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Abstract—Both the European Space Agency’s soil moisture and5
ocean salinity (SMOS) mission and the National Aeronautics and6
Space Administration’s soil moisture active passive (SMAP) mis-7
sion employ L-band (1.413 GHz) radiometers to observe brightness8
temperatures at ∼40-km spatial resolution to subsequently derive9
global soil moisture every two to three days with a target accuracy10
of 0.04 m3/m3. However, the man-made structures that dominate11
urban areas in many of the SMOS and SMAP radiometers pixels12
may confound the interpretation of their radiometric observations13
if not taken into account, and thus, degrade the soil moisture14
retrieval accuracy. This paper investigates the effect that urban15
areas are expected to have on the SMOS and SMAP soil moisture16
retrieval accuracy using experimental data from the Australian17
airborne field campaigns performed over the past six years. Taking18
the total radiometric error budgets for the SMOS (3.95 K) and19
the SMAP (1.3 K) missions as conservative benchmarks for ra-20
diometric “error” that can be tolerated to achieve the 0.04 m3/m321
target accuracy, urban fraction thresholds of 6.6% and 2.2% were22
obtained for the SMOS and SMAP pixels, respectively, under warm23
dry (soil moisture < 0.15 m3/m3) conditions, increasing to 16.8%24
and 5.2% under cold and/or wet conditions. These results have been25
extrapolated globally, assuming that the microwave behavior of the26
cities analyzed here is representative of those elsewhere, to identify27
the SMOS and SMAP pixels that are expected to be adversely28
affected by urban areas if not explicitly taken into account in29
retrieval algorithms.

Q1
30

Index Terms—Passive microwave, remote sensing, soil moisture,31
urban fraction.32

I. INTRODUCTION33

SOIL moisture plays a significant role in atmosphere and34

earth-surface interactions since it controls the rainfall35

partitioning into infiltration and runoff [1], influences the36

evaportranspiration and vegetation photosynthetic rate [2], and37

impacts the activities of soil microorganisms [3]. Thus, knowing38

the distribution of soil moisture with adequate temporal and39
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spatial resolution is required by many disciplines, including 40

hydrology, meteorology, and agriculture [4]. However, due to 41

its variability in time and space, soil moisture is difficult to be 42

measured using monitoring station networks at regional and 43

global scales [5]–[10]. 44

During the last three decades, passive microwave remote 45

sensing at low-frequency bands has been widely acknowledged 46

as the most promising technique to measure spatial distribution 47

of water content in the top∼5 cm of soil, due to its direct relation- 48

ship to the soil dielectric constant, its ability to penetrate clouds, 49

and its reduced sensitivity to vegetation and surface roughness 50

[11]–[14]. The first soil moisture dedicated satellite, the soil 51

moisture and ocean salinity (SMOS) mission of Europe Space 52

Agency, was launched on November 2, 2009 carrying a two- 53

dimensional interferometric radiometer to measure microwave 54

emissions from the earth’s surface at L-band (1.413 GHz) [15]. 55

By inverting radiative transfer models, these brightness tempera- 56

ture observations are used to determine the surface soil moisture 57

content with a target accuracy of∼0.04 m3/m3 [16]. In addition, 58

the National Aeronautics and Space Administration’s soil mois- 59

ture active passive (SMAP) mission was launched on January 31, 60

2015 consisting of an L-band real aperture radiometer [17]. 61

Based on the current level of antenna technology, the best 62

spatial resolution that can be directly achieved at L-band by 63

both the SMOS and SMAP radiometer approaches is on the 64

order of 40 km [15], [17]. At such a coarse scale, urban areas 65

are present within many SMOS and SMAP pixels globally, 66

especially over heavily populated continents like Europe. A 67

key concern in relation to urban areas is the adverse effects 68

of man-made emitters, known as radio frequency interference 69

(RFI), on the quality of passive microwave observations. Con- 70

sequently, a great effort has been made to switch OFF RFI sources 71

over Europe, China, South Asia, and the Middle East since 72

SMOS was launched [18]. However, after all RFI sources have 73

been removed [19], [20], the soil moisture retrieval accuracy 74

target of 0.04 m3/m3 may still not be achieved over urban 75

areas unless the effects of man-made structures themselves are 76

explicitly taken into account, since the microwave behavior of 77

man-made structures is significantly different from that of the 78

natural targets [21]. The microwave contribution of urban areas 79

to spaceborne radiometer observations has not been taken into 80

account in the current soil moisture retrieval models due to the 81

lack of understanding of the microwave behavior of urban areas, 82

and it is this microwave contribution from man-made structures 83

that forms the focus of this study. As RFI is not considered 84
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further in this paper, the term urban effects should be inter-85

