation within each grid of
the merged 92 km2 SMAP active/passive product. Since the
subfootprint spatial standard deviation of point-scale soil
moisture observations often exceeds the 0.04 m3 m�3 RMSE
accuracy goal set for SMOS and SMAP [Famiglietti et al.,
2008], significant sampling errors are likely when estimat-
ing an instantaneous footprint-scale mean via such sparse
sampling of the underlying surface soil moisture distribu-
tion. The presence of such errors and their potential impact
on satellite validation RMSE goals motivate the develop-
ment of soil moisture upscaling methods to more effectively
translate information derived from sparse point-scale
ground-based sensors to satellite footprint resolutions.
[9] In addition to the large-scale networks described in

Table 1, there are a number of smaller-scale (<10,000 km2)
networks actively measuring surface soil moisture at much
higher spatial densities (Table 2). While the restricted cov-
erage of these local networks limits their effectiveness as the
basis of any large-scale validation effort, they provide an
excellent source of validation information over a range of
land cover types and an opportunity to examine sub-foot-
print-scale soil moisture spatial scaling. In particular,

comparisons against independent soil moisture observations
acquired during intensive field campaigns suggests that if
acquired at sufficient spatial densities, observations from
these networks can be spatially aggregated to provide basin-
scale (1000 to 10,000 km2) soil moisture estimates at RMSE
accuracies (�0.01 m3 m�3) which are small relative to
validation goals imposed for current and future satellite
missions [Cosh et al., 2006, 2008].
[10] As noted above, multiscale soil moisture data sets

have also been periodically made available by short-term,
intensive field campaign activities. Within North America,
these activities include the Southern Great Plains (SGP)
hydrology experiments in 1997 and 1999 (SGP97 and SGP99)

TABLE 1. Current and Planned Large-Scale (>10,000 km2 in Extent) Operational Soil Moisture Monitoring Network
Ordered From Largest to Smallest in Areal Extent

Network Name Country or Region Number of Sites Approximate Areal Extent Average Spacinga

Ruswet-Grassb Ukraine/Russia 122 107 km2 >1002 km2

Chinese Ecosystem Research Network China 31 107 km2 >1002 km2

Soil Climate Analysis Network USA 141 107 km2 >1002 km2

Climate Research Network USA 144 107 km2 >1002 km2

National Ecological Observatory Network USA 20 107 km2 >1002 km2

Oklahoma Mesonet Oklahoma, USA 127 200,000 km2 402 km2

High Plains Regional Climate Center Nebraska, USA 53 200,000 km2 602 km2

Illinois Climate Network Illinois, USA 19 150,000 km2 902 km2

ARM-SGPc Oklahoma/Kansas, USA 31 140,000 km2 702 km2

Mumbridgee Basind,e Australia 73 80,000 km2 332 km2

Upper Danube Basinf Germany 10 80,000 km2 902 km2

SMOSMANIAf,g France 12 40,000 km2 602 km2

Mongolia Validation Mongolia 14 14,000 km2 302 km2

aAverage spacing is calculated as the ratio of areal extent/number of sites.
bSee http://www.ipf.tuwien.ac.at/insitu/ for historical data and network information.
cAtmospheric Radiation Measurement Southern Great Plains.
dSee http://www.oznet.org.au.
eInclusive of the Yanco, Kyeamba, and Adelong Creek subnetworks within the Mumbridgee Basin.
fSMOS validation site.
gSoil Moisture Observing System–Meteorological Automatic Network Integrated Application.

TABLE 2. Current and Planned Local- to Regional-Scale
(>100 km2 and <10,000 km2 in Extent) Operational Soil Moisture
Networks Ordered From Largest to Smallest in Areal Extent

Network Name
Country
or Region

Number
of Sites

Approximate
Areal Extent

Average
Spacinga

Goulburnb,c Australia 20e 6500 km2 182 km2

Valencia Anchor Sited Spain 11 2500 km2 502 km2

Yancob Australia 37 3600 km2 102 km2

Saskatchewan Canada 16 1600 km2 102 km2

Ontario Canada 26 1600 km2 82 km2

REMEDHUSd Salamanca, Spain 23 1250 km2 72 km2

Little Washitae Oklahoma, USA 20 600 km2 52 km2

Kyeambab Australia 14 600 km2 72 km2

Fort Cobbbe Oklahoma, USA 15 340 km2 52 km2

Little Rivere Georgia, USA 33 330 km2 32 km2

Reynolds Creeke Idaho, USA 15 240 km2 32 km2

Walnut Gulche Arizona, USA 9 150 km2 42 km2

Adelong Creekb Australia 5 145 km2 52 km2

Kenaston Canada 24 100 km2 22 km2

aAverage spacing is calculated as the ratio of areal extent/number of sites.
bSee http://www.oznet.org.au.
cThe Goulburn network actually has 26 soil moisture stations in total, but

7 stations within a 12 km2 focus farm are counted as a single site here.
dSMOS validation site.
eU.S. Department of Agriculture Agricultural Research Service

Experimental Watersheds [Jackson et al., 2010].
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[Jackson et al., 1999, 2002]; the 2002 Soil Moisture Exper-
iment (SMEX) in Iowa (SMEX02) [Jackson et al., 2003]; the
multisite SMEX03 experiment in Alabama, Oklahoma, and
Georgia [Jackson et al., 2005]; the SMEX04 experiment in
Arizona [Jackson et al., 2008]; and the Canadian Experiment
for Soil Moisture 2010 [Magagi et al., 2012]. Likewise, the
National Airborne Field Experiments (NAFE) were a series
of large-scale field campaigns in southeastern Australia with
the primary aim of collecting airborne and ground observa-
tions of soil moisture for development of algorithms and
techniques for SMOS soil moisture products. NAFE’05 was
conducted during fall 2005 in the Goulburn catchment
[Panciera et al., 2008], and NAFE’06 was conducted during
fall 2006 in the Yanco area [Merlin et al., 2008]. More recent
Australian field campaigns in 2010 include the Australian
Airborne Cal/val Experiment for SMOS [Peischl et al., 2012]
and the Soil Moisture Active Passive Experiments aimed at
prelaunch SMAP validation activities. Extensive soil mois-
ture sampling in North Africa was also conducted as part of
the African Monsoon Multidisciplinary Analysis (AMMA)
project [Redelsperger et al., 2006; de Rosnay et al., 2009b].
This sampling included both a ground-based soil moisture
measurement network installed in 2004 within the Gourma
region of Mali and a series of high-intensity ground sampling
periods during the 2005 and 2006 monsoon seasons [de
Rosnay et al., 2009a].
[11] Leveraging soil moisture data sets acquired from both

the small-scale (but high-density) soil moisture measurement
networks listed in Table 2 and intensive field campaigns
listed above, this review characterizes the magnitude of the
soil moisture upscaling problem and assesses the feasibility
of potential solutions. Following a summary of sources for
surface soil moisture spatial variability, the current literature
characterizing the magnitude of the soil moisture upscaling
problem is reviewed, and expected measurement density
requirements for ground-based surface soil moisture mea-
surement networks are defined. The paper concludes by
summarizing a range of existing soil moisture upscaling
strategies for reducing the impact of spatial sampling error
on satellite soil moisture validation activities.

2. SOURCES OF SOIL MOISTURE VARIABILITY

[12] The soil moisture upscaling problem follows directly
from the presence of extensive horizontal variability in sur-
face soil moisture fields. Such variability is generated
through complex interactions between pedologic, topo-
graphic, vegetative, and meteorological factors [Reynolds,
1970; Sharma and Luxmoore, 1979; Loague, 1992;
Charpentier and Groffman, 1992; Rodriguez-Iturbe et al.,
1999; Mohanty and Skaggs, 2001]. While these factors are
generally difficult to isolate and measure, a general under-
standing of their magnitude is useful background for dis-
cussing the viability of soil moisture upscaling strategies.
Therefore, this section briefly summarizes the role of these
factors in generating and sustaining soil moisture spatial
variability.

