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Soil moisture plays a key role in most environmental processes, as evaporation and transpiration are
heavily dependent on soil moisture variability. While it is one of the few important hydrological variables
that can be directly observed, the high spatial and temporal variability makes it difficult to measure
globally or even regionally. Reliance is therefore placed on land surface models to predict the evolution
of soil moisture using low-resolution soil property information or typical values. But to make predictions
with the required accuracy, more reliable and detailed soil parameter data are required than those
currently available. This paper demonstrates the ability to retrieve soil hydraulic parameters from
near-surface measurements, using Soil Moisture and Ocean Salinity (SMOS) observations disaggregated
to 1 km resolution for a demonstration area the size of a single SMOS footprint. The disaggregated soil
moisture product was first assessed against in-situ soil moisture observations, before testing the retrieval
methodology using the disaggregated soil moisture data for individual soil columns co-located with three
long-term monitoring sites in the Murrumbidgee Catchment. The retrieval methodology was then
applied to the entire 40 km � 40 km demonstration area at 5 km spatial resolution. The results suggest
that spatially variable soil hydraulic properties exist in the study area, while published soil texture maps
show only a single soil type, meaning that a single set of soil hydraulic parameters would normally be
used in soil moisture prediction models for this region. Use of a single set of soil hydraulic parameters,
rather than the spatially variables ones, was estimated to have an approximate 0.06 m3/m3 impact on
the soil moisture prediction.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

On a global scale, soil hydraulic parameters are currently
obtained from look-up tables that are linked to a coarse resolution
soil texture map, like the Food and Agricultural Organization (FAO)
of the United Nations Soil Map of the World (Latham, 1981). Thus,
the soil hydraulic parameters used in global land surface models
are ‘typical’ values for a given soil texture. While these values come
with an error estimate, the variation within a single soil texture
group is larger than that between the different texture groups
(Clapp and Hornberger, 1978). Although the soil texture map
may be at a finer resolution at regional scale than at global scale,
the same look-up tables typically apply. Due to the uncertainty
of the soil hydraulic parameter data, there is therefore a high
probability that the soil moisture prediction models will make
erroneous soil moisture predications. Thus, there is an urgent need
for global soil hydraulic parameter data sets at a higher spatial
resolution and accuracy than those currently available.

Satellite remote sensing is able to supply time series
information on near-surface soil moisture data with a 2–3 day
repeat cycle globally, and with soil moisture information now
available from several different satellites it is possible to obtain
moisture time series observations as often as daily. Hence, there
is the potential to derive more accurate soil hydraulic parameter
datasets over large areas from these observations, but most work
to date has focused on synthetic simulations at local scale (Ines
and Mohanty, 2008; Montzka et al., 2011), or observations on
engineered soils (Burke et al., 1997a, 1997b, 1998; Camillo
et al., 1986; Ines and Mohanty, 2008); for a more detailed review
of these studies refer to Bandara et al. (2013). There are only a
few studies that have focused on estimating soil hydraulic
properties from soils under transient flow or naturally occurring
boundary conditions (Dane and Hruska, 1983; Ritter et al.,
2003); a more detailed review of these studies can be found in
Bandara et al. (2014).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhydrol.2015.01.018&domain=pdf
http://dx.doi.org/10.1016/j.jhydrol.2015.01.018
mailto:ranmalee11@gmail.com
http://dx.doi.org/10.1016/j.jhydrol.2015.01.018
http://www.sciencedirect.com/science/journal/00221694
http://www.elsevier.com/locate/jhydrol
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In Bandara et al. (2013), a methodology was developed for
estimating the soil hydraulic properties of a heterogeneous soil
column within a synthetic twin-experiment framework. According
to this methodology, the soil hydraulic parameters were derived by
calibrating a soil moisture prediction model to surface soil mois-
ture observations, such as those which are available from satellite
observations. This methodology was then applied to field condi-
tions in Bandara et al. (2014) and the retrieved soil hydraulic
parameters validated with field and laboratory experiments. The
study presented in this paper advances that work by applying
the methodology to a 40 km � 40 km test area with heterogeneous
soil columns of 1–5 km resolution under natural conditions. The
retrieved soil hydraulic parameters include: (a) Clapp and Horn-
berger exponent, (b) hydraulic conductivity at saturation, (c) soil
matric suction at air entry, (d) volumetric fraction of soil moisture
at saturation, (e) volumetric fraction of soil moisture at the critical
point, equivalent to a soil suction of 3.364 m, and (f) volumetric
fraction of soil moisture at wilting point, assumed to be for a soil
suction of 152.9 m.

