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EXTENDED ABSTRACT 

Model assessment involves expressing the 
performance of a model for a given purpose (e.g. a 
particular range of conditions or locations).  The 
assessment of distributed hydrological models (i.e. 
spatially explicit models for hydrology) is usually 
done with limited point samples, but this is 
inadequate for assessing spatial performance.  
Spatial fields provide a more complete picture of 
‘reality’ against which spatial models should be 
assessed.  This type of data is increasingly 
available in hydrology, through improved remote 
sensing techniques and other methods of spatial 
sampling.  There are limited examples of spatial 
fields being used for model assessment.  In cases 
where they have been, the fields provided sensitive 
checks on the modelling and were generally also 
interrogated to reveal issues with model structure.  
However, the majority of these analyses were done 
visually.  This is because the standard comparison 
methods (i.e. the objective functions) used do not 
currently utilise the rich information on spatial 
organisation that spatial fields contain.   

Visual comparison is a valuable method for 
comparing fields, as it allows background 
knowledge (e.g. experience, understanding of 
purpose) to be incorporated into the process.  
Unfortunately, visual comparison is neither 
rigorous, repeatable, unbiased nor quantitative.  
When measures of error or similarity are wanted, 
visual comparison cannot be used.  It can, 
however, be used to learn what aspects of 
comparison should be pursued by any new 
quantitative methods.  The general pattern analysis 
literature has been reviewed previously to identify 
comparison methods that can potentially emulate 
these aspects (Wealands et al. 2005).  The methods 
that emulate the ability to tolerate differences in 
value and location between elements are pursued 
in this paper.  These methods are for use after 
standard measures (e.g. bias, RMSE) have been 
applied.  They give an overall measure of error or 
similarity under specified tolerances.  They also 

produce graphical measures that can be inspected 
for more localised analyses.   

Tolerant comparisons require tolerances to be 
specified for differences in value (ΔV) and 
location (ΔL).  The tolerances can be specified as 
crisp or fuzzy.  Crisp tolerances control which 
values and locations between elements in the fields 
are judged as being equal.  In contrast, fuzzy 
tolerances define a scale (from one to zero) to 
describe how similar elements are in value and 
location.  Figure 1 shows an example of how the 
crisp and fuzzy tolerances can be defined.  Using 
these tolerances, each element in a modelled field 
is compared to the observed field.  All elements 
that are within a distance of ΔL of the modelled 
element are treated as being similar (to some 
degree).  The tolerances (ΔV and ΔL) are 
combined to determine the optimum local measure 
for each element and this field of measures is 
summarised to produce a final measure. 

One observed field is compared against five 
‘model’ fields, which are created by introducing 
distortions to the observed.  The results illustrate 
how the measures respond to differences.  They 
show that fields with differences within the 
tolerances produce equivalent results.  By 
contrasting measures with and without tolerances, 
the presence/absence of shifts, noise or scale 
differences can be inferred.  Such inferences apply 
to the whole field, although more localised 
analysis can provide information on local effects. 

Figure 1 Crisp or fuzzy tolerances are used to 
translate differences between elements into 

similarity values (or error values). 
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1. INTRODUCTION 

To advance the use of modelling for decision 
making, the assessment of model performance 
must be undertaken and conveyed.  Model 
assessment involves expressing the expected 
performance of a model for a given purpose (e.g. a 
range of conditions or locations).  In hydrology, 
distributed hydrological models have developed 
over the last 20 years and can now provide 
spatially-explicit simulations of various aspects of 
hydrology.  However, they are usually assessed 
using only limited point samples, which are 
inadequate for assessing the performance of spatial 
simulations.  Grayson et al. (2002) refer to 
examples where spatial fields have been used for 
assessment, but find that in many cases the 
comparison methods (or objective functions) used 
with spatial fields do not utilise the rich 
information they contain.  Some efforts are made 
to address this, although all the methods still 
require visual interpretation.   