2.1. Soil
[13] Soil heterogeneity affects the distribution of soil

moisture through variations in texture, organic matter con-
tent, porosity, structure, and macroporosity. Significant soil
moisture variations may therefore exist over small spatial
distances due to variations in soil particle and pore size
distributions and their subsequent impact on local hydro-
logic processes impacting soil moisture. In addition, soil
color can influence albedo and thus the rate of evaporative
drying for bare or lightly vegetated soil. Numerous studies
have demonstrated the impact of soil hydraulic conductivity
on components of the soil water balance and subsequent soil
moisture spatial patterns [e.g., Moore et al., 1998; Grote
et al., 2010]. Likewise, soil heterogeneity has been shown
to affect soil water balance processes. For example, where
evapotranspiration is limited by percolation through a lower
boundary, soil heterogeneity increases the spatially averaged
evapotranspiration relative to a uniform soil [Kim et al.,
1997]. In a related study, Kim and Stricker [1996] showed
the stronger effect of soil spatial heterogeneity on compo-
nents of the water budget for a loamy soil as compared to a
sandy soil. They suggested that soil heterogeneity has a great
influence for loamy soil because most of the variation of the
water budget is present at finer field (�8002 m2) scale.
Conversely, most of the water budget variation for sandy
soil occurs at coarser scales correlated with antecedent
rainfall variations.
[14] The impact of soil texture heterogeneity on soil

moisture spatial structure has also been well documented in
large-scale data sets acquired from soil moisture field cam-
paigns. Soil moisture patterns derived from airborne remote
sensing and ground-based soil moisture sampling during
field campaigns in the south-central United States have
revealed large-scale patterns corresponding to known varia-
tions in soil texture [Mattikalli et al., 1998; Kim et al., 2002].
Similarly, Panciera [2009] used data from the NAFE’05 in
situ monitoring network and regional sampling during the
experiment period (31 October to 25 November) to investi-
gate land surface controls on soil moisture spatial distribu-
tions at the satellite footprint scale (�402 km2). They found
that soil moisture variability within a satellite footprint could
be related to spatial patterns of land cover type and soil
texture. Soils with higher sand content exhibited persistently
drier soil moisture conditions than soils with lower sand
content.

2.2. Topography
[15] Topography also plays an important role in the spatial

organization of soil moisture at different scales. Variations in
slope, aspect, curvature, upslope contributing area, and rel-
ative elevation all affect the distribution of soil moisture near
the land surface. At the small catchment and hillslope scales,
soil moisture varies as a result of water-routing processes,
radiative (aspect) effects, and heterogeneity in vegetation
and soil characteristics. Charpentier and Groffman [1992]
studied the effects of topography and the overall magni-
tude of moisture content on the variability of soil moisture
within fine-scale pixels during the First International
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Satellite Land Surface Climatology Project field experiment.
They showed that within a 662 m2 pixel, soil moisture var-
iability increased with increased topographic heterogeneity.
A flat pixel had significantly lower standard deviations and
fewer outlier points than a sloping or a valley pixel.
[16] Mohanty et al. [2000a] showed the dominance of a

slope effect on the diurnal soil moisture distribution in a
gently sloping agricultural field within the Little Washita
agricultural watershed. Likewise, for the SMEX02 cam-
paign, Jacobs et al. [2004] demonstrated the significance of
slope positions in locating the time-stable points for mean
soil moisture in four agricultural fields in Iowa. Several
other studies also showed that relative slope position is
important in determining soil moisture variation, suggesting
that a simple averaging of soil moisture values over the slope
may lead to errors at different time scales. In West Africa,
de Rosnay et al. [2009a] found a stable inverse correlation
between soil moisture and hillslope position within the
Gourma research site (i.e., lower soil moisture at higher
hillslope positions and vice versa). In Australia, Western
et al. [1999] showed systematic or organized spatial varia-
tion in soil moisture, particularly saturated areas associated
with topographic convergence. Conversely, Western et al.
[2003] concluded that although topographic control of soil
moisture patterns does occur in some landscapes for part or
all of the time, terrain is a relatively poor indicator of soil
moisture patterns and variability. They suggested that during
soil moisture drying events (mid–moisture range), soil and
vegetation properties dominate the control in several water-
sheds. Similar findings have been reported by other studies
including Kim and Barros [2002], Bindlish and Barros
[2002], Chang and Islam [2003], and Ryu and Famiglietti
[2005].

2.3. Vegetation
[17] Land cover characteristics are also important for

understanding soil moisture regimes as they directly affect
soil water processes (e.g., infiltration and evapotranspira-
tion) which determine soil moisture levels. Vegetation type,
density, and uniformity have all been shown to contribute
to soil moisture variation at different space and time scales.
Furthermore, the influence of vegetation on spatial variation
in soil moisture is more dynamic as compared to soil and
topographic factors. Hawley et al. [1983] demonstrated that
various vegetation-topography-soil combinations lead to
temporal persistence (clustering) of soil moisture patterns in
complex terrains with mixed vegetation. They also sug-
gested that the presence of vegetation tends to diminish
the magnitude of soil moisture variations caused by topog-
raphy. During the NAFE’05 field campaign in Australia,
land cover was found to have a strong influence on soil
moisture distribution at the satellite footprint [Panciera,
2009]. Specifically, cropped areas exhibited persistently
wetter-than-average conditions, and forested areas exhibited
drier-than-average conditions, while grassland sites were
more representative of the area average soil moisture con-
ditions (the NAFE’05 study area was 70% grassland).

[18] Vinnikov et al. [1996] noted differences in soil
moisture evolution for three catchments at Valdai, Russia,
with different vegetation. Likewise, Mohanty et al. [2000b]
examined the evolution of the soil moisture spatial struc-
ture in a wheat/grass (mixed vegetation) remote sensing
footprint during the Southern Great Plains 1997 (SGP97)
hydrology field campaign. Their results showed that the
vegetation dynamics (growth/decay), land management
(tillage), and precipitation events controlled the intraseaso-
nal soil moisture spatial structure for the pixel with flat
topography and uniform soil texture. During the Soil Mois-
ture Experiment 2002 (SMEX02) in Walnut Creek agricul-
tural watershed in Iowa with corn and soybean crops, Jacobs
et al. [2004], Cosh et al. [2004], and Joshi and Mohanty
[2010] all noted the impact of land cover variations on the
spatial distribution of soil moisture in the region.

2.4. Meteorological Forcing
[19] Solar radiation, wind, and humidity variations all

contribute to the space-time dynamics of soil moisture.
However, precipitation is the single most important meteo-
rological forcing for soil moisture content and its distribu-
tion. As shown by Sivapalan et al. [1987], the dominant
runoff producing mechanism may vary with storm char-
acteristics and antecedent soil moisture conditions resulting
in the spatiotemporal variability in soil moisture. During the
SGP97 hydrology campaign, Famiglietti et al. [1999] found
a distinct trend in mean soil moisture for Little Washita (in
southern Oklahoma), El Reno (in central Oklahoma), and the
U.S. Department of Energy Atmospheric Radiation Mea-
surement Central Facility (in north Oklahoma) locations
along a north/south precipitation gradient. Within an ana-
lytical framework, Kim and Stricker [1996] showed the
significance of rainfall pattern on partitioning of water over
the budget terms for different climatic conditions. Likewise,
Salvucci [2001] showed the conditional dependence of soil
moisture storage, drainage, runoff, and evapotranspiration
with amount of precipitation in Illinois. A multiscale anal-
ysis by Crow and Wood [1999] using SGP97 data revealed a
qualitatively different relationship between soil moisture
means and soil moisture spatial variances when variability is
sampled at fine (<12 km2) versus coarse (>102 km2) spatial
scales. The threshold between these two scale regimes may
represent a transition between organized coarse-scale spatial
heterogeneity imposed by the land surface response to
rainfall and disorganized fine-scale variability produced by
local variations in soil, topography, and vegetation.