2. Site and data description

The work presented in this study focuses on a 40 km � 40 km
area, encompassing a full SMOS pixel, positioned in such a way that
five sites of the OzNet Soil Moisture Monitoring Network (http://
www.oznet.org.au) (Smith et al., 2012) are located within it. Those
sites are: Y2 (34.6548 S, 146.1103 E), Y3 (34.6208 S, 146.4239 E), Y5
(34.7284 S, 146.2932 E) and Y7 (34.8518 S, 146.1153 E), as shown
in Fig. 1, located near Yanco, New South Wales, Australia. The soil of
the Yanco region is duplex, with horizon A being approximately
0.30 m deep. The soil moisture has been measured continuously
over depths of 0–0.05 m, 0–0.30 m, 0.30–0.60 m and 0.60–0.90 m
as the average over 30 min intervals. The precipitation was mea-
sured by a tipping bucket rain gauge with the cumulative rainfall
recorded every 6 min (Smith et al., 2012). Additionally, experimen-
tal data on the soil hydraulic properties of sites Y2, Y5 and Y7,
derived from field and laboratory measurements as discussed in
detail in Bandara et al. (2014), have also been utilized.

In addition to long-term in-situ soil moisture observations, this
study utilizes a 1 km � 1 km resolution disaggregation of the SMOS
soil moisture product, as opposed to a single value over its
40 km � 40 km footprint. The downscaled soil moisture data were
obtained using a disaggregation method named DISPATCH (DISag-
gregation based on Physical And Theoretical scale CHange (Merlin
et al., 2005, 2008, 2012, 2013). DISPATCH distributes fine scale soil
moisture values around the coarse (40 km resolution SMOS) obser-
vation, using the soil evaporative efficiency derived at high resolu-
tion from available red/near-infrared/thermal infrared data, and a
soil evaporative efficiency model. This study utilized 1 km resolu-
tion MODIS optical data and version 2 DISPATCH algorithm
(Merlin et al., 2013). Data were created in August 2012 using the
level 3 SMOS soil moisture product (Merlin, 2012). During July
2010 and September 2011, three intensive soil moisture sampling
campaigns were conducted over some selected areas of the Mur-
rumbidgee Catchment (SMAPEx-1, SMAPEx-2 and SMAPEx-3).
Each of these campaigns mapped surface soil moisture at 250 m
spacing across focus areas of approximately 3 km � 3 km in size.
The measurements from these areas, known as YA7 and YB5
(shown in Fig. 1), were used in this study to compare with and
assess the DISPATCH data, where YA7 is irrigated cropping while
YB5 consists of native grassland. Further details on these campaign
data are available from (www.smapex.monash.edu.au) (Panciera
et al., 2013). While other sites were also included in these cam-
paigns, these two were selected for their coverage by DISPATCH
and because they were geographically diverse, being located to
the north and south of the study area respectively.
Two data sources were used to derive the spatially distributed
forcing data required for the study area. They were the Australian
Community Climate and Earth-System Simulator (ACCESS) (BoM,
2010) dataset and the Australian Water Availability Project
(AWAP) (Jones et al., 2007) data at 12 km and 5 km spatial resolu-
tions respectively. The ACCESS data consisted of long and short
wave radiation, precipitation, air temperature, dew-point temper-
ature, and horizontal and vertical components of wind and surface
pressure at hourly intervals, while precipitation data from AWAP
was provided on a daily scale. The hourly ACCESS precipitation
was scaled to match the daily AWAP precipitation according to
the methods described in Berg et al. (2003). This approach was
chosen, as the AWAP precipitation, which is a daily gauge-interpo-
lated product at a resolution of 5 km, was used to disaggregate the
12 km � 12 km ACCESS precipitation to 5 km � 5 km, thereby
enhancing the JULES soil moisture predictions at 5 km resolution.
By using weighted averages, all forcing data were brought to the
AWAP grid with a spatial resolution of 5 km � 5 km.

Fig. 1 shows an example of the disaggregated SMOS data at a
1 km � 1 km scale for the study area near Yanco in the Murrum-
bidgee Catchment. These data were available for 2010 and 2011
for both the ascending and descending overpasses. However, only
the ascending (6 am) overpass data are used in this study as it is
widely accepted that morning overpass data better conform to
the assumptions of the soil moisture retrieval algorithms. This is
because the soil temperature profile is closer to equilibrium at this
time, meaning that the assumption of vegetation and near-surface
soil temperatures being the same is appropriate. The DISPATCH
dataset was averaged to 5 km � 5 km resolution before being used
in the spatially distributed soil hydraulic parameter retrieval. Thus,
a total of 64 such 25 km2 grid cells covering the 40 km � 40 km
area were simulated, corresponding to a single SMOS pixel.

3. Modelling algorithms

3.1. Land Surface Model (LSM)

The Joint UK Land Environment Simulator (JULES) is used as the
soil moisture prediction model (Best et al., 2011; Clark and Harris,
2009; Clark et al., 2011) in this paper. It is a process based land
surface model that simulates the fluxes of carbon, water, energy
and momentum between the land surface and the atmosphere.
JULES is a derivative of the Met Office Surface Exchange
Scheme (MOSES) (Cox et al., 1999).

Of the four sub-models in JULES – soil, snow, vegetation and
radiation – the focus in this study is on the soil sub-model and
the simulation of soil moisture. Herein, JULES is run with 7 soil lay-
ers of 0.025 m, 0.025 m, 0.125 m, 0.125 m, 0.30 m, 0.30 m, and
2.0 m thickness respectively, resulting in an overall soil depth of
2.9 m. The time-step used by the model was 1 h, to conform to
the time-step of the forcing data. A 2 year pre-run initialized at sat-
uration was used to set the initial conditions of the land surface
model (Bandara, 2013).

