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Abstract—The Advanced microwave scanning radiometer 2
(AMSR2) is part of the global change observationmission-water
(GCOM-W). AMSR2 has filled the gap in passive microwave
observations left by the loss of theAMSR–earth observing sys-
tem (AMSR-E) after almost ten years of observations. Both mis-
sions provide brightness temperature observations that are used
to retrieve soil moisture estimates at the near surface. A merged
AMSR-E and AMSR2 data product will help build a consistent
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long-term dataset; however, before this can be done, it is nec-
essary to conduct a thorough validation and assessment of the
AMSR2 soil moisture products. This study focuses on the valida-
tion of the AMSR2 soil moisture products by comparison with in
situ reference data from a set of core validation sites around the
world. A total of three soil moisture products that rely on differ-
ent algorithms were evaluated; the Japan Aerospace Exploration
Agency (JAXA) soil moisture algorithm, the land parameter re-
trieval model (LPRM), and the single channel algorithm (SCA).
JAXA, SCA, and LPRM soil moisture estimates capture the over-
all climatological features. The spatial features of the three prod-
ucts have similar overall spatial structure. The JAXA soil moisture
product shows a lower dynamic range in the retrieved soil mois-
ture with a satisfactory performance matrix when compared to
in situ observations [unbiased root mean square error (ubRMSE)
= 0.059 m3/m3, Bias = −0.083 m3/m3, R = 0.465]. The SCA per-
forms well over low and moderately vegetated areas (ubRMSE =
0.053 m3/m3, Bias = −0.039 m3/m3, R = 0.549). The LPRM prod-
uct has a large dynamic range compared to in situ observations
with a wet bias (ubRMSE = 0.094 m3/m3, Bias = 0.091 m3/m3,
R = 0.577). Some of the error is due to the difference in observa-
tion depth between the in situ sensors (5 cm) and satellite estimates
(1 cm). Results indicate that overall the JAXA and SCA have the
best performance based upon the metrics considered.

Index Terms—In situ networks, passive microwave, soil mois-
ture, validation.

I. INTRODUCTION

SOIL moisture is a key variable in controlling the exchange
of water and energy balance between the land surface and

the atmosphere through evaporation and plant transpiration. As
a result, soil moisture plays an important role in the devel-
opment of weather patterns and the production of precipitation.
Soil moisture observations have the potential to significantly im-
prove the accuracy of short-term weather forecasts and reduce
the uncertainty of long-term projections of how climate change
might impact Earth’s water cycle. The value of soil moisture to
these processes was recognized by its identification as an essen-
tial climate variable [1]. Beyond these applications involving
projections and retrospectives, near real time soil moisture can
play an important role in hydrologic and agricultural monitoring
and assessment (i.e., floods and droughts).

Providing soil moisture globally on a frequent and operational
basis is challenging, especially in near real time. Satellite-based
passive microwave remote sensing has proven to be a reliable
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approach. Several products and satellite missions have con-
tributed to its implementation. Recent efforts, such as the Eu-
ropean space agency and climate change initiative have demon-
strated that data from these missions can be integrated to form
longer term records [2]. The scientific value of these extended
records related to processes and climate change are illustrated
in [3]–[5].

The advanced microwave scanning radiometer–earth observ-
ing system (AMSR-E) projects of the National Aeronautics and
Space Administration (NASA) and the Japan Aerospace Ex-
ploration Agency (JAXA) were the first satellite programs to
incorporate soil moisture as a standard product [6], [7]. AMSR-
E based soil moisture products developed using different al-
gorithm concepts have been evaluated and intercompared in a
number of studies, under a range of ground and climate condi-
tions and using a variety of metrics [8]–[13]. These evaluations
have shown that there are significant differences between the
AMSR-E products in terms of biases, sensitivities, and tempo-
ral responses.