2.5. Summary of Spatial Variability Sources
[20] In general, it is difficult to draw broad conclusions

regarding the impact of soil, topography, land cover, and
meteorological forcing on multiscale soil moisture variabil-
ity from the above mentioned water balance/soil moisture
studies. In most cases examined above, one or more of these
contributing factor(s) was either neglected or assumed to be
spatially homogenous across the study area. Moreover, the
impact of various environmental factors on soil moisture
spatial patterns appears to vary significantly over time with
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various relationships emerging at different points during
wet-up and dry-down cycling [Panciera, 2009] and/or the
annual seasonal cycle [Western et al., 2003]. Nevertheless,
the above research can be generalized to produce a rough
conceptual model of various environmental factors inducing
surface soil moisture variability over a set of overlapping
scales [Jana, 2010]. This model, first proposed by Vinnikov
et al. [1996] and summarized in Figure 1, predicts that large-
scale soil moisture variability (observed at watershed to
continental scales) is generally dominated by meteorological
forcing (e.g., rainfall patterns) and land cover patterns with
topographic and soil factors gaining predominance at finer
spatial scales.

3. SCOPE OF THE SOIL MOISTURE UPSCALING
PROBLEM

[21] The interaction of environmental factors discussed in
section 2 produces complex spatial patterns in surface soil
moisture. The statistical properties of these patterns, in turn,
determine the magnitude of the soil moisture upscaling
problem. Using data sets gleaned from recent soil moisture
field experiments, this section reviews recent literature
describing the magnitude of multiscale soil moisture vari-
ability (section 3.1) and sampling requirements for obtaining
footprint-scale soil moisture averages with predefined
accuracies (section 3.2). When discussing the relationship
between soil moisture variability and scale we conform to
Western and Blöschl [1999] and use the term “support” to
refer to the area (or volume) integrated by an individual soil
moisture measurement, “extent” to refer to the overall area
within which individual soil moisture measurements are
sampled to estimate a spatial statistic, and “spacing” to refer
to the typical distance between samples. Note that the

apparent variability of soil moisture increases at larger extent
scales [Hills and Reynolds, 1969] and decreases at larger
support scales [Hawley et al., 1982]. Individual ground
observations will be treated as a point support sample,
although it should be noted that traditional ground-based
measurements at a “point” actually sample slightly different
soil volumes [Robinson et al., 2008].
[22] All “surface” soil moisture data sets referenced here

are assumed to possess vertical support equal to the �5 cm
penetration depth expected of L band soil moisture retrie-
vals. During field campaign and ground validation activities,
this 5 cm surface depth is commonly assumed to start at the
air/soil interface present after clearing of vegetation detritus
(T. J. Jackson, personal communication, 2012). The exact
elevation of this interface (and thus the bottom of the 5 cm
surface layer) can vary spatially due to microtopography. In
addition, note that a wide variety of ground instrumentation
can be applied to provide soil moisture measurements at
such depths. For data sets discussed here, the most common
techniques are gravimetric sampling (where soil samples are
oven-dried to determine soil water weight) and the use of
handheld time domain reflectivity sensors to measure the
soil dielectric constant. Note that both approaches require
additional ancillary information/assumptions in order to
convert their direct measurements into volumetric soil
moisture. A full description of these techniques and associ-
ated measurement errors is outside the scope of this review
but has been addressed extensively in previous reviews
[Walker et al., 2004; Evett et al., 2008; Robinson et al., 2008].

3.1. Observed Soil Moisture Spatial Variability
[23] Soil moisture spatial statistics are known to vary with

the spatial extent of sampling domain and mean soil mois-
ture [Western and Blöschl, 1999; Western et al., 2002].

Figure 1. Dominant physical controls on soil moisture spatial variability as a function of scale. The gray
shading of bars reflects the relative importance of each control at various scales with increasing intensity
according to importance. (Modified from Jana [2010].)
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Moreover, multiscale structure of soil moisture variability
can be characterized by several typical types of semivario-
gram or power spectral density from local [Western and
Blöschl, 1999; Western et al., 2002] to regional scales
[Kim and Barros, 2002; Oldak et al., 2002; Ryu and
Famiglietti, 2006]. This implies that the surface soil mois-
ture can be regarded as a second-order stationary random
variable [Yaglom, 1987] whose second-order moment
changes with mean soil moisture.
[24] Famiglietti et al. [2008] combine over 36,000

ground-based measurements of surface soil moisture col-
lected during the SGP97, SGP99, SMEX02, and SMEX03
field campaigns to generalize the spatial variability of point
support surface soil measurements sampled within spatial
extents ranging between 2.52 m2 to 502 km2. The temporal
extent of these campaigns ranged between about 2 weeks to
1 month and most captured at least one complete wet-up/
dry-down cycle. Figure 2 shows the mean soil moisture
standard deviations sampled within six separate extent scales
(circles) and the one–standard deviation range (whiskers) of
soil moisture standard deviations sampled within six sepa-
rate extent scales. All plotted values are calculated using
only (near-instantaneous) spatial standard deviations sam-
pled when mean soil moisture varies between 0.1 m3 m�3

and 0.3 m3 m�3; thus, the quantities in Figure 2 can be
assumed to be typical values of soil moisture variability for
intermediate soil moisture conditions. Relatively short
whiskers at the 2.52 m2, 162 m2, 1002 m2, and 1.62 km2

extent scales are associated with a limited number of sam-
ples at those scales, collected only during the SGP99 field
campaign. Mean soil moisture variability gradually

increased from a mean standard deviation of 0.029 m3 m�3

within a 2.52 m2 scale extent to 0.071 m3 m�3 within a 502

km2 extent, and relative to other scale ranges, soil moisture
variability increased steeply between 1002 m2 and 1.62 km2.
[25] While it is generally acknowledged that the scaling

behavior of soil moisture varies as a function of large-scale
wetness, past studies are divided on whether soil moisture
variability generally increases [Bell et al., 1980; Hawley
et al., 1983] or decreases [Famiglietti et al., 1999; Hupet
and Vanclooster, 2002] with mean surface wetness. Natu-
rally, the relationship between the mean and spatial standard
deviation of a soil moisture field is partially dependent on
the spatial characteristics of the particular rainfall events
sampled during a field experiment. However, ground
observations from the SGP and SMEX field campaigns
display a robust concave pattern of soil moisture variability
with peak variability found at intermediate soil moisture
levels. Figure 3 shows mean soil moisture versus spatial
variability empirically derived from the data used by
Famiglietti et al. [2008] at four selected scales: 2.52 m2

(SGP99), 1002 m2 (SGP99), 8002 m2 (SGP97, SGP99,
SMEX02, and SMEX03), and 502 km2 (SMEX02 and
SMEX03). In spite of the diverse climatic and land surface
conditions of the sites (e.g., subhumid and rolling topogra-
phy in Oklahoma sites for SGP97, SGP99, and SMEX03
and humid and low-relief topography in Iowa sites for
SMEX02), ground data show quite similar ranges of vari-
ability. This pattern of maximum spatial variability during
periods of intermediate soil wetness is also found in
NAFE’06 results when soil moisture variability is sampled

Figure 2. Summary of the instantaneous spatial standard deviation for point-scale, surface soil moisture
samples obtained within sampling extents ranging from 2.52 m2 to 502 km2 for ground data collected
under a range of land surface conditions during SGP97, SGP99, SMEX02, and SMEX03. The circles rep-
resent the sample mean of soil moisture standard deviation, and the whiskers are the one–standard devia-
tion ranges. (Modified from Famiglietti et al. [2008].)
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using both point-scale and field-scale supports within a 402

km2 extent [Merlin et al., 2008].