3.2. Particle Swarm Optimizer (PSO)

The Particle Swarm Optimization (PSO) algorithm is based on
the collective behaviour of individuals in decentralized self-orga-
nizing systems. These systems are created through a population
of individuals that interact both with each other and with the com-
munity (Kennedy and Eberhart, 1995). Given that PSO is popula-
tion-based, it has the capability to control the balance between
the local and global search space, thereby being less susceptible
to getting trapped in a local minimum (Engelbrecht, 2005).

Based on the social–psychological tendency of an individual to
mimic the success of others, any changes to an individual particle’s

http://www.oznet.org.au
http://www.oznet.org.au
http://www.smapex.monash.edu.au


Fig. 1. The location of Yanco sites (indicated by black dots) of the OzNet Soil Moisture Monitoring Network within the Murrumbidgee Catchment, together with the published
soil map. The two areas of intensive soil moisture sampling (YA7 and YB5), and an example of the disaggregated soil moisture data for a SMOS footprint (DoY 55 – February
24, 2010) are also shown. The 1 km grid of DISPATCH and the 5 km grid to which it is later aggregated are shown in the blowout. The extent of this grid indicates the coverage
of the model simulations used for estimating the soil parameters.
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position occurs when flown through a hyper-dimensional search
space (Engelbrecht, 2005). Thus, changes to the position of particles
within the search space are influenced by the experience and/or
knowledge of its neighbour, in addition to its’ own. The PSO algo-
rithm comprises three components; (i) the momentum, so that
the velocity of the ‘swarm’ cannot change abruptly, (ii) the ‘cogni-
tive’ or personal component (c1), representing that the particle
learns from its own flying experience and fitness, and (iii) the ‘social’
component (c2), representing the cooperation with other particles
and thus learning from the flying experience of the group
(Kennedy and Eberhart, 1995). However, when updating the veloc-
ity of the ‘swarm’ it may become too high and cause particles to
leave behind ‘good’ solutions, or too slow such that the search space
is not explored adequately. Therefore, Shi and Eberhart (1998) intro-
duced an additional parameter termed as the ‘inertia weight’ to con-
trol the velocity, with the intension of overcoming this problem. The
work presented in this paper uses the PSO code from Scheerlinck
et al. (2009), with some modifications to facilitate parallelization.
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For the work presented in this paper, w = 0.4, c1 = 1.4 and
c2 = 1.3 were used as these were shown to be the best combination
of parameters; Bandara et al. (2013) contains a detailed discussion
about the selection of PSO parameters. Additionally, the root mean
square error (RMSE) for the predicted minus observed soil mois-
ture was used as the objective function in this study.
4. Methodology

The objective of this study was to retrieve the soil hydraulic
properties of the demonstration area at a 5 km � 5 km spatial res-
olution. Consequently the study was approached in three steps.
First, the DISPATCH data was evaluated with field observations at
1 km and 5 km resolution. Second, soil hydraulic parameters were
retrieved for the Y2, Y5 and Y7 sites using the 1 km DISPATCH data,
with the results compared to those from Bandara et al. (2014)
where direct ground measurements were used. In this step, the
derived soil hydraulic parameters and predicted root zone soil
moisture were validated against field and laboratory measured soil
parameters and observed root zone soil moisture, respectively.
Finally, the methodology was applied to the 40 km � 40 km area
to obtain a spatial map of soil hydraulic properties at 5 km � 5 km
resolution, and evaluated against available spatial soil texture
maps and associated soil hydraulic parameter estimates. The
5 km � 5 km resolution surface soil moisture data has been used
in the spatial retrieval due to computational constraints in apply-
ing the methodology at the 1 km � 1 km spatial scale, and the
availability of meteorological forcing data at 5 km � 5 km spatial
resolution. Consequently, the DISPATCH data evaluation was con-
ducted at two different spatial scales.

Though literature identifies the soils of Yanco as duplex, this
study has allowed the soil profile to consist of three distinct soil
horizons with potentially different soil properties; horizon A, hori-
zon B1 and horizon B2, as in Bandara et al. (2014). This is because
three distinct soil layers were observed in the field, with differ-
ences in the particle size distribution and soil hydraulic properties
accordingly.
4.1. Assessing the DISPATCH data

As a first step, the disaggregated 1 km � 1 km resolution soil
moisture data was evaluated with field observations. For this
evaluation the intensive near-surface soil moisture measurements
corresponding to the sites YA7 and YB5 were used. Since the sam-
pling was done every 250 m, with three replicates for each point,
the average and standard deviations of all such points falling
within the 1 km � 1 km area was calculated. The DISPATCH foot-
prints corresponding to these areas were then extracted for the
day that the field observations were made. This procedure was
applied to both sites, and for all days that the disaggregated data
were available. The averaged soil moisture value and its standard
deviation over the entire area of YA7 and YB5 were also calculated
for each day of observations, so as to make an assessment of the
product at 5 km � 5 km.