AMSR-E operated for almost ten years starting in June
2002 and stopping normal operations in October 2011. JAXA
launched the AMSR2 as part of the global change observation
mission-water (GCOM-W) as a follow-on to AMSR-E. AMSR2
began routine data production in July 2012, leaving a gap of
several months. GCOM-W was placed in the A-train sun syn-
chronous orbit with an equatorial ascending overpass time of
1:30 PM, the same as the aqua platform that hosted AMSR-E.
AMSR2 provides dual polarization brightness temperature at
the same frequencies as AMSR-E: 6.9, 10.65, 18.7, 23.8, 36.5,
and 89 GHz. Moreover, it has an additional C-band channel
(7.3 GHz) that was included for radio frequency interference
mitigation, and an improved calibration system. AMSR2 also
offers a small improvement in the inherent spatial resolution due
to its larger reflector compared to its predecessor. The nominal
footprint size at 10.65 GHz is 24 km × 42 km.

Merging the time series of AMSR-E and AMSR2 will help
build a consistent long-term dataset for monitoring components
of the Earth’s water cycle [14]. However, the instruments are not
identical (as noted above) and before tackling the integration
of AMSR-E and AMSR2, it is necessary to conduct a thorough
validation and assessment of the AMSR2 soil moisture products.

As described in [15], there are a number of different
methodologies that can be utilized in validating remotely
sensed soil moisture products. These include comparisons with
in situ observations and satellite and model-based products.
Each of these has value in a comprehensive approach, such
as that recommended by the committee on Earth observing
satellites [16], [41].

The focus of this investigation is on in situ comparisons and
specifically data sets that provide reliable estimates of the soil
moisture over the retrieval domain. This approach will con-
tribute to understanding the factors that impact either good or
poor algorithm performance for specific sites and conditions.

The key issue in conducting soil moisture product validation
is the disparity in spatial scales between satellite and in situ
observations. Conventional measurements of soil moisture are
made at a localized point, whereas satellite sensors provide an
integrated area/volume value for a much larger spatial extent. In

situ measurements are not available widely enough to construct
global products, and do not up-scale easily to the large-scale
satellite measurements.

Several investigations have examined aspects of AMSR2 soil
moisture product validation [17]–[20]. Some of these were pre-
liminary and others involved the use of validation methodolo-
gies that either focused on product intercomparisons or utilized
a single station or limited set of validation sites.

For this investigation, a key element of the use of core soil
moisture validation sites developed by the soil moisture active
passive (SMAP) mission [15] is adapted. SMAP mission collab-
orated in the development and implementation of core validation
sites (CVS), where there is replicate sampling within the satel-
lite footprint/grid. This approach provides explicit information
on each site and algorithm that can be used for assessment and
improvement. Other methodologies, such as triple colocation
can be used in later studies to expand the analyses to higher
level validation stages as described in [21].

This paper will present first validation of three publically
available AMSR2 soil moisture products using core validation
sites (CVS). It will exploit the efforts of the SMAP mission that
led to the most robust set of sites yet employed for this purpose.
Section II describes the three soil moisture products evaluated.
Section III provides a description of the SMAP CVS process
and Section IV the analysis approach. Section V presents the
results and discussion. Section VI summarizes the AMSR2 soil
moisture validation results.

II. SOIL MOISTURE PRODUCTS AND ALGORITHMS

Retrieval of soil moisture from brightness temperature (TB)
observations is based on a well-known approximation to the
radiative transfer equation, commonly known in the passive
microwave soil moisture community as the tau-omega model
[22]. A layer of vegetation over soil attenuates the emission of
the soil and adds to the total radiative flux with its own emission.
A model following this approach to describe the TB of a weakly
scattering layer above a semi-infinite medium was developed in
[22] and [23].