3.2. Derived Spatial Sampling Requirements
[26] The most direct way to upscale a set of sparse ground-

based soil moisture measurements is calculating their sample
mean and assigning it as the average soil moisture within the
total extent of the ground-based measurements. Uncertainty
in this coarse-scale soil moisture estimate can then be esti-
mated from spatial variability of the point measurements
assuming that the surface soil moisture content is a station-
ary random variable [Ryu and Famiglietti, 2005; Famiglietti
et al., 2008]. The rationale behind this uncertainty estimation
is that according to the central limit theorem, the sampling
distribution of a sample mean has a normal distribution
when the sample size is sufficiently large. This theorem
holds even when the population is not normally distributed.
When the number of samples is not sufficiently large, the
Student t distribution is used in place of the normal distri-
bution to describe the distribution of a sample mean. In

either case, the spatial variability of the point-scale soil
moisture offers a basis for estimating the uncertainty asso-
ciated with upscaling a single ground-based observation to a
given coarser-scale footprint.
[27] Figure 2 predicts that the standard deviation of point-

scale soil moisture samples within extent scales corresponding
to the footprint resolution of SMOS and SMAP footprint
resolutions will tend to be greater than both missions’ RMSE
accuracy goals. Therefore, if validated directly against a
single instantaneous, point-scale ground measurement, even
an error-free footprint-scale retrieval would be interpreted as
exceeding validation mission RMSE targets. In the absence
of a more complex upscaling approach, such high levels of
variability require that multiple sites be sampled within each
footprint to dampen the impact of spatial sampling error on
footprint-scale averages.
[28] In such cases, a critical design issue becomes

the minimum number of sampling sites required (or, stated
differently, the maximum spacing distance allowable) to

Figure 3. Empirical relationships between the mean soil moisture and point-scale soil moisture standard
deviation sampled within four selected spatial extents (2.52, 1002, 8002, and 502 km2) during the SGP97,
SGP99, SMEX02, and SMEX03 field experiments. (Modified from Famiglietti et al. [2008].)

TABLE 3. Reported Number of Point-Scale Measurements Necessary to Characterize Instantaneous Mean Soil Moisture Within
a Field-Scale Extent (�8002 m2) to Within a Predetermined Accuracy

Study
Accuracy

(Absolute Error)
Minimum/Maximum

Required Measurements Location and Depth of Measurements

Brocca et al. [2010b] 0.02 m3 m�3 4–15 central Italy (0–15 cm depths)
Brocca et al. [2007] 0.02 m3 m�3 15–35 central Italy (0–15 cm depths)
Jacobs et al. [2004] 0.02 m3 m�3 3–32 Iowa, USA (0–6 cm depths)
Wang et al. [2008] 0.05 m3 m�3 41 Gansu province, China (0–20 cm depth)
Famiglietti et al. [2008] 0.03 m3 m�3 7–17 Oklahoma and Iowa, USA (0–6 cm depth)
Famiglietti et al. [1999] 0.02 m3 m�3 34 Oklahoma, USA (0–6 cm)
Western et al. [2004] 0.02 m3 m�3 14 multiple sites in Australia and New Zealand (0–30 cm)
Hupet and Vanclooster [2002] 0.025 m3 m�3 1–12 Belgium (depths are 0–20 cm)
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capture an instantaneous footprint-scale average with suffi-
cient accuracy. Table 3 summarizes recent work aimed at
quantifying the number of point-scale soil moisture sam-
pling sites necessary to characterize mean field-scale
(�8002 m2) soil moisture to within a specified accuracy.
Results in Table 3 suggest that around 10–20 point support
observations per field are generally required to obtain field-
scale means to within a 1s accuracy of 0.02 m3 m�3.
[29] Since soil moisture variability increases when sam-

pled within progressively larger spatial extents [Hills and
Reynolds, 1969; Western and Blöschl, 1999], the number
of sampling locations necessary to estimate footprint-scale
means is likely to exceed the field-scale requirements
reported in Table 3 [Famiglietti et al., 2008]. Examining a
�602 km2 catchment in central Italy, Brocca et al. [2010b]
found that up to 40 samples were necessary to estimate
instantaneous catchment mean soil moisture to within an
absolute error of 0.02 m3 m�3. Likewise, Famiglietti et al.
[2008] and Hansen [2007] found that between 20 and 30
samples were necessary to estimate the mean of a 502 km2

extent to within an accuracy of 0.03 m3 m�3 for field sites in
Oklahoma (USA), Iowa (USA), and New South Wales
(Australia).
[30] Given the known relationship between soil moisture

variances and means (Figure 3), it is not surprising that
such sampling requirements vary as a function of large-
scale soil moisture conditions. For instance, results from
extensive NAFE soil moisture sampling within a 402 km2

footprint shown in Figure 4 suggest that at least 15 point-scale
measurements are required to estimate the footprint aver-
age soil moisture to within 0.04 m3 m�3 during wet con-
ditions (7 November) but as few as 5 are sufficient in
intermediate-dry conditions (i.e., mean soil moisture less
than 0.20 m3 m�3) on 14 November [Azcurra and Walker,
2006]. However, this conclusion is only valid provided that
the distribution of the measurements is capable of providing
an unbiased estimate of footprint-scale soil moisture. If this
condition is not satisfied, then sampling errors may not reduce
below 0.04 m3 m�3 regardless of the number of measure-
ments taken (see, e.g., the 21 November results in Figure 4).

4. SOIL MOISTURE UPSCALING STRATEGIES

[31] At the SMOS, Aquarius, or SMAP footprint scale,
sampling density requirements identified above can only be
met during extensive field campaigns or within isolated,
small-scale sites encompassing a very small number of sat-
ellite footprints (Table 2). Larger-scale soil moisture networks
listed in Table 1 sample surface soil moisture at significantly
lower sampling densities. Therefore, unless effective upscal-
ing and site selection strategies can be implemented, section 3
suggests that the value of these networks for satellite soil
moisture validation activities will be limited.
[32] This section details several different potential strate-

gies for addressing this problem. The following simple
framework is used to classify these approaches. Assume that
the vector qPOINT contains a set of N point-scale soil mois-
ture observations sampled within a given remotely sensed
footprint. This set of measurements can be resampled to
provide a scalar estimate of mean footprint-scale soil mois-
ture via the upscaling function F↑:

qUPSCALE ¼ F↑ qPOINTð Þ: ð1Þ

See Figure 5 for an illustration of the case N = 4. Strictly
speaking, error in qUPSCALE can arise from two separates
sources: random ground-based measurement error impacting
elements of the qPOINT vector and upscaling error introduced
by a lack of knowledge concerning the appropriate func-
tional form for F↑. Here, our primary focus is on the latter
source of error, but it is not always clear that ground mea-
surement errors can (or should) be neglected or treated sep-
arately from upscaling errors. We will return to this issue
during the evaluation of various upscaling approaches.
[33] Nevertheless, if error in qUPSCALE is independent of

retrieval error impacting the remotely sensed product qRS,
then the mean square difference (MSD) between a hypo-
thetical representation of true soil moisture (qTRUE) and qRS
can be written as

MSD qTRUE; qRSð Þ ¼ MSD qUPSCALE; qRSð Þ
�MSD qUPSCALE; qTRUEð Þ; ð2Þ

which states that the measurable quantity MSD(qUPSCALE,
qRS) is spuriously inflated relative to the actual validation
quantity of interest MSD(qTRUE, qRS) by the uncertainty in

