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Soil moisture is a key variable that controls the exchange of water and energy fluxes between the land
surface and the atmosphere. However, the temporal evolution of soil moisture is neither easy to measure
nor monitor at large scales because of its high spatial variability. This is mainly a result of the local var-
iation in soil properties and vegetation cover. Thus, land surface models are normally used to predict the
evolution of soil moisture and yet, despite their importance, these models are based on low-resolution
soil property information or typical values. Therefore, the availability of more accurate and detailed soil
parameter data than are currently available is vital, if regional or global soil moisture predictions are to be
made with the accuracy required for environmental applications. The proposed solution is to estimate the
soil hydraulic properties via model calibration to remotely sensed soil moisture observation, with in situ
observations used as a proxy in this proof of concept study. Consequently, the feasibility is assessed, and
the level of accuracy that can be expected determined, for soil hydraulic property estimation of duplex
soil profiles in a semi-arid environment using near-surface soil moisture observations under naturally
occurring conditions. The retrieved soil hydraulic parameters were then assessed by their reliability to
predict the root zone soil moisture using the Joint UK Land Environment Simulator model. When using
parameters that were retrieved using soil moisture observations, the root zone soil moisture was pre-
dicted to within an accuracy of 0.04 m3/m3, which is an improvement of �0.025 m3/m3 on predictions
that used published values or pedo-transfer functions.

� 2014 Published by Elsevier B.V.
1. Introduction

The moisture content of soil is a key variable that controls the
exchange of water and energy fluxes between the land surface
and the atmosphere. This is because evaporation and transpiration
are a function of the variability in soil moisture. Hence it plays a
vital role in most environmental processes (Seneviratne et al.,
2010), especially in the development of weather systems. Of the
few important hydrological variables that can be directly observed,
soil moisture has been declared as an Essential Climate Variable by
the Global Climate Observing System (GCOS-107, 2006) and is
therefore a reportable land surface parameter for contributing
members. Because of the high spatial variability shown by soil
moisture, monitoring very high resolution temporal changes glob-
ally, or even regionally, is not straightforward from both a logistical
and an economic point of view. Both active and passive remote
sensing methods are utilized in soil moisture monitoring, including
the Advanced Microwave Scanning Radiometer-2 (AMSR2; C- and
X-band) (Imaoka et al., 2010), Advanced Scatterometer (ASCAT;
C-band) (Albergel et al., 2009) and Soil Moisture and Ocean Salinity
(SMOS; L-band) (Kerr et al., 2010). However, current satellites are
able to provide only the information for the top 1–5 cm, and
consequently, there is still a great reliance on the soil moisture
evolution predicted by land surface models (LSMs) to obtain soil
moisture information for the top 1 m of soil, commonly referred
to as the root zone.

LSMs are normally used to provide a boundary condition to
weather and climate models, delivering the land surface feedbacks
to the atmosphere. Hence, coupled land surface-atmosphere
schemes must be able to predict the energy, water, and carbon
exchanges, with explicit representation of vegetation and soil
types. Yet, LSMs are often used uncoupled from atmospheric mod-
els and therefore require meteorological input data such as precip-
itation, temperature, radiation and so on, as well as parameters
that represent the vegetation and soil of that area (Abramowitz
et al., 2007). Soil hydraulic properties play a pivotal role as inputs
to the LSM, regulating such things as infiltration and runoff. These
parameters are normally derived from empirical equations that
add value to basic information like field morphology, texture,
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structure and pH, by translating them into estimates of other more
difficult to measure soil properties, like the soil hydraulic proper-
ties. Yet, pedo-transfer functions cannot be extrapolated beyond
the specific constraints, in terms of geomorphic region or soil type,
under which it was developed (McBratney et al., 2002). Therefore,
extrapolation over large areas yields crude estimates of soil
hydraulic properties with large standard deviations (Vereecken
et al., 1990; Vereecken et al., 1989), the accuracy of which deteri-
orates with the extent of the extrapolation, and thus adversely
affects the accuracy of the model simulations. Thus, soil moisture
estimates using LSMs typically suffer from physical parameteriza-
tion, based on low-resolution and/or erroneous soil property infor-
mation (Grayson et al., 2006). For example, De Lannoy and Reichle
(2012) addressed the soil moisture biases of the GEOS-5 land data
assimilation system by revising the global soil properties and soil
hydraulic parameters that are used in the Catchment LSM through
comparison against available in situ soil moisture measurements.