Additionally, in-situ soil moisture data from Y2, Y5 and Y7,
three permanent stations of the OzNet monitoring network, were
also used for evaluation. Of the many stations in the network,
extensive field and laboratory experiments have been conducted
on Y2, Y5 and Y7, as these three stations are well distributed
within the one SMOS pixel. The methodology proposed in
Bandara et al. (2013) was already tested on these three sites using
ground observation in Bandara et al. (2014). Consequently, the
1 km � 1 km DISPATCH data corresponding to the location of the
monitoring sites were extracted and compared with the soil mois-
ture observations made at 6 am. The purpose of this assessment
was to investigate the differences between the two data sources
and to identify any persistent biases. However, it is recognized that
point-to-spatial comparisons are difficult due to significant spatial
variations over short spatial scales (Cosh et al., 2004; Crow et al.,
2012). Consequently, differences between the point measurements
of in-situ data are expected when comparing against the DISPATCH
data, but the temporal evolution is expected to be similar in the
case when the 1 km/5 km pixels do not contain irrigated fields.

4.2. One-dimensional (point) retrieval using DISPATCH data

The three sites (Y2, Y5 and Y7) for which field and laboratory
measured soil hydraulic parameters are available were chosen to
demonstrate the ability of retrieving root zone soil hydraulic
parameters from surface soil moisture observations alone, with
disaggregated soil moisture from SMOS. The methodology was
tested using the three different scenarios summarized in Table 1;
scenario A – using only the summer data with an objective func-
tion penalty (the parameter to be retrieved was given an initial
best-guess value based on the pedo-transfer function estimates,
and a search space of three times the standard deviation of that
parameter based on the published values, thereby restraining the
parameter from boundary values), scenario B – using the complete
year of data with the same penalty as described in scenario A, and
scenario C – using the complete year of data without the penalty.
The results were contrasted against a fourth scenario; scenario D
– using published values from Rawls et al. (1982).

It was identified from the synthetic study in Bandara et al.
(2013). that the use of a year-long period is the most suitable
approach, but Merlin et al. (2012) have shown that the correlation
between DISPATCH and in-situ soil moisture observations is high-
est (0.7) during the summer period. Thus, this study investigated
the trade-off between using only the summer soil moisture obser-
vations as opposed to the year-long record.

In scenarios A–C, the JULES simulated surface soil moisture for
6 am was compared with the disaggregated data, and the six soil
hydraulic parameters retrieved for the complete soil profile using
PSO, such that the objective function between the simulated and
observed time-series was a minimum. The methodology recom-
mended in Bandara et al. (2013) for multi-parameter retrieval
has been followed, being a sequential approach that starts with
the three most sensitive parameters for all soil types, followed by
the remaining three soil parameters. The retrieved parameters
were then compared with experimental observations, and the pre-
dicted root zone soil moisture compared with the observed root
zone soil moisture.

4.3. Spatial retrieval using DISPATCH data

In this step, the focus was to obtain the spatial distribution of
soil hydraulic parameters for the full SMOS footprint using the
5 km JULES model. The 1 km � 1 km DISPATCH data were averaged
to a 5 km � 5 km grid that was aligned with the 5 km � 5 km grid
established for the JULES soil moisture prediction model. Apart
from the computational and forcing data reasons already dis-
cussed, the 5 km � 5 km resolution DISPATCH data has been used
as the random errors in downscaled data are expected to be less
at the coarser spatial resolution. However, any systematic errors,
such as bias, in SMOS data will remain in DISPATCH data at all res-
olutions. Consequently, in this step the 6 am surface soil moisture
predictions were compared with the averaged DISPATCH data, and
the same six parameters retrieved for the complete soil profile
using PSO.

Given that there were no field or laboratory observations of soil
hydraulic parameters for the complete study area, the spatial dis-
tribution of each parameter was compared with the soil texture



Table 1
The different scenarios tested in the one-dimensional retrieval using DISPATCH data.

Scenario Description

A Using only the summer data with penalty, where the parameters
to be retrieved were given a best-guess value with a variation of
three times the standard deviation of that parameter (as explained
in Section 4.2)

B Using the complete year of data with the penalty
C Using the complete year of data without the penalty
D Using published values from Rawls et al. (1982)

Fig. 2. Comparisons between the SMAPEx campaign soil moisture data and the
disaggregated DISPATCH soil moisture product from SMOS for YA7 and YB5. The
SMAPEx observations have been averaged at 1 km2 and 16 km2, and 1 km2 and
25 km2 for YA7 and YB5 respectively. DISPATCH soil moisture product has been
averaged at 16 km2 for YA7, and 25 km2 for YB5. The whiskers represent the
standard deviation of the measured value. The data are between July 5, 2010 and
September 2011, with the disaggregated data from the corresponding ascending
overpass of SMOS.

586 R. Bandara et al. / Journal of Hydrology 522 (2015) 582–593
distribution map and the corresponding soil property estimates of
the region. It was also compared with an independent soil texture
distribution map based on particle size distribution analysis data
collected across the study area. Moreover, the spatial variation in
predicted surface and root zone soil moisture estimates were also
assessed.