Figure 4. For a dry-down event in the Goulburn catch-
ment during the NAFE’05 field campaign, the RMSE
between a random sample of point-scale measurements and
402 km2 footprint-scale average soil moisture. The data for
7 November capture wet conditions (0.38 � 0.14 m3 m�3)
in the aftermath of a rainfall event, while the data for
14 and 21 November represent drier conditions (0.18 �
0.11 m3 m�3 and 0.16 � 0.1 m3 m�3, respectively).
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our ability to estimate qUPSCALE from ground-based obser-
vations or MSD(qUPSCALE, qTRUE).
[34] It is also useful to further decompose each q time

series into a static, long-term mean (�q) and a times series of
anomalies relative to this mean (q′). Based on this decom-
position, the upscaling error term in (2) can be expanded as

MSD qUPSCALE; qTRUEð Þ ¼ �qUPSCALE � �qTRUE
� �2

þMSD q′UPSCALE; q′TRUEð Þ: ð3Þ

Here the term �qUPSCALE � �qTRUE
� �2

reflects long-term bias in
(1) and MSD(q′UPSCALE, q′TRUE) describes the magnitude of
random error in anomalies relative to a long-term mean.
[35] Taken together, (1)–(3) provide a framework for

classifying various soil moisture upscaling strategies. The
most direct strategies are based on minimizing (3) through
either optimizing the geographic location of point-scale
observations (see section 4.1) or improving the formulation
of F↑ in (1) (see sections 4.2–4.4). An alternative approach
lies in accepting nonnegligible values for the bias and ran-
dom error terms in (3) and instead seeking techniques for
accurately estimating their magnitude and then correcting
RMSE-based error estimates for the impact of sampling
errors (see section 4.5).
[36] Note that the footprint-scale evaluation in (1)–(3)

implies that the spatial support of qRS can be associated with
a finite, uniformly sampled domain. In reality, the antennae
gain pattern for microwave observations is a nonlinear two-
dimensional surface and does not conform to either of these
characteristics [Drusch et al., 1999b]. However, here we will
follow the typical convention of defining a footprint scale as
the fixed IFOV boundary within which 50% of the integrated
antennae signal originates and neglect variations in antennae
weighting within such a region. Also, note that (1)–(3) can be
applied either to microwave swath products or to a gridded
product based on resampling of a swath product into a fixed

grid. However, in the later case, additional retrieval error may
be introduced by such resampling.

4.1. Enhanced Upscaling Using Time
Stability Concepts
[37] One approach for minimizing upscaling errors is

locating soil moisture measurement sites at particular land-
scape locations in order to minimize subsequent upscaling
errors. In particular, time stability approaches are based on
the assumption that soil moisture patterns tend to be persis-
tent in time within a particular landscape [Vachaud et al.,
1985]. The temporally persistent patterns are mainly func-
tions of static vegetation type, soil type, and topography
[Grayson et al., 1997; Mohanty and Skaggs, 2001; Cosh
et al., 2004; Martínez-Fernández and Ceballos, 2005;
Brocca et al., 2007; de Lannoy et al., 2007]. A number of
studies have been devoted to study the phenomena of soil
moisture time stability and its application to soil moisture
validation activities. For instance, Cosh et al. [2006] and
Starks et al. [2006] demonstrated that distributed soil mois-
ture monitoring networks within the 611 km2 Little Washita
watershed are temporally stable and accurately represent the
watershed as a whole.
[38] Figure 6 shows an example of a time stability analysis

taken from Cosh et al. [2004] for 2 months of soil moisture
observations within the 100 km2 Walnut Creek watershed in
central Iowa. The plot shows comparisons between true
watershed-scale soil moisture (here assumed to be equal to
the spatial average of 12 separate soil moisture measurement
sites within the Walnut Creek watershed) and each individ-
ual measurement, i.e., the case of N = 1 when applying the
trivial upscaling function qUPSCALE = qPOINT in (1). Indi-
vidual measurement sites within the Walnut Creek basin are
aligned along the x axis. Open circles and error bars repre-
sent the sampled temporal mean and standard deviations,
respectively, of relative error or (qPOINT � qTRUE)/qTRUE
when using any single station to characterize the entire
watershed. While many sites provide a poor representation
of coarse-scale dynamics, soil moisture measurements at
certain sites (e.g., WC06 in Figure 6) can be effectively
upscaled to represent dynamics at a coarser watershed scale.
While Figure 6 is based on a relatively short time period of
data (�2 months), similar time stability results have been
obtained using multiyear data sets. For instance, Cosh et al.
[2006] have been able to identify “time-stable” sampling
sites using multiple years of ground measurements acquired
within the Walnut Gulch watershed in Arizona. Likewise,
Wagner et al. [2008] found time-stable locations within the
REMEDHUS network (see Table 2) in Spain by analyzing 4
years of synthetic aperture radar data.
[39] At these sites, even trivial upscaling of point-scale

observations leads to relatively low values of both the bias and
time-varying error terms in (3). Within the Walnut Creek
watershed, Cosh et al. [2004] demonstrated that a single soil
moisture measurement at the WC06 site captures watershed-
scale dynamics to within a RMSE of 0.029 m3 m�3. The
existence of time-stable locations can therefore be leveraged to
reduce spatial sampling requirements for ground-based soil

Figure 5. Schematic for the configuration of the upscaling
problem summarized in (1). The upscaling function F↑ is
used to link a set of N = 4 point-scale ground observations
to a spatial mean corresponding to the footprint scale of a
satellite-based surface soil moisture retrieval.

CROW ET AL.: UPSCALING SOIL MOISTURE RG2002RG2002

10 of 20



moisture observations. For example, over the extent of an
AMSR-E satellite footprint (752 km2), Cosh et al. [2006]
demonstrated that only six sampling sites were necessary to
adequately represent the footprint-scale soil moisture.
[40] The challenge in exploiting the potential of time sta-

bility lies in identifying and deploying instrumentation at
landscape locations possessing desirable stability character-
istics over multiannual time scales [Loew and Schlenz,
2011]. Direct identification of time-stable sites typically
requires very dense spatial sampling of a coarse-scale area
over an extended period [Brocca et al., 2010b]. In locations
where such sampling is impractical, time-stable sites might
be identifiable based on observable land surface character-
istics. To this end,Mohanty and Skaggs [2001], Jacobs et al.
[2004], Cosh et al. [2006], and Joshi et al. [2011] conducted
analyses of ground and remote sensing soil moisture data
collected during the SGP and SMEX field campaigns (see
section 1) and concluded that characteristic differences were
observed in the space-time dynamics of soil moisture within
selected remote sensing footprints with various combina-
tions of soil texture, slope, vegetation, and precipitation.
Mohanty and Skaggs [2001] showed similar time-stable
locations within different remote sensing footprints at mul-
tiple sites and related them to different physical controls
such as soil, topography, vegetation, and precipitation pat-
terns. Jacobs et al. [2004] examined the potential for the a
priori selection of time-stable sites through an analysis of
daily surface sampling locations conducted at over 90–140
landscape locations across a �1 km2 field. They concluded
that appropriate locations are most likely on mild slopes, and

hilltops and steep slopes were found to consistently under-
estimate the field mean. However, they found that knowl-
edge of soil parameters could not be used to select time-
stable locations within the field. Recent work [Joshi and
Mohanty, 2010; Joshi et al., 2011] has also made progress
on defining land surface characteristics typically associated
with time-stable behavior within coarser spatial domains.
For example, Figure 7 indicates that time-stable measure-
ment locations within the 302 km2 Little Washita watershed
in Oklahoma are mostly located on loamy soil type with
moderate to high slope values [Joshi et al., 2011]. These
generalizations, however, are based on relatively short
(�1 month) field campaign data sets and must be verified
over longer observation periods.