The TB is dependent on the sensor features (frequency, polar-
ization, and viewing angle) and target variables (soil moisture,
roughness, vegetation properties, and physical temperature of
both the soil and vegetation). In order to attempt the estima-
tion of soil moisture, assumptions and simplifications are made.
These simplifications are incorporated into the retrieval algo-
rithm. There is typically more than one path that can be fol-
lowed and as a result several soil moisture algorithms have been
implemented for AMSR2 (and AMSR-E). This investigation
focuses on three publically distributed soil moisture products
that rely on different algorithms; the JAXA Soil Moisture Al-
gorithm (JAXA), the Single Channel Algorithm (SCA), and the
Land Parameter Retrieval Model (LPRM). A brief description of
each algorithm is provided below. Analysis was limited to those
products provided (or will be) by an agency. There are other
algorithms but the products are not widely available. All the
algorithms use the same input TB data for the retrieval process
(JAXA L1R TB Version 2).
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1) JAXA algorithm uses a forward radiative transfer scheme
to generate brightness temperatures for a range of param-
eter values (vegetation and soils) for multiple frequencies
and polarizations. The simulations are done using a con-
stant surface temperature of 293 K. Results from synthetic
runs are used to create lookup tables for soil moisture that
utilize the polarization ratio at 10.65 GHz and the normal-
ized brightness temperature difference between the 36.5
and 10.65 GHz horizontal channels [24]–[27]. The lookup
tables in the current version of the JAXA algorithm are
dependent on the fractional vegetation cover derived from
moderate resolution imaging spectroradiometer (MODIS)
data [25]. The data used here are the soil moisture prod-
ucts version 2, algorithm version 210 as distributed by
JAXA.

2) SCA algorithm is based on the radiative transfer equation
and uses a single radiometer channel along with ancillary
data [28]. The foundation of this approach is well known
and has been implemented with satellite observations
from AMSR-E [8], Aquarius [29] and SMAP [30], [31].
Like all algorithms it has advantages and disadvantages.
In the SCA version used here, the horizontally polarized
TB observations are converted to emissivity using a sur-
rogate for the physical temperature of the emitting layer
(36.5 GHz − V TB) [32]. The derived emissivity is cor-
rected for vegetation and surface roughness to obtain the
soil emissivity. The Fresnel equation is then used to deter-
mine the dielectric constant. Finally, a dielectric mixing
model is used to obtain the soil moisture given knowledge
of the soil texture. Analytically, SCA attempts to solve for
one unknown variable (soil moisture) from one equation
that relates the horizontally polarized TB to soil moisture.
Vegetation information is provided by a climatological
database of global normalized difference vegetation index
(NDVI) and a table of parameters based on land cover
and polarization. In response to deficiencies found with
the standard product provided by NASA for AMSR-E
[8], NASA has added the SCA to its product suite.

3) LPRM model is based on [33] and [34] and has been used
with several multifrequency satellites including AMSR-E
and AMSR2. LPRM attempts to solve for soil moisture
and vegetation optical depth using the vertically and
horizontally polarized TB observations. However, it does
so under the assumptions that (1) the soil and canopy
temperatures are considered equal, and (2) vegetation
transmissivity and the single-scattering albedo are the
same for both H and V polarizations. Ancillary informa-
tion such as effective soil temperature, surface roughness,
and vegetation single scattering albedo must be known
a priori before the inversion process. As in the case of
the SCA, LPRM uses the 36.5 GHz-V data to estimate
effective temperature [32]. There are several variants of
the LPRM for AMSR2 that utilize different combinations
of frequencies and retrievals. Here, the product based on
the 10.65/36.5 GHz data was used for consistency with
the JAXA and SCA results. The LPRM soil moisture
data was obtained from the Goddard Space Flight
Center (GSFC) Data Active Achieve Center (DAAC)

(https://hydro1.gesdisc.eosdis.nasa.gov/data/WAOB/
LPRM_AMSR2_SOILM2.001/).

III. SMAP APPROACH TO SOIL MOISTURE PRODUCT

VALIDATION AND CVS

The assessment approach used here builds from the SMAP
calibration/validation (Cal/Val) program [34]. SMAP employs
five methodologies that include in situ observations (core sites
[20], [30] and sparse networks [36]), product intercomparisons
(satellite [37] and model), and field experiments [38]. Of these
the most informative, especially for algorithm improvement, are
the CVS.