5. Results and discussion

The disaggregated data was first evaluated with field measure-
ments of soil moisture. This is because errors in the downscaled
soil moisture data will propagate into the derived soil properties,
and thus a good understanding of the soil moisture accuracy is
required. The feasibility of using DISPATCH data with the proposed
methodology was then tested for single soil columns, before being
applied to the larger demonstration area.

5.1. Assessing the DISPATCH data

The surface soil moisture measurements from SMAPEx, aver-
aged over areas of 1 km � 1 km, are compared with DISPATCH in
Fig. 2. The same data averaged over the entire 3 km � 3 km areas
of YA7 and YB5 are also plotted against the averaged 5 km � 5 km
DISPATCH data on the same plot. The whiskers show the standard
deviation of the observed soil moisture for each pixel. For the
1 km � 1 km resolution, the root mean square errors (RMSEs)
between DISPATCH and measured soil moisture were calculated
as 0.09 m3/m3 and 0.12 m3/m3 for YA7 and YB5 respectively. For
both the YA7 and YB5 areas, it can be observed that the majority
of the points lie above the 1:1 line, implying that there is a dry bias
in DISPATCH. This is because any systematic errors in SMOS, like
the dry bias in this case, propagate into a dry bias in the down-
scaled DISPATCH data. This dry bias was calculated as 0.05 m3/
m3 for YA7 and 0.02 m3/m3 for YB5, with an unbiased RMSE of
0.07 m3/m3 and 0.11 m3/m3, respectively.

The SMAPEx observations were also averaged over the entire
3 km � 3 km areas, including four days of observations for YA7
and three for YB5. It was found that the overall field observations
were wetter than DISPATCH, with DISPATCH again having a dry
bias for YA7 of 0.05 m3/m3 and 0.02 m3/m3 for YB5. The RMSE
without bias removal was 0.06 m3/m3 for both YA7 and YB5. When
comparing the finer resolution (1 km � 1 km) with the coarser res-
olution (5 km � 5 km) results, it was observed that there was no
change in the bias, but there was a considerable improvement in
the RMSE.

While some field measurements of soil moisture were as high
as 0.35 m3/m3, these were due to irrigation of crops within the
YA7 area. However, the YB5 area is mainly pasture for grazing
use. Importantly, these high values in field measurements are not
borne out by SMOS, or the downscaled data by DISPATCH, which
show much drier overall conditions. This is because SMOS has a
coarse resolution, and assumes that the area of its footprint is rel-
atively homogeneous in terms of both the soil and vegetation type.
While the disaggregated data tries to account for heterogeneity,
there are clearly limitations when compared with point measure-
ments in areas that span the range of extremes. That is, in this case,
the limitation of the DISPATCH data lies mainly in the spatial res-
olution (1 km) of the MODIS data, which is coarser than the typical
size of fields in the area. The use of higher (about 100 m) resolution
Landsat or Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) data would overcome this limitation.

DISPATCH data were extracted for the three long-term monitor-
ing sites Y2, Y5 and Y7 for 2010. Fig. 3(a) shows the comparison
between the point observations and corresponding DISPATCH pixel
at 1 km � 1 km spatial resolution, while Fig. 3(b) compares the
multiple point observations with DISPATCH data averaged over
an area of 5 km � 5 km. Fig. 3(c) compares the point observations
pertaining to Y2, Y5 and Y7 with the original SMOS Level 3 data,
under the assumption that it can be applied at the higher spatial
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resolution without any specific downscaling algorithm applied.
However, there are several factors to be considered when compar-
ing point data with large footprints. For example, assumptions
about the homogeneous distribution of soil, vegetation, roughness
and so on in the satellite products are propagated to the disaggre-
gated product. And there are difficulties of comparing point obser-
vations against spatial averages, as already discussed.

Table 2 lists the statistics of these comparisons, showing that
for Y2 the DISPATCH downscaling did not add any extra skill to
the full SMOS pixel data when compared at annual scale, with
the difference in RMSEs between these spatial resolutions typically
less than 0.02 m3/m3. However, when looking at the data on sea-
sonal time scale, the finding was different. During winter, where
limited DISPATCH data were available, mainly due to cloud cover,
the RMSE was higher than that during summer and with a dry win-
ter-time bias. For example, the summer time RMSE was 0.09 m3/
m3 at the 5 km spatial resolution while it was 0.16 m3/m3 during
the winter at Y7. For Y5 at the 1 km spatial resolution, the summer
RMSE was at 0.09 m3/m3 with the winter RMSE at 0.16 m3/m3. As
shown in Fig. 4, the correct DISPATCH soil moisture dynamics are
maintained during the dry summer period, but not in the winter.
Moreover, dry-down events are better captured by DISPATCH as
opposed to wet-up events. The reason behind DISPATCH perform-
ing better during dry conditions is due to the fact that the theoret-
ical basis for this method is best suited for the water limited
condition, such as in summer.