preted herein to mean the influences on microwave radiometric86

observations from the man-made structures that dominate urban87

areas.88

According to Schneider et al. [22], less than 0.5% of the89

world’s land mass is classified as urban, suggesting that most of90

the SMOS and SMAP pixels will have either no or insignificant91

urban contribution to brightness temperature observations. How-92

ever, urbanization is not homogeneously spread across the globe,93

and so urban areas are likely to have significant contributions94

to brightness temperature observations over the SMOS and95

SMAP pixels once the fraction of urbanized areas in a pixel96

exceeds some threshold, resulting in soil moisture retrieval errors97

exceeding the aforementioned target accuracy (∼0.04 m3/m3)98

of these missions. Consequently, it is important to know this99

urban fraction threshold, and thus identify the SMOS and SMAP100

pixels with a potentially large urban impact on soil moisture101

retrieval, in order for them to be better flagged or a brightness102

temperature correction applied during the soil moisture retrieval103

process. This paper fills that niche.104

To date, there is little knowledge about how urban areas impact105

on soil moisture retrieval with most existing understanding based106

on the simulation results from a limited number of synthetic107

studies (e.g., [16], [23]); no studies have been undertaken using108

real microwave observations. In the SMOS algorithm theoretical109

basis document [16], the urban area is assumed to behave as a110

very dry bare soil or rock whose dielectric constant is suggested111

to be 5.7 − j × 0.074. Based on model simulations under a112

range of conditions, a rock cover fraction threshold of 11% was113

derived for the SMOS soil moisture target accuracy of 0.04114

m3/m3, which was assumed to be applicable to urban areas.115

Similarly, Loew [23] derived an urban fraction threshold of116

15%–20% from model simulations conducted over the Upper117

Danube catchment in southern Germany, assuming that urban118

areas behave like a very dry bare soil with a low and fixed119

dielectric constant and high surface roughness. Consequently,120

this paper here examines the previously reported urban fraction121

thresholds, using real data acquired from the three Australian122

field experiments. Subsequently, these thresholds are used to123

identify the SMOS and SMAP pixels where the target soil124

moisture retrieval error will likely be exceeded as a result of125

urban-induced error.126

The objectives of this study are as follows.127

1) Investigate the relationship between urban cover fraction128

and L-band microwave brightness temperature using air-129

borne observations.130

2) Obtain thresholds of urban cover fraction that the presence131

of urban can be ignored in soil moisture retrieval.132

3) Demonstrate the SMOS and SMAP pixels globally, where133

the soil moisture retrievals accuracy may be adversely134

affected if the presence of urban areas is not accounted135

for.136

In this study, the SMOS and SMAP radiometric error budgets137

of 3.95 K [15] and 1.3 K [17] were used as the brightness138

temperature error budgets to be met in order to achieve the target139

soil moisture retrieval accuracy of 0.04 m3/m3. Consequently,140

these limits were used to define the urban-induced brightness141

temperature deviation that could be tolerated from what would 142

otherwise have been made for a natural landscape; a somewhat 143

conservative assumption that the entire error budget could be 144

attributed to urban effects alone. The urban fraction thresholds 145

obtained using these experimental data were then used to identify 146

the SMOS and SMAP pixels globally where the soil moisture 147