In an attempt to ensure the geographic distribution and di-
versity of conditions of the CVS, SMAP partnered with inves-
tigators (valibration/validation partners) around the globe. The
CVS candidates were selected based on a minimum require-
ment of providing continuous soil moisture measurements at a
5 cm depth with replication within a SMAP grid cell of at least
one of the SMAP spatial scales (36-km for the passive-based
products). Prior to launch, the potential sites were assessed for
the adequacy of their number of points, calibration, and the
basis for up-scaling amongst other criteria. The CVS core site
list was selected from the candidate list based on the criterion,
where confidence in the representativeness of a site at the prod-
uct spatial scale was considered within the error limit of SMAP
products (<0.04 m3/m3). More details on the sites and selection
process can be found in [20] and [30].

SMAP radiometer-based soil moisture products are processed
onto a standard 36-km fixed Earth grid. It was observed that the
spatial distribution of the in situ points of many networks did
not match-up well with the established grids. In order to fully
exploit the available sampling at these sites, a special validation
grid processor was developed that allows processing over any
36 km domain on the basis of a 3 km ancillary data grid. The
optimal grid was identified for each CVS and an up-scaling
function for the in situ network was established. This optimal
grid was also used for the AMSR2 core site assessment.

The geographic location of the CVS sites is shown in Fig. 1.
The list of CVS utilized in this investigation is the same as
that employed by SMAP and is shown in Table I. The general
features, number of sites and up-scaling approach are also listed
in the table. The areal average NDVI range based on the MODIS
climatology is also included in Table I.

IV. ANALYSIS APPROACH

All satellite soil moisture data utilized in this analysis were
footprint retrievals, as opposed to gridded products. For each
CVS, the product unflagged footprints with boresight centers
that fell within the CVS boundaries were arithmetically aver-
aged to estimate the surface soil moisture of the 36-km validation
grid cell. The flags from the respective products were used for
screening the individual footprints. This was performed for each
available day from July 2, 2012 (beginning of the mission) to
June 30, 2016, to produce a four-year record for the ascending
and descending passes (separately). The LPRM analysis was
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Fig. 1. Location of validation sites marked with red circles used in the AMSR2 soil moisture assessment.

TABLE I
CVS CHARACTERISTICS USED FOR AMSR2 VALIDATION

Site Name Region Climate Regime Land Cover MODIS Climatology
NDVI Range

Number of
Stations

Up-scaling Approach Start Year

Walnut Gulch USA (Arizona) Arid Shrub open 0.18–0.37 29 Voronoi diagram 2012
Reynolds Creek USA (Idaho) Arid Grasslands 0.27–0.42 20 Voronoi diagram 2012
TxSON USA (Texas) Temperate Grasslands 0.40–0.59 36 Voronoi diagram 2015
Fort Cobb USA (Oklahoma) Temperate Grasslands 0.37–0.55 15 Voronoi diagram 2012
Little Washita USA (Oklahoma) Temperate Grasslands 0.32–0.60 20 Voronoi diagram 2012
South Fork USA (Iowa) Cold Croplands 0.23–0.87 20 Voronoi diagram 2012
Little River USA (Georgia) Temperate Cropland/natural

mosaic
0.48–0.74 28 Voronoi diagram 2012

Kenaston Canada Cold Croplands 0.22–0.64 28 Voronoi diagram 2012
Carman Canada Cold Croplands 0.23–0.76 9 Soil type and land cover 2012
Monte Buey Argentina Arid Croplands 0.31–0.83 14 Voronoi diagram 2015
REMEDHUS Spain Temperate Croplands 0.25–0.49 19 Voronoi diagram 2012
Twente The Netherlands Temperate Cropland/natural

mosaic
0.58–0.82 5 Model-based 2015

Mongolian
grasslands

Mongolia Cold Grasslands 0.11–0.21 7 Arithmetic average 2012

Yanco Australia Semi-Arid Croplands/
Grasslands

0.26–0.59 28 Voronoi diagram 2012

Kyeamba Australia Temperate Croplands 0.40–0.71 5 Arithmetic average 2012

based on the X-band retrievals for consistency with SCA and
JAXA products.

For in situ soil moisture, all dates and times corresponding to
a satellite product were extracted. The three products deal with
winter conditions (frozen soil and snow) differently. To avoid
additional error, data with in situ surface temperature values
below 4 °C were excluded from the comparisons. Moreover,
Reynolds Creek watershed has significant topographic features
with high elevations that are typically snow covered during the
winter months, so data from only the summer months was used
for the comparison analysis.