Comparison methods that work with spatial fields 
provide alternative tests of distributed model 
performance.  These are important throughout the 
modelling process, but particularly during 
calibration and testing.  Calibration involves 
adjusting model parameters and simulating a 
period for which observations exist.  The similarity 
(or error) between the simulated and observed data 
is determined using comparison methods.  The 
parameters are then adjusted until the similarity is 
maximised (or the errors are minimised).  By using 
multiple objective functions (Gupta et al. 1998), 
the calibration can ensure that multiple desirable 
characteristics of the observed data are represented 
in the simulation.  If using an uncertainty 
framework such as GLUE (Beven 1993), the 
comparison methods are used to assign likelihoods 
to all possible models and parameter sets.  The 
likelihoods are then used to reject non-behavioural 
models and subsequently provide an estimate of 
the uncertainty expected in predictions.  Model 
testing also requires improved comparison 
methods for quantifying the similarity (or error) 
between the calibrated model and independent 
observations.   

The primary limitations with the use of spatial 
fields for assessment are the availability of 
observed fields and quantitative comparison 
methods.  Remote sensing technologies are 
addressing the needs for hydrology to some extent, 
although there is continued work on interpreting 
remote sensing signals for hydrological studies.  In 
studies where an effort has been made to obtain 
observed spatial fields, the information garnered 
from these observations has proven useful for 

model assessment (e.g. Western et al. 1999, 
Güntner et al. 2004, Jetten et al. 2003).   

The studies that utilise spatial fields have 
recognised the lack of standard methods for 
comparing the data.  There is a need for 
quantitative comparison methods that measure 
different aspects of similarity and error.  At 
present, hydrologists depend largely on visual 
comparison to assess spatial model outputs 
(Grayson et al. 2002).  Visual comparison is 
neither rigorous, repeatable, unbiased nor 
quantitative.  But it can be used to learn what 
aspects of comparison should be pursued by any 
new quantitative methods.  Wealands et al. (2005) 
reviewed the pattern analysis literature to reveal 
comparison methods that emulate aspects of visual 
comparison.  From these methods, those that 
showed promise for assessing hydrological models 
were – fuzzy map comparison, weighted analysis, 
image segmentation and multiscale comparison.   

This paper builds on the ideas of fuzzy map 
comparison (Hagen 2003), in which tolerances can 
be implemented for differences in both value and 
location between two or more spatial fields.  The 
information that can be garnered from these 
methods is presented by comparing fields with 
known distortions.  A discussion about the value of 
tolerant measures for model assessment is 
provided.  The discussion explains what these 
measures can reveal when used automatically and 
also interactively.   

2. DEFINITONS 

A number of definitions are provided here to 
ensure readers understand the meaning of terms 
used when discussing comparison methods.   

A spatial field is a set of associated elements, 
where each element represents a certain attribute at 
a given location.  A spatial field must have a 
physical or logical relationship between elements 
known as topology, otherwise it is simply a set of 
non-related elements.  Each spatial field has one 
attribute at each location and represents a single 
time.  Comparison methods use specific algorithms 
to produce comparison measures of either error or 
similarity.  The algorithms use numerical 
relationships (e.g. differences, ratios) between the 
characteristics of elements (e.g. value, location, 
shape) in each spatial field to derive their quantity.   

Global measures summarise the characteristics of 
all elements in each spatial field into one summary 
value.  The numerical relationship between the 
summary values is used to derive the measure.  
Local measures work with each pair of elements 
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that have a specific spatial relationship (e.g. 
spatially coincident); one element of the pair is 
from the modelled spatial field and the other is 
from the observed spatial field.  The numerical 
relationship between a characteristic of the 
elements is used to derive a local measure between 
each pair.  At this stage a graphical measure (e.g. 
a residual field or scatterplot) can be produced for 
analysis.  The local measures (from each pair of 
elements) are further processed into the local 
measure that represents the error or similarity 
between the spatial fields. 

Error measures use the numerical difference (or 
residual) between spatial field elements in their 
derivation.  They are expressed in the same units 
as the spatial fields, requiring their magnitude to 
be interpreted relative to the fields being 
compared.  Similarity measures use various 
numerical relationships between spatial field 
elements in their derivation.  They often use ratios 
to provide a measure that is relative to a known 
benchmark (e.g. the observed variance).  Similarity 
measures are expressed on a different scale to the 
fields being compared.  They usually have a 
maximum value of one to denote perfect similarity 
under the conditions imposed by the comparison 
method.  A value of zero is used as either the 
minimum (i.e. no similarity) or to denote the 
similarity of the benchmark (e.g. coefficient of 
efficiency). 