retrieval error will potentially exceed the target accuracy as 148

a result of man-made structures. A key assumption of this 149

extrapolation is that the Australian cities located in the study 150

areas represent the microwave response of cities worldwide. 151

II. DATASETS AND STUDY AREAS 152

A. Airborne Microwave Brightness Temperature Observations 153

Airborne brightness temperature observations and monitor- 154

ing station data collected during the three Australian airborne 155

field experiments were used to establish the relationship be- 156

tween urban-induced brightness temperature error and urban 157

fraction. The National Airborne Field Experiment in 2006 158

(NAFE’06 [24]), Australian Airborne Cal/val Experiments for 159

SMOS (AACES-1 and AACES-2 [25]) were conducted in the 160

Murrumbidgee River catchment in southeastern Australia during 161

the Australian summers of 2006 (October 29, 2006–November 162

20, 2010) and 2010 (January 18, 2010–February 21, 2010), and 163

the winter of 2010 (September 8, 2010–September 26, 2010), 164

respectively. Fig. 1 shows the location of the study areas, mon- 165

itoring stations, studied cities, the SMAP Equal-Area Scalable 166

Earth (EASE) 36-km grid, and the SMOS overlapped footprints 167

which are reconstructed to ∼43-km resolution on the SMOS 168

discrete global grid (DGG). 169

In this study, data collected over 13 sampling days across the 170

eight SMOS and SMAP sized areas were analyzed (see Table I). 171

The brightness temperature over seven medium-to-large cities 172

across the catchment (see Table II) was measured using the 173

polarimetric L-band multibeam radiometer (PLMR) mounted on 174

a scientific aircraft. The PLMR is a multibeam dual-polarized 175

(vertical and horizontal) radiometer operating at 1.413 GHz with 176

a bandwidth of 24 MHz. In push broom configuration, the PLMR 177

has six across-track beams with view angles of 7°, 21.5°, and 178

38.5° to both the sides of the aircraft. Each observation has a 179

beam width of 17° along-track and 14° across-track. Before 180

and after each flight, the PLMR was calibrated using the sky 181

(cold target) and a temperature-recorded blackbody box (warm 182

target). In addition, the calibration of the PLMR was confirmed 183

during each flight using brightness temperature observations 184

over a calibration lake having in situ measurements of water tem- 185

perature and salinity collected by a floating monitoring station. 186

After pre and postflight calibration, the PLMR has an overall 187

accuracy of better than 2 K [26]. During each sampling day, 188

microwave emissions of the entire patch were measured across 189

a∼5-h flight window at an altitude of∼3000 m above the ground 190

level, yielding a ground resolution of ∼1 km. Moreover, the first 191

∼12 km of the first flight line was repeated at the end of each 192

flight in order to capture the temporal variation of microwave 193

emission during the flight. A small bias was observed for the 194

repeated flight line, which was subsequently removed. 195
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Fig. 1. Location of the Kyeamba study area of the NAFE’06, ten flight patches of the AACES-1 and five flight patches of the AACES-2 in the Murrumbidgee
River catchment in south-eastern Australia (inset). The SMOS DGG resampled pixels within each AACES flight patch, the SMAP EASE pixels over the entire
catchment, and the long-term soil moisture network sites (OzNet) and temporary monitoring stations of AACES campaigns are also shown.

TABLE I
LIST OF FLIGHTS MADE OVER CITIES ACROSS THE MURRUMBIDGEE RIVER CATCHMENT

TABLE II
MAIN FEATURES OF THE STUDIED CITIES. THE CENSUS DATA WERE RETRIEVED FROM [27]
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B. Airborne Data Preprocessing196