The in situ sensors are located at 5 cm or over the top 5 cm.
The observation depth of X-band frequencies is close to 1 cm.
This difference in observation depth will introduce some error
in the soil moisture assessment. The top layer is typically drier
than the deeper soil layer.

It should be noted that not all CVS were in operation from the
beginning of the AMSR2 observing period, as their in situ ob-
servations began closer to the beginning of the SMAP program.
The starting year of the observing periods is listed in Table I for
each CVS.

Assessment of the algorithms was based on CVS compar-
isons using established metrics [39] and time series plots. These
metrics include the root mean square error (RMSE), unbiased
RMSE (ubRMSE), bias, and correlation. The RMSE is the mea-
sure of the differences between in situ observations and the es-
timates, ubRMSE captures time-random errors, bias captures
the mean differences or offsets, and correlation captures phase
compatibility between data series. Metrics were computed sep-
arately for each CVS. Average metrics were computed from the
site results.
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Fig. 2. Time series of in situ observations and AMSR2 soil moisture retrievals
for descending orbits over Little Washita watershed for July 2012–June 2016.

V. RESULTS AND DISCUSSION

The following analyses were conducted; assessment of the
descending pass products, comparison of descending and as-
cending retrievals, AMSR2 versus AMSR-E, the impact of veg-
etation levels, and performance relative to SMAP.

A. Comparison of Soil Moisture Products for Descending
Passes

The first analysis is based upon the descending overpass
data (nominal observing local time of 1:30 AM) because it
is expected that land surface temperature profile variations are
smaller at this time than during the ascending passes. Fig. 2
shows the soil moisture time series of in situ observations
and AMSR2 soil moisture estimates over Little Washita water-
shed (representative example) for July 2012–June 2016. Little
Washita is a semi-arid watershed with mostly rangeland and
winter wheat crops that has been widely studied and used as a
validation site for AMSR-E soil moisture validation [8]. The soil
moisture dynamic range of the SCA retrievals is closest to the
dynamic range of in situ retrievals. The JAXA retrievals have a
lower dynamic range. LPRM retrievals exhibit a large dynamic
range as compared to in situ observations. Some of the LPRM
retrievals have large anomalous soil moisture values, which are
greater than the soil porosity. Fig. 3 shows the scatter plot of
in situ observations as compared to AMSR2 satellite estimates.
SCA and JAXA retrievals have a slope less than the 1, whereas
the LPRM retrievals show a positive slope with a high gain as
compared to in situ observations. Table II summarizes the results
for each CVS site, metric, and product. The best performance
metric for each site among the different algorithms is highlighted
in grey. Based on the best performance it can be observed that
SCA had the best overall ubRMSE and bias performances. The
LPRM had the highest correlation with in situ observations for
most of the CVS locations. Focusing on the average results in
the last row of the table, it is noted that the JAXA and SCA had
similar values of the ubRMSE, the SCA ubRMSE was slightly
better than that of the JAXA product and its bias was smaller
than JAXA. The LPRM had the highest values of the ubRMSE
and bias, but had the highest correlation, being slightly better

Fig. 3. Scatter plot of in situ observations compared to AMSR2 soil moisture
estimates for descending orbits over Little Washita watershed for July 2012–
June 2016.

than the SCA. The key result is that both the JAXA and SCA
ubRMSE met the target accuracy of 0.06 m3/m3.

Individual CVS sites exhibit a range of performance; some
such as Walnut Gulch are very good and others, such as Carman
are poor. It is expected that some of the error at a site is associated
with the level of vegetation, which will be discussed in a later
section.

B. Comparison of Descending and Ascending Products

It was expected that the descending retrievals (1:30 AM)
would be more reliable than the ascending (1:30 PM) because
the effects of variations in both the spatial and profile variability
of land surface temperature are smaller. Table III shows the
ascending results for each site and the last two lines summarize
the overall results for descending and ascending.