3. METHOD 

The comparison methods presented here build on 
recent developments in the land-use modelling and 
geographical information literature (Hagen 2003, 
Power et al. 2001).  They have been adapted to 
work with the interval/ratio type data that is most 
commonly produced by hydrological models.  
These methods are relatively easy to implement 
and provide useful alternatives to the current 
methods used in hydrology for comparing spatial 
fields.  The measures produced can be interpreted 
in a familiar way for hydrologists. 

3.1. Specifying Tolerances 

When comparing fields, tolerances can be 
specified for differences in location and/or value.  
These tolerances are either crisp or fuzzy (Power et 
al. 2001).  Crisp tolerances are used to define the 
exact differences that are accepted within a 
comparison method.  A tolerance for the allowable 
difference in value (ΔV) and the allowable 
difference in location (ΔL) are defined by the user 
(e.g. Figure 2B).  When both the tolerances are set 
to zero, the standard comparisons like RMSE are 
the result (e.g. Figure 2A).   

Fuzzy tolerances are used to translate differences 
into similarity values (on a scale from zero to one).  
If there is no difference, the similarity is one.  If 
the difference is greater than the tolerance, the 
similarity is zero.  Fuzzy tolerances assign a value 
between zero and one to all possible differences 
between elements.  For differences in value, the 
value similarity (SV) can be assigned subjectively 
or with a decay function.  For simplicity, a linear 
decay function is used here, in which the allowable 
difference in value (ΔV) and the maximum 
difference in value (ΔVMAX) are required.  For 
differences in location, the location similarity (SL) 
can also be assigned subjectively or with a decay 
function.  Hagen (2003) suggests the use of 
exponential decay, requiring the radius and halving 
distance to be specified.  The definition varies with 
the application, but linear decay is used here for 
simplicity.  The allowable difference in location 
(ΔL) and the maximum difference in location 
(ΔLMAX) must be specified (e.g. Figure 2D).  
Where the allowable difference and maximum 
difference are equal (ΔL=ΔLMAX), a crisp 
tolerance is effectively applied to calculate a 
similarity measure (e.g. Figure 2C). 

Figure 2 Following the comparison methods 
described in 3.2, the modelled field is compared 

using a variety of crisp and fuzzy tolerances.  
These tolerances are applied during the 

comparison of each modelled element to the 
observed field, resulting in both graphical and 

summary measures (of error or similarity).   
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Tolerances should be chosen based on known 
issues in the data or processing.  For example, 
Güntner et al. (2004) used a location tolerance of 5 
elements, due to support differences between 
DEM-derived topographic indices (50m) and the 
observations (10m).  Both crisp and fuzzy 
tolerances were used to understand similarity 
between binary fields of saturated area.  Hagen 
(2003) used subjective weightings to define the 
similarity between related category labels (i.e. 
nominal data) in a land use modelling study (e.g. 
high- and low-density residential).  For 
interval/ratio data, the tolerances are set using 
knowledge about the error in the observed field 
and the differences that are considered to be 
similar ‘to some degree’.   

3.2. The Comparison Process 

This comparison method treats each element in the 
modelled field once (i.e. it compares each 
modelled element against the ‘reality’ it is 
supposed to represent).  A measure of error (E) or 
similarity (S) is made between this element and 
every element from the observed field that is 
within the shift tolerance (limited by either ΔL or 
ΔLMAX).  The best match (either minimum error 
or maximum similarity) found for the modelled 
element amongst all comparisons with the 
observed elements is retained.  When completed 
for every element in the field, a field of error 
values or similarity values is created.  This is a 
graphical measure that can be visually interpreted. 