The temporal variation of brightness temperatures due to197

changes in the physical-surface temperatures during the flight198

was corrected by multiplying each brightness temperature ob-199

servation with the ratio between effective soil temperature at the200

current time and that at a fixed reference time (generally the mid201

duration of the flight). The effective soil temperature was calcu-202

lated using the time series of top ∼5 cm soil moisture and soil203

temperature at 2.5-cm and 40-cm depth, collected by monitoring204

stations within each patch using the method presented in [28]. In205

the NAFE’06 dataset, the brightness temperature observations206

were corrected to 12 noon (local time) using data from the207

OzNet monitoring station network [www.oznet.org.au; 29]. In208

the AACES-1 and -2, the 6 A.M. and 6 P.M. SMOS ascending209

and descending overpass times were used as the reference time,210

with data from temporal monitoring stations installed during211

the campaigns used for the temporal correction. Using this212

correction technique, the bias of the brightness temperature213

observations between the repeated flights reduced to less than214

1 K, which is insignificant in comparison with the brightness215

temperature difference between the urban and natural soil areas.216

The angular difference of the brightness temperature obser-217

vations was corrected by normalizing the observations to 38.5°218

using the cumulative distribution function (CDF)-based normal-219

ization method of presented in [42]. The method normalizes220

multiangle observations to a reference angle by matching the221

CDF of each incidence angle to that of the reference angle.222

This approach assumes that the brightness temperature varia-223

tions viewed by each incidence angle has the same statistical224

properties, and has been shown to result in normalization errors225

for individual observations as low as ∼1 K. Consequently, the226

normalization error for scene-averaged brightness temperatures227

is assumed to be negligible.228

C. Urban Distribution Data229

The urban area is a combination of man-made structures (e.g.,230

buildings and roads) and natural land surfaces (e.g., parks and231

gardens), and these man-made structures are hypothesized to232

have a distinct microwave response from natural soil targets233

that will adversely affect soil moisture retrieval if not explicitly234

taken into account. To quantify the impact of the urban areas235

on the observed radiometric response, man-made structures in236

the Murrumbidgee River catchment were identified using the237

land use New South Wales [LUNSW; 43] product due to its238

high resolution of better than 15 m. The LUNSW is a regional239

land use dataset mapped in polygon format over the state of240

New South Wales (NSW), Australia. The land use classifica-241

tion and mapping was undertaken directly from the satellite242

imagery and aerial photography with assistance from existing243

datasets, local knowledge, and field checking. According to244

an independent verification conducted by checking the satellite245

imagery and aerial photographs, the LUNSW has a positional246

accuracy of 50 m and an attribute accuracy of 92%–99% [43].247

In the LUNSW, urban land use is classified as a combination248

of 29 subclasses, including industrial/commercial, residential,249

recreational, landfill, and other urban facilities. The subclasses250

of urban class in the LUNSW were regrouped into man-made 251

structures dominated by built-up environment and rural residen- 252

tial dominated by natural areas. Consequently, open space in 253

urban areas is explicitly accounted for when determining the 254

fractions of man-made structures and rural residential. 255

To identify the global SMOS and SMAP pixels with urban- 256

induced brightness temperature contribution in excess of the 257

respective error budgets, a global urban map with appropriate 258

spatial resolution and accuracy is required. There are currently 259

ten different global urban and urban-related land surface maps 260

available, as listed in Table III. Different types of data were 261

used in the classifications; thus, they differ in terms of their 262

definition of “urban,” spatial resolution, and accuracy. For ex- 263

ample, the urban maps that are derived from census data and 264

night-time lights relate to population and income level, while 265

the urban maps derived from multispectral data relate more to 266

built-up areas [44], [45]. Compared with natural land surfaces, 267

the difference of microwave behavior of urban areas is due 268

to the distribution of man-made structures, not population or 269

other factors. Consequently, only the maps that define urban 270

as built-up or impervious area and have a spatial resolution 271

better than 1 km were considered in this study (i.e., Maps 1–6 in 272

Table III). 273

The accuracies of these maps were assessed in [22] by com- 274

paring urban maps over 140 randomly sampled cities globally, 275

by manual interpretation using 30-m Landsat data. The as- 276

sessment result showed that the MODerate resolution Imaging 277

Spectroradiometer (MODIS) 500-m urban land cover dataset 278

had the highest accuracies in classified urban pixel (93%) and in 279

estimated city size (R2 = 0.90). The MODIS 500-m is a global 280

urban land use map with a spatial resolution of 500 m, generated 281

using a supervised decision tree algorithm based on MODIS 282

Collection 5 data between 2001 and 2002. In the MODIS 500-m 283

dataset, urban areas are defined as pixels having more than 50% 284

built-up land surface with a minimum size of 1 km2 [22]. 285

D. Calculation of Urban Cover Fraction 286

To apply the urban fraction threshold derived from the 287

LUNSW globally, a global urban map was required to calcu- 288

late the urban fraction of the global SMOS and SMAP pixels, 289

which should be classified based on man-made structures and 290

consistent with the LUNSW at the scales of SMOS and SMAP. 291

Consequently, the cover fractions of man-made structures and 292

urban areas in the SMOS DGG pixels with approximately 43- 293

km resolution and SMAP EASE 36-km pixels over the Mur- 294

rumbidgee River catchment were calculated using the LUNSW 295

and each of the global urban maps, respectively. Fig. 2 shows 296

the urban fractions calculated using each of the global Maps 1 297

to 5 against the cover fractions of man-made structures using 298

the LUNSW over the corresponding SMOS and SMAP pixels 299

in the Murrumbidgee catchment. Due to its lower resolution 300

compared to its upgraded version (MODIS 500-m dataset), the 301

MODIS 1-km urban land use dataset (Map 6) was discarded 302

in the comparison. It is clear that the GRUMP, GLC2000, and 303

GlobCover datasets overestimate the urban area as compared 304

with man-made structures in the LUNSW, while the ISA dataset 305



IEE
E P

ro
of

YE et al.: IMPACT OF URBAN COVER FRACTION ON SMOS AND SMAP SURFACE SOIL MOISTURE RETRIEVAL ACCURACY 5

TABLE III
KEY CHARACTERISTICS OF EXISTING GLOBAL URBAN MAPS (ADAPTED FROM [22])

Fig. 2. Comparison between the LUNSW and MODIS 500-m in terms of
urban fraction of the SMOS DGG resampled pixels (gray symbol) and the SMAP
EASE 36-km pixels (black symbol) over the Murrumbidgee River catchment.