4.2. Enhanced Upscaling Using Block Kriging
[41] A second viable upscaling strategy is deriving an

improved form for the upscaling function F↑ in (1). Required
sampling densities reported in Table 3 are generally based
on assuming a simple linear averaging form for F↑:

qUPSCALE ¼ F↑ qPOINTð Þ ¼ N�1
XN

i¼1

qi;POINT; ð4Þ

where all point-scale observations are given equal weight-
ing. However, for cases in which the underlying soil mois-
ture field is autocorrelated, block kriging can be used to
derive optimal (and nonequal) weights w for each particular
qPOINT measurement, and therefore improve estimates of
qUPSCALE, without increasing the spatial density of mea-
surements sites [Vinnikov et al., 1999].

Figure 6. For the Walnut Creek watershed in central Iowa, the mean relative difference (qPOINT �
qTRUE)/qTRUE between individual point-scale soil moisture measurements obtained at various sites (see
listed site names and land covers) and true soil moisture defined as the spatial average of measurements
at all watershed sites. Plotted error bars capture 1s variation in the relative differences. (Modified from
Cosh et al. [2004], copyright 2004, with permission from Elsevier.)
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[42] In block kriging, qUPSCALE is acquired from

qUPSCALE ¼ F↑ qPOINTð Þ ¼
XN

i¼1

wiqi;POINT ¼ 1

ŵ
qT
POINTC

�1D; ð5Þ

where C is an N � N matrix containing the correlations
among the N point measurements contained in the vector
qPOINT and D is the N � 1 vector containing correlations
between elements of qPOINT and qTRUE. The scalar factor ŵ
is required to ensure that all weights sum to unity. The soil
moisture autocorrelation information required to construct C
and D is typically parameterized from a time series of
observations at each of the N measurement sites. Such
sampling is viable for the small-scale networks listed in
Table 2, but low measurement densities in large-scale net-
works (Table 1) make it difficult to accurately parameterize
C and D in many instances.
[43] One possible alternative is obtaining soil moisture

autocorrelation information within a densely instrumented
region and assuming its suitability for similar (and/or
nearby) areas. To this end, several studies have attempted to
generalize the multiscale autocorrelation characteristics of
soil moisture fields. At the field scale, soil moisture corre-
lation lengths have been calculated between 30 and 60 m
[Western et al., 2004; Wang et al., 2008], although these
estimates are dependent upon sample spacing [Western and
Blöschl, 1999]. Reflecting the inherent multiscale nature of

soil moisture patterns, other researchers have also reported
correlation structure at much larger spatial scales. For
instance, Entin et al. [2000] report a 500 km correlation
length in soil moisture variations due to meteorological
forcing. This discrepancy suggests the need for use of a
nested correlation structure to reflect variability driven by
different land surface processes (see Figure 1). For instance,
to estimate soil moisture correlation lengths at 502 km2

scales, Ryu and Famiglietti [2006] analyzed semivariograms
constructed from satellite data over Oklahoma as part of the
Southern Great Plains 1997 experiment. Their results sug-
gest a nested spatial correlation structure with correlation
lengths of 10–30 km related to soil texture and vegetation
spatial patterns and a larger 60–100 km correlation length
related to atmospheric effects. Recently, Joshi and Mohanty
[2010] presented a range of correlation lengths for soil
moisture across hierarchical spatial sampling scales, from
field, to watershed, to region in the agricultural belt of Iowa.

4.3. Enhanced Upscaling Using Field Campaign Data
[44] In addition to block kriging, other empirical approa-

ches exist to optimize F↑. For instance, short-term field data
collection can be leveraged to characterize site-specific soil
moisture upscaling functions. An example of this is provided
by soil moisture sampling studies conducted as part of the
AMMA project [Redelsperger et al., 2006]. These studies
were based on a ground-based soil moisture measurement
network installed in 2004 within the Gourma region of Mali
[de Rosnay et al., 2009a]. The network was designed to
obtain multiscale estimates of surface soil moisture for
remote sensing validation purposes. Over all, 10 stations
were located within the Gourma supersite with a concen-
tration of three sites located at Agoufou, Mali, along a single
small-scale (100 m) hillslope transect (top, middle, and
bottom). Of the 10, 8 stations were located on coarse-
textured soils (sandy to sandy loam) that represent 65% of
the mesoscale site area.
[45] As a first step, soil moisture scaling properties were

investigated based on a time stability analysis similar to
Figure 6. This method allowed investigators to identify the
most representative station in terms of soil moisture tempo-
ral variability at a satellite footprint scale [Gruhier et al.,
2008; de Rosnay et al., 2009a]. In addition, transect mea-
surement campaigns were performed in 2005 and 2006 to
address surface soil moisture upscaling properties at the
1 km transect scale for permanent soil moisture stations,
particularly those stations exhibiting stable relationships with
footprint-scale soil moisture variations. Transect measure-
ments consisted of measuring surface soil moisture at 100
locations every 10 m along a transect located in the vicinity
of each ground station. Each transect measurement was
considered to be instantaneous. Therefore, transect mean and
spatial standard deviation values of surface soil moisture at
the time of the transect measurement can be considered to
give a snapshot of surface soil moisture value and spatial
variability. Defined transects were measured on a regular
basis for different soil moisture conditions at different stages
of the 2005 and 2006 monsoon seasons. Linear regressions

Figure 7. The (a) elevation and (b) slope of time-stable
8002 m2 soil moisture pixels (identified with small black
dots) acquired from airborne remote sensing during the
SGP97 and SGP99 remote sensing field campaigns in the
Little Washita (Oklahoma, USA) watershed [Joshi et al.,
2011]. Large red circles identify variations in soil texture
within the basin. (Modified from Joshi and Mohanty
[2010].)
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between transects and local station measurements were then
shown to be stable (1) across the Gourma supersite for all
sandy sites of the area and (2) at the interannual scale (2005–
2006). For instance, Figure 8 demonstrates the ability of
linear upscaling functions to reliably map point-scale obser-
vations acquired at the top and bottom of the Agoufou tran-
sect site to transect-averaged soil moisture. This apparent
stability of linear regressions between local and transect
measurements demonstrates the possibility of using short-
term field campaigns to define local F↑ functions capable of
providing continuous coarse-scale soil moisture estimates
derived from sparse, point-scale observations.

4.4. Enhanced Upscaling Using Land
Surface Modeling
[46] In cases where field campaign data are not available,

it may also be possible to parameterize F↑ using distributed
land surface modeling. The application of land surface
modeling is based on the assumption that spatially distrib-
uted soil, topographic, and meteorologic forcing data fed
into the model and subsequent model physics which act
upon these forcings can accurately capture processes gen-
erating spatial soil moisture variability (see section 2). If this
assumption holds, then the land surface model (LSM) can
help define an appropriate functional form for F↑.
[47] Crow et al. [2005a] tested this assumption using a

detailed LSM during the SMEX02 field experiment in cen-
tral Iowa. Using a set of field-scale (�8002 m2) surface soil
moisture observations (qFIELD) obtained from spatially
intensive ground sampling within a 2 week period, they
binned all possible paired combination of soil moisture
measurements according to the spatial distance between
observations and calculated the semivariance (i.e., one half
the mean squared difference between pairs) for each distance

bin. Plots of semivariance versus distance are commonly
referred to as semivariograms. Figure 9 shows semivario-
grams for several days during SMEX02 for both the spatial
distribution of soil moisture ground observations and an
analogous distribution obtained by subtracting field-scale
soil moisture model predictions from observations. Results
in Figure 9 demonstrate that subtracting off the model-based
soil moisture predictions results in a spatial field that is less
spatially variable and contains less large-scale spatial struc-
ture than the original field-scale soil moisture observations.
This reduction occurs because the land surface model has
nonnegligible skill in simulating the temporal evolution of
soil moisture spatial patterns.
[48] As a result of this apparent skill, Crow et al. [2005a]

suggest running a distributed LSM within a single remote
sensing footprint to obtain both field-scale model predictions
at a discrete set of N ground sampling sites (qLSM) and a
model-based prediction of mean soil moisture for the entire
remote sensing footprint qFP,LSM (obtained by averaging
distributed LSM soil moisture predictions within the entire
footprint). They then upscaled soil moisture using the dis-
crete set of observations contained in the vector qFIELD via

qUPSCALE ¼ F↑ qFIELDð Þ ¼ qFP;LSM þ N�1
XN

i¼1

qi;FIELD � qi;LSM
� �

:

ð6Þ

The schematic diagram in Figure 10 is an illustration of
applying (6) to the case N = 4. The basis of (6) is the
assumption that since model/observations differences
qFIELD � qLSM are less spatially variable than raw qFIELD
(Figure 9), they can be more reliably upscaled to the foot-
print scale. In this way, they propose an alternative formu-
lation of F↑ which leverages modeling skill to reduce the

Figure 8. Surface soil moisture (SSM) estimated at the 1 km scale from transect measurements (vertical
axis) and from the local Agoufou top and bottom of hillslope measurements transformed via a static, linear
upscaling equation. (Reprinted from de Rosnay et al. [2009a], copyright 2009, with permission from Elsevier.)
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spatial variability of the sampled variable and create a less
challenging upscaling problem. Conceptually similar
approaches can also be based solely on static land surface
characteristics commonly used as LSM input. For example,
Ceballos et al. [2005] note substantially reduced spatial
variability after the subtraction of soil moisture wilting
points from ground-based soil moisture observations. In a
manner analogous to (6), this transformation compensates
for known variations in the impact of soil texture on soil
moisture and results in a less variable spatial field which is
more amenable to spatial averaging.
[49] By applying (6) during SMEX02 for the case N = 1,

Crow et al. [2005a] were able to demonstrate reduced error
in qUPSCALE relative to a simple form for F↑ based on (4).
However, the approach was markedly less effective for
N = 1 when the spatial support of the ground-based obser-
vations was shrunk from the field scale to the point scale
[Crow et al., 2005a]. In addition, the approach is limited to
reducing upscaling errors and provides no benefit for the
case of large random error in ground-based measurements
themselves.

[50] Work by Loew and Mauser [2008] provides another
example of parameterizing a stable F↑ relationship using a
distributed LSM. Based on a 10 year high-resolution
(12 km2) soil moisture simulation of a hydrological catch-
ment in southern Germany, they regressed 12 km2 soil
moisture time series against the soil moisture dynamics of
large-scale soil moisture fields (402 km2) and found statisti-
cally significant stable linear relationships between field and
footprint-scale soil moisture dynamics. This suggests that
simple model-based F↑ relationships can be derived to link
field and footprint-scale soil moisture variability.

4.5. Estimating the Magnitude of Upscaling Errors
[51] All strategies described to this point have addressed

the soil moisture upscaling problem by attempting tominimize
the magnitude of upscaling error terms on the right-hand side
of (3). An alternative approach is accepting inevitable non-
negligible upscaling errors and instead attempting to estimate
their magnitude.
[52] Given the known impact of land cover characteristics

on soil moisture it seems likely that such characteristics can be
used to estimate the bias term in (3). Numerous field campaign
results have demonstrated that local topographic, vegetation,
and soil variation conditions have a predictable impact on the
relative bias of local soil moisture conditions versus a larger-
scale areal average (see discussion in section 2). Ongoing
advances in the spatial mapping of these fine-scale land sur-
face characteristics suggest that known variations in local
topographic, land cover, and soil characteristics can be lever-
aged to estimate the bias error term in (3). Once estimated, its
impact on validation results could be minimized.
[53] In addition to correction for bias effects associated

with local conditions, viable strategies also exist for esti-
mating (and subsequently correcting for) the random MSD
component of (3). Triple collocation (TC) is a statistical tool
for leveraging three independently acquired estimates of a
given geophysical variable to determine the RMSE of each
estimate [Scipal et al., 2008]. Miralles et al. [2010] applied
TC to the soil moisture upscaling problem by acquiring
independent representations of footprint-scale soil moisture
based on coarse-scale LSM output (qLSM), a remote sensing
observation (qRS), and the trivial upscaling of a single point-

Figure 9. Spatial semivariogram for soil moisture observa-
tions (circles) and the differences between such observations
and a spatially distributed land surface model (squares) dur-
ing various periods of the SMEX02 field experiment. (Rep-
rinted from Crow et al. [2005a], copyright 2005, with
permission from Elsevier.)

Figure 10. Schematic for the application of the upscaling
approach summarized in (6) for the case N = 4. Note that
the LSM grid cell size is not to scale and has been coarsened
for display purposes.
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scale soil moisture observations up to the footprint scale
(qUPSCALE = qPOINT). Figure 11 provides the schematic for
this case. Prior to the application of TC, Miralles et al.
[2010] also remove a 31 day moving average climatology
from each soil moisture product to produce a time series of
scaled soil moisture anomalies (q′).
[54] If errors in all three soil moisture anomaly products

are mutually independent, than the random error term in (3)
can be estimated from

MSD q′UPSCALE; q′TRUEð Þ ¼ q′UPSCALE � q′LSMð Þ q′UPSCALE � q′RSð Þ:
ð7Þ

Note that (7) holds even if all three of the anomaly soil
moisture products are degraded by random errors.
[55] Using dense soil moisture observations acquired at

four separate U.S. Department of Agriculture Experimental
Watersheds listed in Table 2 (the Little River watershed in
Georgia (LR), the Little Washita watershed in Oklahoma
(LW), the Reynolds Creek watershed in Idaho (RC), and the
Walnut Gulch watershed in Arizona (WG)), Miralles et al.
[2010] tested (7). Each watershed has been instrumented
with a spatially dense distributed soil moisture network as
part of satellite validation work described by Jackson et al.
[2010]. Using all available soil moisture observations,
high-quality watershed-scale estimates of q′TRUE were
obtained for verifying the accuracy of (7).
[56] The y axis of Figure 12 shows the square root of MSD

(q′UPSCALE, q′TRUE) obtained by acquiring q′TRUE from the
average of all surface soil moisture observations available
within each watershed. while the x axis shows the same
value obtained by (7) assuming access to data from only a
single ground-based measurement site. Each point in the
graph represents the use of this single measurement location
as an error-prone estimate of qUPSCALE (i.e., applying a
trivial F↑ of qUPSCALE = qPOINT). Despite requiring only

the availability of a single ground-based sampling location,
(7) is able to accurately predict the magnitude of the
square root of the MSD(q′UPSCALE, q′TRUE) term in (2) to
within 0.006 m3 m�3 (Figure 12). Once known, this term
can be subtracted from the directly observed quantity
MSD(q′UPSCALE, q′RS) in (2) to obtain corrected estimates
of MSD(q′TRUE, q′RS) [Miralles et al., 2010]. One appealing
aspect of this approach is that TC-based estimates of
MSD(q′TRUE, q′RS) should also reflect the impact of all
random errors on qUPSCALE and not simply those associated
with upscaling. Therefore, unlike other upscaling approa-
ches presented here, it can be used to compensate for the
impact of random measurement error on ground-based
observations.
[57] There are, however, some clear limitations to the TC-

based approach. First, (7) holds only for soil moisture anomaly
time series in which a mean or seasonal climatology has first
been removed. As a result, the approach is of no value for
estimating the bias component of (3). In addition, Miralles
et al. [2010] found degraded results for cases in which the
climatological seasonal cycle of soil moisture differed between
various soil moisture products. Therefore, the approach is
most effective for the calculation of error in soil moisture
anomalies after a seasonal climatology has been removed.
Finally, Miralles et al. [2010] utilized a relatively long sam-
pling period (5 years) for the averaging in (7) to obtain a single
temporally fixed value of MSD(q′UPSCALE, q′TRUE).
[58] Some of these shortcomings have recently been

addressed by Loew and Schlenz [2011]. Following Miralles

Figure 11. Schematic for the acquisition of the three inde-
pendent soil moisture estimates required as input by (7).