Keeping in mind the limitations of DISPATCH data, mainly due
to the assumption that the area of the SMOS footprint is homoge-
neous when deriving the coarse scale soil moisture, and the coarse
spatial resolution of the MODIS data, it is found that DISPATCH is
comparable to field observations. Consequently, DISPATCH data
Fig. 3. Comparisons of observed soil moisture and the disaggregated DISPATCH soil moi
spatial resolution, (b) DISPATCH data averaged to 5 km spatial resolution, and (c) original
before bias removal.
at both 1 km and 5 km spatial resolutions have been utilized here
to retrieve soil hydraulic parameters using the methodology that
was applied and tested in Bandara et al. (2014) with in-situ data.

5.2. One-dimensional (point) retrieval using DISPATCH data

Though the disaggregated dataset from DISPATCH at
1 km � 1 km was biased relative to the selected stations, there
was better agreement when comparing with the larger area. The
dry winter-time bias can again be observed from Fig. 4, whilst
maintaining the correct soil moisture dynamics during the dry
summer period. This difference is as much as 0.15 m3/m3 during
some instances. Moreover, dry-down events are better captured
by DISPATCH as opposed to wet-up events. Thus, this section
investigates the potential of using the 1 km resolution DISPATCH
dataset for the retrieval of soil hydraulic parameters from surface
soil moisture observations.

Table 3 contains the RMSEs calculated between the observed
and predicted soil moisture when using the soil hydraulic param-
eters as retrieved according to scenarios A, B, C, and D (refer to
Table 1). While Bandara et al. (2013) showed that the best results
were achieved when using a year-long period, scenario A was
included as the DISPATCH downscaling algorithm was shown to
have more accurate soil moisture data during the water-limited
summer period. Scenario C was included in this work for complete-
ness, to test the applicability of the methodology if best-guess val-
ues were unavailable. However, it is seen from Table 3 that of the
three sites, scenario A only outperformed scenario D once, being
for Y5. When comparing scenario C to scenario D, it is seen that
the soil moisture predictions of C only outperformed those of D
for the near-surface of site Y7 and root zone of Y5. Thus, retrieving
sture for the long-term monitoring sites Y2, Y5 and Y7; (a) DISPATCH data at 1 km
SMOS soil moisture data. The root mean square error (RMSE) shown in the figure is



Table 2
The root mean square errors (RMSE) calculated between field observed soil moisture and DISPATCH/SMOS data, in m3/m3. The dry bias is indicated with a plus (+) mark and the
wet bias with a minus (�) mark.

Site Spatial resolution

1 km 5 km SMOS footprint

RMSE Bias Unbiased RMSE RMSE Bias Unbiased RMSE RMSE Bias Unbiased RMSE

Y2 0.08 +0.05 0.07 0.09 +0.03 0.08 0.08 +0.05 0.07
Y5 0.07 +0.02 0.06 0.08 +0.02 0.07 0.06 +0.02 0.06
Y7 0.07 �0.02 0.07 0.20 �0.01 0.08 0.05 �0.02 0.05

Fig. 4. The measured and predicted soil moisture from scenarios A–D, according to Table 1; (a) Y2 and (b) Y7 with the top panel corresponding to the surface and the bottom
panel to the root zone soil moisture content accordingly.

Table 3
The root mean square error (RMSE) between the field-measured and predicted soil
moisture, for the surface and root zone when using the parameter source according to
the four scenarios.

Scenario RMSE (m3/m3)

Surface Root zone

Y2 Y5 Y7 Y2 Y5 Y7

A 0.05 0.03 0.09 0.08 0.08 0.05
B 0.05 0.03 0.06 0.08 0.08 0.02
C 0.06 0.05 0.06 0.14 0.06 0.08
D 0.03 0.03 0.08 0.05 0.10 0.03
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soil hydraulic parameters with scenarios A and C showed negligi-
ble improvement in soil moisture predictions over those from pub-
lished soil hydraulic parameters. In contrast, the results indicate
that Y5 and Y7 both out-performed the soil moisture predictions
made by published values for both the near-surface and the root
zone when the full year of DISPATCH data according to scenario
B are used. Scenarios A and B both outperformed scenario C for
the surface and root zone of Y2, but had no improvement over
scenario D.

Since sites Y2 and Y7 have similar soil properties and provide
similar results, only Y2 and Y5 results will be discussed from here
on. Fig. 4(a) shows that soil moisture predictions from parameters
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retrieved with scenarios A and B were best able to capture the
dynamics of the observed soil moisture, especially for the root zone
of Y2. Fig. 4(b) shows that the near-surface soil moisture dynamics
of Y5 are best captured when retrievals used scenario A and B.
However, there is a significant difference in the soil moisture pre-
dictions for the root zone, despite the dynamics being well cap-
tured. Even though it was shown that DISPATCH had a better
match with field observations under the water limited summer
conditions, the above results indicate that best parameter retrieval
is still achieved when using a complete year of DISPATCH data.