provides an underestimate. The mean ratio of pixel urban frac-306

tion calculated using each of Maps 1–5 to the cover fraction of307

man-made structure derived from the LUNSW is listed in the308

last column of Table III, confirming that the MODIS 500-m has309

the best agreement with man-made structures in the LUNSW,310

having an urban extent ratio of 0.93. In the context of 11%–20%311

urban fraction threshold obtained from the previous simulation312

studies [16], [23], the difference between the LUNSW man- 313

made structures and MODIS 500 m is approximately 1% at the 314

SMOS and SMAP scale, which was considered to be negligible. 315

Consequently, the MODIS 500-m urban map was selected for 316

calculating urban fraction of all the SMOS and SMAP pixels 317

globally. It needs to be noted that the temporal variation of urban 318

extent from 2002 (for MODIS 500-m) to 2010 (for AACES) was 319

ignored. 320

III. METHODOLOGY 321

The impact of urban fraction on soil moisture retrieval was 322

investigated in four steps, as illustrated in Fig. 3. 323

Step 1. Prepare airborne brightness temperature data and 324

land cover maps for a range of urban cover fractions: 325

The airborne brightness temperature observations at 326

1-km resolution were aggregated to larger scales in 327

order to simulate the SMOS and SMAP scenes with a 328

range of urban fraction (Fracurban), and the simulated 329

brightness temperature data were calculated for the 330

urban-free part (TBnonurban) and entire scene (TBall) 331

by averaging 1-km brightness temperature observa- 332

tions over urban-free pixels and all pixels within the 333

corresponding scene, respectively. To achieve a wide 334

range of scene urban fraction, a 40-km rectangle win- 335

dow was moved within the study area. However, ac- 336

cording to the size of the studied cities as listed in Table 337

II, the maximum cover fractions at 40 km are less than 338

11%–20% urban fraction threshold obtained from the 339

simulation studies presented in [16] and [23]. To obtain 340

results for a greater range of urban fraction thresholds, 341
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Fig. 3. Schematic flowchart of methodology.

the scene was centered on the studied cities and the342

window size gradually decreased, assuming that the343

brightness temperature integrated from smaller scales344

is the same as that at the SMOS and SMAP scales345

[46]. The recategorized LUNSW dataset was used to346

determine the urban fraction and identify the urban-free347

brightness temperature pixels in the 1-km PLMR data.348

Step 2. Investigate the relationship between urban cover frac-349

tion and brightness temperature: The SMOS and350

SMAP radiometric sensitivity of 3.95 and 1.3 K [15],351

[17] were used as brightness temperature error bud-352

gets to determine the thresholds for urban cover frac-353

tion in the SMOS and SMAP pixels, below which354

an urban-induced brightness temperature contribution355

can be ignored as a part of the overall instrument un-356

certainty. This urban-induced brightness temperature357

“error” (TBerr) is defined hereafter as the difference358

between TBnonurban and TBall, which represent space-359

borne brightness temperature observations both with360

and without accounting for the contribution of urban361

area, respectively. Based on the relationship between362

Fracurban and TBerr, urban fraction thresholds were363

derived for the SMOS and SMAP brightness temper-364

ature error budgets, respectively, ignoring the differ-365

ences of the pixel shape and size between the SMOS366

and SMAP.367

Step 3. Calculate urban cover fraction of the global SMOS and368

SMAP pixels: The MODIS 500-m urban land use map369

was used to calculate urban fraction of the SMOS and370

SMAP pixels globally. The SMOS mission uses the 371

Icosahedral Snyder equal area (ISEA)-based Aperture 372

4 hexagon DGG in Resolution 9, which maps the earth 373

surface into ∼2.6 × 106 hexagon cells with an equal 374

area of ∼194 km2 and an equal distance of ∼15 km be- 375

tween the center points of adjacent cells [47]. Although 376

the center points of SMOS L1 and L2 data are fixed on 377

the DGG points, the size and orientation of the pixels 378

vary for the ∼500 km partly overlapped SMOS scenes 379

in the Murrumbidgee River catchment, and the SMOS 380

footprints were simplified to overlapping circles with a 381

diameter of 43 km, being the average SMOS pixel size 382

[15] centered on the SMOS DGG points. Similarly, the 383

EASE Grid 2.0 [48] was used for application to SMAP. 384

The EASE grid is defined in three projections: Northern 385

and southern hemispheres (Lambert azimuthal equal- 386

area projections) and full global (a cylindrical equal- 387

area projection with standard parallels at ±30°). The 388

global EASE grid at 36-km resolution has been selected 389

for the SMAP radiometer products. Consequently, the 390

urban fractions (Fracurban) in the SMOS DGG resam- 391

pled 43-km circles and the SMAP 36-km EASE grid 392

were calculated using the MODIS 500-m urban land 393

surface map. 394

Step 4. Identify the urban affected pixels of SMOS and SMAP: 395

The urban fractions of SMOS and SMAP pixels 396

at global scale were then used together with the 397

thresholds obtained for the SMOS and SMAP radio- 398

metric sensitivities obtained in Step 2, and then applied 399
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Fig. 4. LUNSW and dual-polarized brightness temperature (TBh and TBv) maps at 38.5° incidence angle for scenes with different urban fractions over the city
of Wagga Wagga on November 6, 2006.