Figure 12. Using all available ground-based observations
at each site within the Little River (LR), Little Washita
(LW), Reynolds Creek (RC), and Walnut Gulch (WG)
watersheds, the RMSE of soil moisture when using a single
site to characterize the entire basin (“actual upscaling
RMSE”) versus the RMSE calculated using only a single
point-scale soil moisture measurement and TC (“estimated
upscaling RMSE”). (Modified from Miralles et al. [2010].)
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et al. [2010], they applied the TC technique to a triplet of soil
moisture estimates obtained from sparse in situ observations, a
coarse-scale LSM, and satellite observations and verified the
theoretical basis of their approach by comparing TC-based
estimates MSD(q′UPSCALE, q′TRUE) to estimates of upscaling
error obtained independently within densely instrumented
watersheds. However, unlike Miralles et al. [2010], they also
examined the dependency of TC results on the length of the
averaging period in (7) by subsampling their 2 year data set
into a series of shorter time periods. They found that even
without removal of the seasonal cycle, TC provides useful
estimates of MSD(q′UPSCALE, q′TRUE) when applied to time
series as short as 50 days in duration, provided that sampled
cross correlations between data sets were still statistically
significant at 95% confidence. This implies that the effec-
tiveness of TC as an upscaling tool can be realized using rel-
atively short data sets and/or applied to realistic cases in which
MSD(q′UPSCALE, q′TRUE) varies in time. This is particularly
important given the known impact of soil moisture wet-up and
dry-down dynamics on the magnitude of observed spatial soil
moisture variability (Figure 3).

5. DISCUSSION AND CONCLUSIONS

[59] The proposed QA4EO strategy (http://QA4EO.org) is
based on deriving appropriate quality indicators for remote
sensing retrieval products. In order to be credible, such assur-
ances must be based on traceable comparisons to standard ref-
erence measurements that can be obtained at error levels which
are small relative to stated validation goals. For remotely sensed
soil moisture, rectifying the scale contrast between remotely
sensed retrievals and ground-based reference measurements
obtained at a point represents a key challenge for establishing
such traceability. Extensive observations from soil moisture
field campaigns suggest that upscaling via simple spatial aver-
aging of soil moisture data acquired from randomly distributed
measurement sites results in unacceptable upscaling errors
unless high sampling densities are maintained (section 3). Such
high spatial densities are not likely to be available outside of
local, data-rich test bed sites and/or time periods of extensive
field investigations (Tables 1 and 2). Therefore, more sophisti-
cated upscaling strategies are required to fully leverage large-
scale soil moisture network observations for SMOS, SMAP,
and Aquarius soil moisture validation activities. Fortunately, a
number of viable soil moisture upscaling strategies already exist
(section 4). This review summarizes viable ground sampling
strategies, modeling approaches, and statistical tools that can
potentially contribute to this traceability. As a number of these
approaches are based on the application of models and/or
assumptions concerning the nature of soil moisture variability,
these approaches must be independently verified before they
can be applied with confidence. However, taken in their totality,
results reviewed here suggest that currently available upscaling
techniques offer a viable approach toward addressing this gap
and greatly expanding the geographic and temporal scope of
soil moisture ground validation activities.
[60] It is also worth noting that strategies reviewed here

tend to target different aspects of the upscaling problem and,

as such, can be readily combined. For instance, site selection
based on time stability attributes (section 4.1) is particularly
useful for minimizing the bias component of (3) but of less
value for reducing the random error term in (3) since
temporal variations will likely be driven by time-varying
precipitation patterns. Conversely, the triple collocation
approach in section 4.5 provides estimates for the magnitude
of the time-variable term in (3), but it is of no value for
addressing the bias term. Therefore, the two approaches are
mutually complementary in their ability to correct both
aspects of the soil moisture upscaling problem. Likewise,
strategies for minimizing (3) via optimal site selection can
be readily combined with optimized function forms for F↑.
This particular strategy is illustrated in the work by de Rosnay
et al. [2009b], where investigators first down-select mea-
surement sites using a time stability analysis and then
acquire linear upscaling functions to match measurements at
time-stable locations to coarse-scale soil moisture averages.
Finally, many approaches appear mutually compatible with
regard to scale. For instance, upscaling based on stable pat-
terns gleaned from sporadic intensive sampling (section 4.3)
has been validated for point- to field-scale upscaling, while
model-based upscaling approaches (section 4.4) appear
more amenable to field-to-footprint upscaling. It is therefore
likely that the most effective and robust upscaling approaches
will be based on applying two or more different upscaling
strategies in tandem.
[61] While the demonstrated viability of upscaling

approaches suggests that current ground instrumentation is
adequate for satellite mission validation needs, it is also
possible that new ground measurement technologies could
significantly expand the spatial support of soil moisture
observations derived from ground-based instrumentation.
Examples of such new technologies include the possibility
of making roughly �152 m2 resolution measurements using
ground-based GPS receivers [Larson et al., 2008] or�5002 m2

resolution measurements using passive cosmic ray sensors
[Desilets et al., 2010]. In addition, the use of fiber optic
cables for continuous two-dimensional soil moisture esti-
mation along long transects (>1 km) has also been demon-
strated [Sayde et al., 2010; Steele-Dunne et al., 2010]. While
these new technologies might not completely eliminate the
need for effective upscaling strategies, they would signifi-
cantly ease the severity of the challenge by reducing the
contrast between the spatial support of ground-based obser-
vations and satellite-based soil moisture retrievals.
[62] Finally, it is worth considering broader questions

concerning appropriate validation strategies for remotely
sensed surface soil moisture retrievals. While forming the
basis for most current soil moisture validation goals, RMSE-
based evaluation metrics in (1) and (2) do not always pro-
vide a true proxy for the ultimate value of a remotely sensed
product for specific applications [Crow et al., 2005b]. This
has motivated recent attempts to develop alternative evalu-
ation metrics which explicitly account for the relationship
between soil moisture and target prediction variables (e.g.,
crop yield, drought indices, or evapotranspiration) for users
of remotely sensed soil moisture products [Entekhabi et al.,
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2010b]. The use of these alternative metrics often eases the
severity of the soil moisture upscaling problem. For example,
the development of land data assimilation systems allows for
the evaluation of surface soil moisture retrievals based on
their ability to enhance forecast skill for related land surface
and lower atmospheric variables. In many cases, such alter-
native variables (e.g., streamflow from a hydrologic model or
precipitation forecasts from a numerical weather prediction
model) are much easier to validate at coarse spatial scales
than surface soil moisture. Consequently, quantifying the
ability of soil moisture retrievals to enhance the prediction of
these variables (within the context of a data assimilation
system) represents a large-scale measure of skill in remotely
sensed soil moisture products that can be used to supplement
direct soil moisture validation activities [see, e.g., Crow
et al., 2010]. While these techniques lack the ability to pro-
vide RMSE-based evaluation metrics required for strict val-
idation, they can be used for more general, and potentially
more relevant, assessments of overall utility in remotely
sensed soil moisture products.
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