Fig. 5 shows the soil water characteristic curves obtained from
the different retrieval scenarios, together with the hydraulic con-
ductivity curves. Each of the soil water characteristic curves are
also compared with the published ones, where it is seen that the
retrieved parameters fall within the ranges given in Clapp and
Hornberger (1978) for the soil texture of this area, and with field
measured values. For site Y2, the parameters retrieved using sce-
narios A and B (apart from the soil hydraulic conductivity at satu-
ration) tend to fall close to each other, as opposed to Y5 where they
Fig. 5. The soil water characteristic curves for Y2 and Y5, showi
are farther apart. The retrievals with scenario C are almost at the
lower end of the range given in Clapp and Hornberger (1978),
but are still close to the curve derived from field measurements.

Apart from the soil hydraulic conductivity at saturation, the
parameters retrieved with scenarios A and B are very close to the
experimentally derived parameters for Y2, almost to the point of
overlapping. For site Y5, parameters retrieved from scenario B have
the closest match with the observed values. Unlike Y2, retrievals
from scenario A do not fall close to the experimentally derived val-
ues of parameters. These results further strengthen the fact that
the complete year of data yields the best parameter estimates,
even though the winter time soil moisture from DISPATCH did
not agree well with field observations.

In Bandara et al. (2014), the soil hydraulic parameters were
retrieved for the same sites using in-situ near-surface soil moisture
observations. Soil hydraulic parameters retrieved with scenarios A
and B with DISPATCH data compare well to the retrieved parame-
ter values from in-situ soil moisture observations, as seen from the
soil water characteristic curves in Fig. 5.
ng the parameters retrieved under different methodologies.



Fig. 6. The 5 km grid with the Yanco stations overlaid on (a) the soil type distribution across the demonstration area (Source: Bureau of Rural Sciences, Australia) and (b) the
soil texture map interpolated from particle size distribution analysis data over the study area.

Table 4
Representative hydraulic parameter values for the typical soil types in Fig. 6. The standard deviation for each parameter is given in parenthesis. Source: Clapp and Hornberger,
1978.

Soil texture Clapp and Hornberger
exponent (�)

Suction at air
entry (cm)

Volumetric water content
at saturation (m3/m3)

Hydraulic conductivity
at saturation (mm/s)

Loam 5.39 (1.87) �47.8 (51.2) 0.451 (0.078) 0.0069
Sand 4.05 (1.78) �12.1 (14.3) 0.395 (0.056) 0.1761
Loamy Sand 4.38 (1.47) �9.0 (12.4) 0.410 (0.068) 0.1564
Silt Loam 5.30 (1.96) �78.6 (51.2) 0.485 (0.059) 0.0072
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Fig. 7. The spatial distribution of retrieved parameters – left to right, Clapp and Hornberger exponent, Volumetric water content at saturation, Suction at air entry and
Hydraulic conductivity at saturation – for Horizon A (top row) and Horizon B1 (bottom row), over each 5 km � 5 km pixel within the demonstration area.

Fig. 8. Example of the predicted soil moisture using the retrieved parameters (left), published parameters from Rawls et al. (1982) (middle), and observed near-surface soil
moisture from DISPATCH (right). The top row is for the near-surface and bottom row is for the root zone, for August 14, 2010 (DoY 257).
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5.3. Spatial retrieval from DISPATCH data

While the 1 km DISPATCH data showed large RMSEs when
compared with in-situ measurements, they were comparatively
smaller at 5 km resolution. Moreover, when comparing the
retrieved soil hydraulic parameters from 1 km resolution DIS-
PATCH data for the monitoring sites with experimental values they
were found to be in good agreement, and the derived soil moisture
predictions for the root zone performed better than the published
values, being in agreement with field observations. Therefore, the
methodology developed in Bandara et al. (2013) and tested in
Bandara et al. (2014) at the point scale with in-situ data, is now
applied to the 40 km � 40 km demonstration area of this study at
a 5 km � 5 km spatial resolution.

Fig. 6(a) shows the published soil type distribution map for the
demonstration area of the Yanco region in the Murrumbidgee
catchment. The dominant soil type is loam with a small pocket of
sand on the western side. Fig. 6(b) is the soil map derived from
independent particle size distribution analysis of some sites in
the focus area. Table 4 contains the representative hydraulic
parameter values that relate to these soil types, as given in Clapp
and Hornberger (1978), together with the standard deviation for
each parameter. Of the six parameters that are the focus of this
paper, only four (volumetric water content at saturation, Clapp
and Hornberger exponent, soil matric suction at air entry and soil
hydraulic conductivity at saturation) parameters have typical val-
ues. Therefore, only these parameters are discussed in detail here.

According to the standard deviation for the Clapp and Hornber-
ger exponent, this parameter value can be expected to range from
3.52 to 7.26 for a loamy soil. The retrieved spatial distribution of
this parameter as shown in the top panel of Fig. 7 is within this
range. For the pocket of sandy soil, the expected range of the same
parameter value is 2.27–5.83, and again the retrieved soil property
values fall within this range. However, over the entire demonstra-
tion area there are five pixels (for example: fourth pixel in the
second row) that have values between 8 and 10 for this parameter,
which is above the typical value for the soil type. While it difficult
to identify any particular spatial patterns in the retrieved soil
hydraulic properties that might subsequently be compared against
soil texture data, the fact that retrieved soil parameter values are
within the range of expected values gives some confidence in the
results.