For crisp tolerances (e.g. Figure 2B), the error 
measure between a pair of elements (one modelled 
element and one observed element) uses the 
absolute difference between element values.  If this 
is less than ΔV, then E equals zero.  If greater, then 
ΔV is subtracted from the value difference.  If 
producing a similarity measure using crisp 
tolerances, S equals one when the value difference 
is less than ΔV, otherwise S equals zero (e.g. 
Figure 2C).   

For fuzzy tolerances, the similarity measure 
between a pair of elements uses the absolute 
difference between element values and the distance 
between elements.  The difference between values 
and locations are converted into SV and SL 
accordingly.  SV and SL are multiplied to give a 
value to S for each element (e.g. Figure 2D).  Error 
measures cannot be produced using fuzzy 
tolerances.   

This field of errors or similarity is the basis for 
producing any subsequent measures.  It is also a 
graphical measure that can be visually interpreted 
to understand the spatial distribution of similarity 

or error.  This is a very useful exercise that should 
be undertaken when limited comparisons are 
needed.  For larger comparison situations, the 
numerical summaries are more manageable, 
although the graphical measures provide a 
valuable check on the numerical findings.  They 
can be used to direct further comparisons in parts 
of the field with large differences.  This can then 
lead to understanding why the differences are 
occurring.   

3.3. Error Measures 

The error field obtained from using crisp 
tolerances can be analysed like any error field.  
Common error measures like root mean squared 
error (RMSE) can be calculated from it.  These 
measures, if produced for increasing levels of 
tolerance, will decrease until they reach zero (i.e. 
all the error is tolerated).  As with any absolute 
measure, the error value is only useful if it can be 
assessed against another model or background 
knowledge.  Error measures accumulate the error 
for all elements, thus making them susceptible to 
very large errors biasing the measurement.  This is 
the where error measures act very differently to 
similarity measures.   If large errors are not biasing 
the assessment, then the error measures should 
have high inverse correlation with the similarity 
measures.   

3.4. Similarity Measures  

The similarity field obtained by using either crisp 
or fuzzy tolerances can be summarised into an 
overall similarity value.  If crisp tolerances are 
used, each similarity value is either zero or one.  If 
fuzzy tolerances are used, each similarity value is 
in the range zero to one.  Taking the average of the 
similarity values (S̄) gives measure of the 
proportion of the field judged as being similar.  As 
the tolerances increase, this value approaches one.   

A similarity measure that is relative to a known 
reference is described here.  The similarity 
efficiency (SE) measure allows similarity results 
from one set of fields to be compared against 
another set (e.g. for a different attribute, location 
or time).  When comparing spatial fields, the 
observed mean field (i.e. a field containing the 
observed mean in every element) is a suggested 
standard reference. This has the most general 
characteristic (i.e. the mean) of the observation 
correct, but lacks any variability in spatial 
arrangement.  This is considered a suitable 
benchmark against which to judge spatial model 
performance, although the performance of any 
other spatial field could be used.  SE uses the same 
idea as the coefficient of efficiency (Nash and 
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Sutcliffe 1970) that is widely used in hydrology, in 
which the model performance is scaled by the 
performance of the observed mean, producing a 
measure that is comparable across different data 
sets.  This measure is given by 
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where S(Mi,O) is the similarity measure between 
modelled element i and the observed field O, Ō is 
the mean observed field, and n is the total number 
of elements.  SE is less than zero when the mean 
field is more similar than the modelled field.  It is 
positive and approaches one as S̄ increases relative 
to the similarity of the mean field.  This measure is 
interpreted in the same way as the coefficient of 
efficiency.  The S̄ and SE measures are always 
perfectly correlated, but SE allows values to be 
meaningfully analysed against other comparisons 
(e.g. from a different time or location).   

Similarity measures are often favoured over error 
measures as they reward the elements that meet the 
criteria for similarity (i.e. those within the 
tolerances).  They do not allow occasional large 
differences to dominate the result, therefore being 
insensitive to extremes that are not modelled 
correctly.  Hydrologists are often concerned with 
the extremes, so error measures should also be 
produced to ensure that important differences are 
not overlooked.   