to the urban fractions obtained in Step 3 to produce400

global maps of urban effected pixels. As one of the401

first studies on urban effect, this study started from402

a simplified scenario. A key assumption of this step403

is that the microwave behavior of the studied cities404

represents that of urban areas worldwide.405

IV. RESULTS406

A. Simulated Urban Effects Scenarios407

A range of scenes were simulated for the SMOS and SMAP408

pixels by moving the window of a scene at SMOS and SMAP409

scales within the study area, and by reducing the extent of a410

scene centered on the studied cities. As an example, Fig. 4 shows411

the land use as well as horizontally and vertically polarized412

brightness temperature maps of scenes within the Kyeamba413

study area using airborne observations collected on November414

6, 2006 during the NAFE’06 campaign. According to the re-415

categorized LUNSW classification, this area is dominated by416

cropping and grazing land, intermixed with man-made struc-417

tures, rural residential, trees, water bodies, and mining area.418

Compared to brightness temperature maps, the nonsoil targets419

have a distinctive microwave response. The urban area and420

open water have ∼30 K lower brightness temperature than the421

surrounding grass and cropping land surfaces, while the422

brightness temperatures of trees were ∼10 K higher. The impact 423

of forest and water bodies was removed by discarding the 1-km 424

brightness temperature pixel with more than 5% cover fraction 425

of forest and/or water bodies. 426

Fig. 4 has a good spatial agreement between the man-made 427

structures and very low brightness temperature pixels, implying 428

a good correlation between recategorized man-made structures 429

and urban-affected brightness temperature pixels. From Column 430

(a) to (c) in Fig. 4, a 40 × 40-km2 scene was moved from 431

the southernmost part of the study area toward the studied city 432

(Wagga Wagga) in the north, with the urban fraction (Fracurban) 433

of the scenes varying from 0.1% when the studied city was 434

almost outside of the scene to 2.1% when the studied city was 435

fully in the scene. To obtain a higher range of urban fractions, 436

the scene was positioned over the urban area and the extent of 437

the scene reduced from 40 km to 20 km and then to 10 km 438

[Columns (c)–(e)], resulting in urban fractions up to 26.5% in 439

this example. 440

B. Relationship Between Urban Cover Fraction and 441

Urban-Induced Error in Brightness Temperature 442

The brightness temperature observations of all pixels in each 443

scene were then averaged to TBall, and the equivalent urban free 444

brightness temperature estimated as TBnonurban by discarding 445
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Fig. 5. Relationship between urban fraction and urban-induced brightness
temperature error at 38.5° incidence angle for horizontal (top) and vertical
(bottom) polarizations during summer (left) and winter (right) campaigns.
Symbol color reflects the average soil moisture measurement collected using
monitoring stations within the corresponding flight patch.