The volumetric water at saturation has been assessed in a sim-
ilar fashion, with the expected range calculated using the standard
deviations given by Clapp and Hornberger (1978). Thus, the ranges
were from 0.373 m3/m3 to 0.529 m3/m3 for a loamy soil, 0.342 m3/
m3 to 0.478 m3/m3 for a loamy sand, and 0.426 m3/m3 to 0.544 m3/
m3 for a silt loam. Apart from one pixel located above Y5, as seen
from the top panel of Fig. 7, the rest of the pixels show values over
0.370 m3/m3. In contrast to the spatial variation of parameters
derived here, according to the normal soil texture mapping
approach there would be only a single value for the hydraulic con-
ductivity at saturation for each soil type for the area.

Soils are highly heterogeneous and can vary significantly even
within a few metres. Moreover, soil properties have a wide varia-
tion even for a soil of the same type. Therefore, it is expected
and realistic to have the variation in soil hydraulic parameters as
shown in the top panel of Fig. 7 for the A horizon. Similarly, the
bottom panel of Fig. 7 shows the spatial distribution of soil hydrau-
lic parameters for the horizon B1. Certain parameters, especially
the volumetric water content at saturation, vary quite significantly
between layers of the same soil column. The suction at air entry
shows more variation within pixels for the surface, but for horizon
B1 the variations within the layer are more homogeneous. For the
Clapp and Hornberger exponent, the change between layers is
gradual within a single soil column.
Fig. 8 is an example of the near-surface and root zone soil mois-
ture of the demonstration area for a snapshot in time from the
2010 time series simulation. It was observed that the difference
between the model predicted and observation derived DISPATCH
soil moisture is quite low, as expected, due to its role in the opti-
mization process. Moreover, it is observed from the middle panel
that the soil moisture patterns are less varied when predictions
are made using published values, given that most of the focus area
consists of one soil type only. Similar soil moisture values are nor-
mally observed within an area of 10 km � 10 km. This is the
approximate resolution of the ACCESS forcing data, and therefore
the variation in soil moisture of the middle panel is mainly due
to the changes in forcing rather than changes in soil type. When
predictions are made with the retrieved values, there is a larger
variation in the soil moisture, as each pixel has different soil
parameters.
6. Conclusions

This spatially distributed application of the proposed soil
hydraulic parameter methodology used a downscaled SMOS prod-
uct called DISPATCH. First the accuracy of the 1 km near-surface
soil moisture data from DISPATCH was assessed against field
observations of soil moisture, having RMSEs of between 0.07 and
0.08 m3/m3.

Three different approaches were investigated to retrieve soil
hydraulic parameters from DISPATCH, including (i) using only
the summer data with a penalty (the parameters to be retrieved
were given a best-guess value with a variation of three times the
standard deviation of that parameter) included in the objective
function, (ii) using the complete year of data with the penalty,
and (iii) using the complete year of data without the penalty. While
the synthetic study showed that use of a long period was the pre-
ferred approach, a summer period was used here as the DISPATCH
downscaling algorithm provided more accurate soil moisture data
during the water-/non-energy limited summer period. Despite this,
the predicted root zone soil moisture was closest to field observa-
tions when the full 12-month period was used in the optimization.
Therefore, the 12-month period was used in the optimization
process when the methodology was applied spatially, rather than
focusing on specific short-term datasets. The retrieved soil hydrau-
lic parameters were validated against the field and laboratory
measured values for Y2, Y5 and Y7, and found to both be compara-
ble and in agreement with earlier results from use of in-situ soil
moisture data. Thus, it was concluded that DISPATCH data could
be used to obtain optimal soil hydraulic parameters for the surface
and root zone.

The retrieval of optimal soil hydraulic parameters for the
demonstration area was for three horizons, as three distinct hori-
zons were observed during field experiments of Y2, Y5 and Y7.
Therefore, spatial maps of optimal soil hydraulic parameters were
obtained for the surface and horizons B1 and B2. Given that the soil
texture map is only available for the surface, the spatial validation
of soil hydraulic parameters was limited to the surface. Moreover,
the existing texture map is of a coarse resolution with 98% of the
demonstration area indicated as loam sand and the remaining 2%
a small pocket of sand. The spatial map of the soil hydraulic prop-
erties for the near-surface was mostly within the values given for a
typical loam and sand soil, but there were some instances where
the retrieved values differed significantly. For example, the
retrieved hydraulic conductivity at saturation was significantly
lower than the typical value for the sandy soil (0.004–0.006 mm/
s as opposed to the typical value of 0.1761 mm/s). However, soils
are extremely heterogeneous and show contrasting characteristics
within a few metres. Thus, this paper has demonstrated the
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feasibility of retrieving the spatial distribution of soil hydraulic
parameters throughout the soil column, utilizing near-surface soil
moisture observations from satellite remote sensing in conjunction
with a soil moisture prediction model.
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