3.5. Data 

The data used for demonstrating these measures is 
from part of the Mahurangi catchment in New 
Zealand (Wilson et al. 2005)  Soil moisture 
observations were collected at regularly spaced 
points using TDR probes.  These observations 
have been interpolated onto a gridded field.  All 
elements have connectivity with their eight 
neighbouring elements.  From this observed field, 
five ‘model’ fields have been produced to 
demonstrate the use of tolerances during 
comparisons.  These ‘models’ are distortions of the 
observed field and are shown, along with their 
global statistics, in Figure 3.   

4. RESULTS 

One error measure (RMSE) and two similarity 
measures (S̄, SE) have been computed by 
comparing the five fields shown in Figure 3.  
Additionally, the observed mean field (MN) has 

been compared to illustrate the benchmark 
performance of each comparison.  Four different 
sets of tolerances have been applied.  Value 
tolerances range from 0-10%, while location 
tolerances vary from 0-90m (the distance between 
element centroids).  The results in Table 1  are 
used to show how the measures respond to the 
introduced differences between the fields.   

Noise: When ΔV=2, major improvement is 
seen in all the measures for NS (relative to the 
other fields).  The RMSE under this tolerance does 
not reduce to zero, as this tolerance is applied at 
each element (rather than simply being subtracted 
from the summary measure).  The similarity for 
NS is not as high as SM when some ΔL is 
introduced because the NS still has some 
differences that are greater than the tolerance.  

Shifts: When ΔV and ΔL are applied, the 
LS and GS fields have almost zero error and 
perfect similarity.  The improvement from the 
standard RMSE is more apparent with GS due to 
the complete shift, while LS produces a less 
dramatic change in values.  The introduced shift of 
20m led to a standard RMSE of 2.60 with no 
tolerance, while tolerances correctly recognise this 
as being almost identical.  Standard measures 

Figure 3 Five synthetic fields have been created 
from the observed field for comparison.  These 

are: observations smoothed with mean filter (SM); 
observations plus σ =2% random noise (NS); 
observations with random arrangement (RN); 

observations within box shifted 20m NE (LS); and 
all observations shifted 20m NE (GS).  The global 
summary measures are very similar for each field.
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cannot quantify this. 

Smoothing:  The SM field is judged more similar 
(and having less error) than the NS field when both 
tolerances are applied.  The smoothing process 
makes nearby values less variable, making it 
synonymous with a scale difference between 
fields.  These results illustrate how allowing small 
tolerances can deal with consistent scale 
differences.   

Random: The random field produces higher 
error measures and lower similarity under all 
tolerances.  The few elements that were 
coincidentally similar are rewarded in the 
similarity measure.  The relative measure (SE) 
reflects that the random field is a poor model of 
the observed under all tolerances, while the other 
measures are better models than the mean field.   

As expected, the tolerant measures show a strong 
response (i.e. a major change in value) when the 

fields compared have globally consistent 
differences (e.g. NS, GS, SM).  When the 
differences are less consistent (e.g. localised), the 
response is less apparent (due to being averaged 
over all elements).  Inspecting the graphical 
measures visually can reveal the causes, but an 
automated method would involve performing the 
analysis on limited parts of the field.  This is 
another promising extension to current approaches 
that was suggested in Wealands et al. (2005) but it 
is not pursued further in this paper.   

Individually, the measures provide a statement of 
similarity or error under specified conditions, 
which is useful because it quantifies a process that 
is often done visually.  However, looking at the 
change of a measure under different tolerances can 
reveal thresholds at which more substantial 
improvements occur.  This can be used to infer 
that noise, shifting or some kind of scale 
inconsistency exists between the fields.   

5. DISCUSSION 

Tolerances for value differences (ΔV) achieve two 
different tasks.  Firstly, they allow observation 
errors (e.g. noise) to be managed for each 
individual element during comparison.  This 
produces an estimate of average error under these 
conditions, rather than having to evaluate the 
average error (e.g. RMSE) against the observation 
error globally.  The second role for ΔV is to 
specify what values will be considered similar.  
ΔV will usually be small, as value differences will 
want to be penalised.  For fuzzy tolerances the 
ΔVMAX controls how severe the penalty is for 
differences.  This is quite different from 
categorical comparisons, where each element 
clearly belongs to one category or another.  The 
use of tolerances with continuous data effectively 
specifies category boundaries for each individual 
element during comparison.  Without them, 
similarity between continuous values cannot be 
defined.   