all pixels classified as urban, the assumption being that the446

surrounding brightness temperature response is representative447

of what would have been observed had the urban area not been448

there. The corresponding scene urban fraction Fracurban is also449

calculated.450

This analysis was repeated for a total of 13 flights across451

the three airborne field experiments. In contradiction to the452

previous dry bare soil assumption on the microwave behavior453

of urban areas made in [16] and [23], the studied cities were454

observed to have a considerable (up to 50 K) lower bright-455

ness temperature than surrounding natural grass and cropping456

lands under most conditions. This phenomenon was also found457

from the airborne HUT-2D observations collected in Decem-458

ber 2006 over the Porvoo area, Southern Finland [21]. A rea-459

sonable explanation is that the residential buildings usually460

having tile roofs are expected to behave like dry bare soil,461

while industrial buildings often having metal roofs have a very462

low emissivity and low physical temperature in early morning463

[21].464

The urban-induced brightness temperature TBerr calculated465

from TBnonurban and TBall is plotted against Fracurban for sum-466

mer and winter seasons separately in Fig. 5, with results coded467

by the average top ∼5 cm soil moisture according to monitoring468

station measurements. As expected, the magnitude of TBerr in-469

creases as Fracurban is increased. During the summer campaigns470

(NAFE’06 and AACES-1), urban areas induced a positive TBerr,471

and the ratio between TBerr and Fracurban was shown to be472

dependent on the soil moisture condition, with a lower TBerr473

induced by urban area as the soil moisture increased. For soil474

moisture lower than 0.15 m3/m3, the brightness temperature 475

difference between urban and urban-free areas was 25–60 K for 476

horizontal polarization and 25–50 K for vertical polarization un- 477

der warm summer conditions. Similar to urban effects under wet 478

(soil moisture larger than 0.15 m3/m3) summer conditions, the 479

impact of urban area was found to be much less in the winter cam- 480

paign (AACES-2) than that under dry summer conditions. Due to 481

a small soil moisture variation captured during the AACES-2, 482

no clear relationship between TBerr and soil moisture was 483

found. 484

One anomaly to the above results was for the airborne data 485

collected over the city of Canberra on February 18, 2010. In 486

this case, a negative relationship between TBerr and Fracurban 487

was obtained; this flight was undertaken around 6 P.M. rather 488

than at 6 A.M. This negative brightness temperature error has 489

possibly resulted from two aspects. First, the ratio of indus- 490

trial buildings drops from ∼0.25 for the other studied cities 491

to ∼0.1 for Canberra, while the ratio of residential buildings 492

increases from ∼0.65 to ∼0.9 (see Table II), thus the effective 493

emissivity of man-made structures in Canberra is lower than 494

the other studied cities. Second, the physical temperature of 495

the urban area should be higher than that of the surrounding 496

natural area in late afternoon due to urban heat island effect 497

[49]. 498

C. Urban Cover Fraction Thresholds 499

To meet the target soil moisture retrieval accuracy of SMOS 500

and SMAP, their brightness temperature error budgets were used 501

as benchmarks for urban contributions to brightness temperature 502

that could be tolerated to still achieve the soil moisture re- 503

trieval accuracy target. Consequently, urban fraction thresholds 504

for each mission were derived from the identical relationship 505

shown in Fig. 5. Thus, urban fraction thresholds of 6.6% for 506

horizontal polarization and 7.9% for vertical polarization were 507

obtained for the SMOS 3.95-K error budgets under warm and 508

dry conditions. Similarly, for the lower SMAP 1.3-K error 509

budget, permissible urban fraction thresholds dropped to 2.2% 510

and 2.6% for horizontal and vertical polarizations, respectively. 511

Additionally, urban fraction thresholds of 16.8% and 5.2% were 512

obtained for the SMOS and SMAP brightness temperature error 513

budgets, respectively, under cold and/or wet conditions. For the 514

purpose of simplicity, 6.6% and 16.8% were selected as urban 515

fraction thresholds for the SMOS brightness temperature at both 516

polarizations, under warm dry conditions and cold and/or wet 517

conditions, respectively. These values reduce to 2.2% and 5.2% 518

for the SMAP. 519

In comparison, the SMOS CATDS datasets have an urban 520

fraction threshold of 10% to flag the presence of a limited urban 521

area, and 30% to flag the presence of a large urban area [16]. 522

In the SMAP L2 datasets, an urban fraction threshold of 25% is 523

used to flag for recommended quality and retrieve soil moisture 524

[50]. 525

D. Urban Effects at Global Scale 526

These urban fraction thresholds have been applied globally, 527

together with the urban cover fraction maps, to identify where the 528
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Fig. 6. Estimated maximum urban-induced brightness temperature error in the SMAP grid at global scale. Symbol color shows the level of brightness temperature
error.

target soil moisture retrieval accuracy could be attained without529

explicitly accounting for man-made structures in the soil mois-530

ture retrieval algorithm. Consequently, the urban fraction at the531

SMOS and SMAP scales over the global land mass was calcu-532

lated using the MODIS 500-m dataset. The urban land use raster533

of the MODIS 500-m dataset was converted to polygon format534

without any approximation or simplification, and then clipped535

with the SMOS DGG resampled 43-km circles and SMAP EASE536

36-km pixels. The areal ratio between clipped area and the537

corresponding pixel is defined as the urban fraction of the given538

pixel.539

Based on the relationship between the urban-induced bright-540

ness temperature “error” and urban fraction, the maximum541

brightness temperature error that would likely be introduced542

by ignoring the presence of urban was estimated from the543

calculated urban fraction of the SMOS and SMAP pixels. The544

maximum urban-induced errors over the globe are given in545

Fig. 6, showing that a brightness temperature error of more546

than 4 K may exist over highly urbanized areas such as Eu-547

rope, East China, and the USA. Such brightness temperature548

contributions, if not accounted for, may subsequently yield549

soil moisture retrieval errors that exceed the target soil mois-550

ture retrieval accuracy when producing global soil moisture551

maps.552

Fig. 7 shows the cumulative frequency curves of pixels that553

could be adversely affected for the SMOS and SMAP missions.554

Due to their similar scales, the SMOS and SMAP have similar555

cumulative distribution curves of urban fraction, but compared556

with their urban fraction thresholds approximated by their target557

radiometric calibration accuracy, there are about 2% of the558

SMOS pixels having urban-induced brightness temperature “er-559

ror” in excess of the 3.95-K budget under warm dry conditions,560

Fig. 7. CDFs of urban fraction of the SMOS (brown) and SMAP (green) pixels
over land mass and the percentage of land pixels that is likely to be adversely
affected by urban areas under different conditions.