The key result from Table III is that the differences between
descending and ascending ubRMSE were small for all products.
The JAXA and SCA products had similar bias and R values for
descending and ascending. These results suggest that retrievals
from both passes can be used with equal confidence, which
means more frequent coverage of any location. Fig. 4 shows the
bar chart of ubRMSE performance for ascending and descending
orbits. The difference in ubRMSE for the AM and PM retrievals
was very small for all the retrieval options. The SCA retrievals
for both ascending and descending orbits outperformed the other
algorithm options.

An unexpected result is that the LPRM had a large reduction in
the overestimation bias from the descending retrievals. However,
this did not impact ubRMSE. It is hypothesized that this result
was associated with the land surface temperature and vegetation
correction approach used by the LPRM.
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TABLE II
AMSR 2 DESCENDING (1:30 AM) PERFORMANCE STATISTICS FOR THE THREE SOIL MOISTURE PRODUCTS, JAXA, SCA, AND LPRM. AMSR2 RETRIEVALS WITH

THE BEST PERFORMANCE FOR EACH SITE ARE HIGHLIGHTED IN GREY

TABLE III
AMSR2 ASCENDING (1:30 PM) PERFORMANCE STATISTICS FOR THE THREE SOIL MOISTURE PRODUCTS, JAXA, SCA, AND LPRM. AMSR2 RETRIEVALS WITH

THE BEST PERFORMANCE FOR EACH SITE ARE HIGHLIGHTED IN GREY

C. Comparison of AMSR2 to AMSR-E Validation Results

During the AMSR-E era, a validation study was conducted
using four of the sites in the US listed in Table I; Little Washita,
Walnut Gulch, Little River, and Reynolds Creek [8]. That study
covered a seven year period (2002–2009) and included the three
soil moisture products considered in this investigation. The vali-
dation domains were not exactly the same as the validation grids
used here, but it is not expected to have a significant effect. In
this section the performance of the algorithms using just the
subset of four sites is assessed and compared to the AMSR-E

metrics. The summary statistics for AMSR2 using the 15 sites
are repeated in Table IV along with the results obtained using
only the four sites for comparison. Since these sites have lower
vegetation densities, it is not surprising that the ubRMSE im-
proved for all products and the bias decreased for the JAXA and
SCA products.

The last row of Table IV shows the results from [8]. The SCA
and LPRM results degraded somewhat between the AMSR-E
to AMSR2. Some of this change could be associated with the
difference in the length of the period of observation.
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TABLE IV
AMSR2 AND AMSR-E DESCENDING ORBIT (1:30 AM) SUMMARY PERFORMANCE STATISTICS FOR THE THREE SOIL MOISTURE PRODUCTS, JAXA, SCA, AND

LPRM. AMSR2 RETRIEVALS WITH THE BEST PERFORMANCE FOR EACH SITE ARE HIGHLIGHTED IN GREY

TABLE V
VEGETATION LEVEL EFFECTS ON DESCENDING ORBIT PERFORMANCE STATISTICS FOR THE THREE SOIL MOISTURE PRODUCTS, JAXA, SCA, AND LPRM. AMSR2

RETRIEVALS WITH THE BEST PERFORMANCE FOR EACH SITE ARE HIGHLIGHTED IN GREY

TABLE VI
AMSR2 VERSUS SMAP PERFORMANCE STATISTICS FOR THE THREE SOIL MOISTURE PRODUCTS, JAXA, SCA, AND LPRM

JAXA SCA LPRM

ubRMSE
(m3/m3)

Bias
(m3/m3)

RMSE
(m3/m3)

R ubRMSE
(m3/m3)

Bias
(m3/m3)

RMSE
(m3/m3)

R ubRMSE
(m3/m3)

Bias
(m3/m3)

RMSE
(m3/m3)

R

Avg. AMSR2 All 0.059 −0.089 0.111 0.502 0.055 −0.047 0.080 0.569 0.088 0.100 0.137 0.601
SMAP – – – – 0.039 −0.007 0.055 0.820 – – – –

Avg. AMSR2 All – Average performance of the AMSR2 retrievals over all the CVS sites for 1.25 years (April 2015–June 2016).
SMAP – Average performance of the SMAP retrievals over all the CVS sites for 1.25 years (April 2015–June 2016).