Building in tolerances at the element level opens 
up a number of other potential tolerance options.   
Apart from the locational tolerance described in 
this paper, most topologies can define which 
neighbouring elements are up or downhill (by 
using additional elevation information).  The 
tolerances can be specified to look, say, only at 
upslope neighbours in the observed field, thus 
making the measure tolerant for situations where 
the modelled value is too far downslope.  If a time 
series of spatial fields exists for assessment, a 
similar tolerance could be implemented for 
element values that are modelled too early or late.  
Where the data facilitates such analysis, a 

Table 1 Comparison results for error (RMSE) and 
similarity measures (S̄ and SE).  Column headings 

denote the tolerance values used for each 
comparison (e.g. 0,0 means no tolerances for value 

or location differences).  Values that are shaded 
have been referred to in the results section. 

 RMSE (ΔV (%), ΔL (m)) 

 0,0 2,0 0,30 2,30 

SM 2.22 1.09 0.61 0.06 
NS 2.00 0.54 0.91 0.15 
RN 7.29 5.79 4.58 3.41 
LS 0.73 0.27 0.17 0.01 
GS 2.60 1.42 0.64 0.18 
MN 5.13 3.62 2.43 1.33 

 
 S̄ (ΔV to ΔVMAX, ΔL to ΔLMAX) 

 2-2,0-0 2-2,30-30 0-5,0-60 0-10,0-90 

SM 0.68 0.99 0.70 0.84 
NS 0.56 0.95 0.66 0.83 
RN 0.22 0.55 0.34 0.54 
LS 0.96 1.00 0.96 0.98 
GS 0.62 0.98 0.67 0.82 
MN 0.25 0.68 0.41 0.64 

 
 SE (ΔV to ΔVMAX, ΔL to ΔLMAX) 

 2-2,0-0 2-2,30-30 0-5,0-60 0-10,0-90 

SM 0.57 0.96 0.50 0.56 
NS 0.42 0.84 0.42 0.52 
RN -0.04 -0.41 -0.12 -0.25 
LS 0.94 1.00 0.92 0.94 
GS 0.49 0.93 0.45 0.51 
MN 0.00 0.00 0.00 0.00 
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diagnostic field showing where each tolerance has 
been invoked could also provide useful feedback.   

To draw specific hydrological meaning (rather 
than overall model assessment) from the results 
would require further localisation of the results.  
The summary measures presented here identify the 
average response of the field to differences in 
value or location.  If the measures are calculated 
for more localised parts of the field (e.g. specific 
parts of the landscape), more specific reasons for 
the response can be determined.  Using the soil 
moisture example, if high errors tend to be found 
on hillslopes, but when tolerating shifts these are 
reduced more than other areas, then the hydraulic 
conductivity parameter (which controls the rate of 
moisture movement) for the hillslopes  may have 
been incorrect.  Alternatively, visual inspection of 
the error or similarity fields produced can reveal 
this, but not quantify its impact on model 
performance. 

The measures introduced here are for use after 
initial comparisons (e.g. bias, RMSE) are made.  
They facilitate further investigation of similarity 
between fields, which can reveal fields that are 
similar under tolerances that were not considered 
similar otherwise.   

6. CONCLUSION 

The comparison methods presented in this paper 
are new measures based on the work of Hagen 
(2003).  They apply tolerances for differences in 
value and location to spatial fields containing 
interval/ratio data, the type most commonly 
produced by distributed hydrological models.  
Observing the response of these measures to 
changes in tolerance can highlight fields that have 
regular differences in values (e.g. observation 
noise) and/or location (e.g. georeferencing or 
modelling issues).  They utilise values from nearby 
elements to include aspects of spatial arrangement.  
These measures are readily implemented with any 
type of spatial field and can be used for model 
assessment against observations (i.e. a reality) or 
other models.  They allow the user to specify exact 
or variable tolerances and produce measures that 
are readily interpreted.   
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