reducing to ∼0.5% under cold and/or wet conditions, while 561

urban-induced brightness temperature error potentially exceeds 562

the 1.3-K budget over ∼5% SMAP pixels under warm dry 563

conditions, and over ∼2% SMAP pixels under cold and/or wet 564

conditions. According to the distribution of urban impacted 565

pixels of the SMOS (see Fig. 8) and SMAP (see Fig. 9), the 566

urbanization ratio is not globally uniform and the area with 567

higher density of urban area has more significant urban impact 568

on soil moisture retrieval. The fraction of urban affected pixels 569

was calculated for each individual continent and listed in Table 570

IV. For more developed and populated areas, such as Europe, 571

up to 4.5% of the SMOS and 14% of the SMAP pixels are likely 572

to have urban-induced brightness temperature contributions in 573

excess of their radiometric error budgets. 574
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Fig. 8. Distribution of urban impacted pixels of SMOS over global land mass.

Fig. 9. Distribution of urban impacted pixels of SMAP over global land mass.

TABLE IV
STATISTICS OF URBAN IMPACT ON THE SMOS AND SMAP PIXELS



IEE
E P

ro
of

YE et al.: IMPACT OF URBAN COVER FRACTION ON SMOS AND SMAP SURFACE SOIL MOISTURE RETRIEVAL ACCURACY 11

V. CONCLUSION575

Microwave radiometry has been widely acknowledged as the576

most promising technique to measure the spatial distribution577

of water content in the top ∼5 cm soil layer, but the tech-578

nique suffers from being a coarse resolution measurement of579

approximately 40 km. Consequently, the SMOS and SMAP soil580

moisture retrievals are at risk of being adversely affected by581

nonsoil targets, such as man-made structures in urban areas, in582

many parts of the world. Since only ∼0.5% of the global land583

mass is urbanized, this is not expected to be a problem in most584

parts of the world, but urban areas are not uniformly distributed585

globally. Thus, it may not be possible to simply neglect the urban586

area effect, and so it is important to be able to flag or mask those587

pixels with nonnegligible urban-induced brightness temperature588

contributions, referred to here as an “error,” in the absence of589

accounting for this contribution explicitly in the soil moisture590

retrieval process.591

This study demonstrates the effect of urban area on the592

SMOS and SMAP brightness temperature observations us-593

ing data acquired from the three airborne field experiments594

(NAFE’06, AACES-1, and AACES-2) conducted in the Mur-595

rumbidgee River Catchment, in South-Eastern Australia. The596

airborne brightness temperature observations at 1 km over seven597

medium-to-large cities were used together with the land use:598

NSW dataset on urban areas to establish the relationship between599

the urban-induced brightness temperature “error” and urban600

fraction. As expected, urban-induced brightness temperature601

error increased with urban fraction and was a function of soil602

moisture and temperature conditions. Moreover, a threshold of603

urban fraction was identified for the SMOS and SMAP based604

on their radiometric error budgets of 3.95 K and 1.3 K. Under605

warm dry (top ∼5 cm soil moisture <0.15 m3/m3) conditions,606

the SMOS pixels with more than 6.6% urban fraction and the607

SMAP pixels with more than 2.2% urban fraction are expected608

to have urban-induced brightness temperature errors in excess of609

their radiometric error budgets. However, under cold and/or wet610

conditions the tolerance increases to 16.8% for the SMOS and611

5.2% for the SMAP, respectively. Notably, these tolerances are612

much tighter than the 11%–20% tolerance suggested by earlier613

studies based on the model simulation.614

Using these thresholds, the global SMOS and SMAP pix-615

els expected to exhibit nonnegligible urban-induced brightness616

temperature error were identified, assuming similar microwave617

behaviors of the studied cities and urban areas in the other parts618

of the world. Using the MODIS 500-m global urban extent map,619

the urban fraction of the SMOS and SMAP pixels was calculated620

globally and the thresholds applied. Over land, approximately621

2% of all the SMOS pixels may have significant urban-induced622

brightness temperature errors, reducing to about 0.5% of pixels623

under cold and/or wet conditions. Similarly, SMAP is expected624

to have up to 5% of pixels with significant urban-induced625

brightness temperature errors, reducing to about 2% under cold626

or wet conditions. The study also found that for more populated627

continents such as Europe, there may be as many as 14% of pixels628

that have significant urban-induced error. However, results have629

been extrapolated globally based on the microwave behaviors of630

only seven medium to large sized Australian cities, which may 631

not be representative of the microwave response from urban 632

areas elsewhere. Consequently, further studies of this nature 633

should be conducted over different types of cities in other places 634

of the world in order to validate the applicability of these results 635

globally. Moreover, these results might be conservative as it has 636

been assumed that the entire radiometric error budget can be 637

attributed to urban-induced effects alone. 638
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