Fig. 4. ubRMSE performance of AMSR2 soil moisture for ascending and
descending orbits.

A major difference is noted in the JAXA product compari-
son. Here, there is a reversal in the bias from overestimation
for AMSR-E to underestimation for AMSR2. This change is
associated with major changes in the JAXA algorithm between
the assessment in 2010 [8] and the current version.

D. Effect of Vegetation Level

It is well known that higher amounts of vegetation, often
characterized by the vegetation water content, attenuate the
sensitivity of brightness temperature to changes in soil moisture
[40]. The effect of the vegetation is larger at higher frequencies.
Several of the sites listed in Table I are dominated by agricultural
crops and it is not expected that products based on AMSR2 data
would perform well during the summer months. These included
Carman, South Fork, Twente, Monte Buey, and Kenaston.

In order to assess the impact of vegetation level, the metrics
for the full set of sites were compared to a reduced set that
omitted the five sites noted above. Table V summarizes the
results. As expected, all metrics for all products improved when
the higher vegetation sites were filtered out. The ubRMSE for
JAXA and SCA dropped below 0.05 m3/m3.

E. AMSR2 Versus SMAP

All of the CVS were used to assess the performance of SMAP.
Therefore, it is possible to compare the SMAP and AMSR2
metrics. There is a difference in the period of record available;
SMAP is 1.25 years and AMSR2 is 4 years long. Before doing a
direct comparison the potential impact of the specific and shorter
period of record was assessed. Table VI lists the AMSR2 results
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for the full record and the 1.25 year record. There was almost
no effect on any metric or product.

The last row of Table VI presents the SMAP results and can
be compared to the AMSR2 1.25 year metrics for the three prod-
ucts. As expected, compared to any of the AMSR2 products the
SMAP results are much better. This is of course associated with
the lower frequency (X versus L-band). Most obvious changes
are the high R and near zero bias for SMAP. L-band observations
have an observation depth which is closer to the depth of the in
situ sensors (centered at 5 cm).

VI. SUMMARY

Although there have been a number of validation studies
involving soil moisture products derived from AMSR2 (and
AMSR-E), the results are often not robust enough to reliably
assess performance for specific site conditions. In most cases, a
few selected sites or sparse networks were utilized, which cannot
provide reliable information over a typical microwave radiome-
ter footprint. Here, CVS were used to assess three AMSR2 soil
moisture products. These sites include replicate spatial in situ
sampling and scaling over the AMSR2 footprint/grid cell, thus
providing a more reliable estimate of the soil moisture that is
used to assess the satellite products.

Results based on the descending passes indicate that the
JAXA and SCA products had a similar ubRMSE that met the
target accuracy requirements for AMSR2 (JAXA soil moisture
accuracy requirement is 0.10 m3/m3 and a desired accuracy level
of 0.06 m3/m3). The SCA had a lower bias and slightly higher
correlation. In general, the LPRM had a high overestimation
bias that resulted in a higher ubRMSE. LPRM soil moisture
estimates tended to have a larger soil moisture dynamic range
than the in situ observations. The ascending results were similar
to descending, suggesting that both passes can be utilized, thus
offering more frequent coverage.

The in situ observations were made with sensors located at
5 cm or over the top 5 cm. This is deeper than the observa-
tion depth expected for AMSR2 X-band observations. Some of
the observed differences are likely due to differences in sens-
ing depths: AMSR2 measures shallower soil moisture than in
situ probes. The top 1 cm soil layer is typically drier than the
deeper soil layers, which would result in a dry bias and a smaller
dynamic range for the AMSR2 estimates.

The limitations of using higher microwave frequencies on
soil moisture retrieval accuracy were assessed by separating the
CVS into low and high vegetation optical depth categories. Per-
formance improved when only low vegetation sites were consid-
ered. Moreover, the advantages of using a lower frequency were
demonstrated by using SMAP retrievals at these same CVS.
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