Remotely sensed soil moisture measurements can be used to
address this soil hydraulic property estimation problem. However,
most work to date has focused on utilizing synthetic simulations
(Ines and Mohanty, 2008; Montzka et al., 2011), or observations
on engineered soils (Burke et al., 1997a,b, 1998; Camillo et al.,
1986; Ines and Mohanty, 2008; Santanello et al., 2007) (for a more
detailed review of these studies refer to Bandara et al. (2013b)).
Using a data assimilation approach, where model dynamics and
remote sensing observations are merged, Qin et al. (2009) esti-
mated both soil moisture and soil parameters simultaneously.
They retrieved the soil texture and the soil porosity, concluding
that the former contained large uncertainties when using different
initial soil texture values, while the retrieval of soil porosity had
relatively small uncertainties. Using an Ensemble Kalman Filter,
Li and Ren (2011) explored the ability to calibrate the parameters
of the van Genuchten–Mualem model through inverse modeling.
They estimated three, four and five parameters and identified that
the estimates of the two most important variables, saturated
hydraulic conductivity and the shape parameter a, were improved.
Moreover, they concluded that there were ‘‘many unsatisfactory
estimates for the other three parameters’’. Pollacco and Mohanty
(2011) showed that the high non-uniqueness of the inverted soil
hydraulic parameters is due to their inter-correlation. Therefore,
they proposed that a more accurate way of obtaining the saturated
hydraulic conductivity and the air entry matric potential would
be to scale them from point measurements. However, this was
based on a numerical study for homogeneous soils, that this
methodology would not be feasible for a large scale study under
natural conditions.

Importantly, only a limited number of studies have focused on
estimating soil hydraulic properties from soils under transient flow
or naturally occurring boundary conditions. For example, the study
by Dane and Hruska (1983) determined the hydraulic conductivity
and soil water characteristic curves of soils undergoing drainage
with the initial and boundary conditions known. Their methodol-
ogy was initially tested for an engineered soil with known soil
hydraulic characteristics, followed by a homogeneous clay loam
soil. They concluded that the method should be applicable to het-
erogeneous soils, provided that both the boundary conditions and
the water content profiles are well defined for each layer. However,
this has not been tested, as prior knowledge of both the boundary
conditions and the water content are rarely available in practice.

Using a measured time-series of soil water content at three dif-
ferent depths under natural boundary conditions, Ritter et al.
(2003) estimated effective soil hydraulic properties utilizing the in-
verse parameter estimation method. Their study showed that
when using laboratory determined soil hydraulic properties to
simulate the water balance at field scale, inaccurate results were
produced, and a ‘trial and error’ optimization did not yield
objective results, leading to a poor fit of measured data. Conse-
quently, they identified that efficient parameter estimation can
be obtained only when an optimization algorithm is combined
with the numerical model, demonstrating the feasibility of the
inverse modeling approach to soil hydraulic property estimation
of a soil column. Ritter et al. (2003) concluded that additional
experimental data (drainage conditions, prior information of soil
parameter data and so on) were needed to identify realistic param-
eters due to the ill-posed problem. An alternative approach, using a
water injection experiment to derive effective soil parameters at
field scale, has been tested by Ye et al. (2005) and Yeh et al.
(2005). They applied spatial moments to 3-D snapshots of a
moisture plume under impermanent flow conditions, to estimate
the 3-D effective unsaturated hydraulic conductivity tensor. The
effective hydraulic conductivities compared well with laboratory
measured unsaturated hydraulic conductivity values. They con-
cluded that the ratio of horizontal to vertical spreading of the
plume, at varying moisture contents, confirmed the existing sto-
chastic theories. Additionally, they also identified that the principal
directions of the spatial moments varied as the moisture plume
evolved through local heterogeneity, a feature that had hitherto
not been recognized in the theories.

Despite these studies, all have focused on retrieving the soil
hydraulic conductivity at saturation, and largely ignored the other
soil hydraulic parameters. Consequently, the work presented in
this paper focuses on retrieving all the important soil hydraulic
parameters (Clapp and Hornberger exponent, hydraulic conductiv-
ity at saturation, soil matric suction at air entry, volumetric frac-
tion of soil moisture at saturation, critical point, and wilting
point), as shown in Table 1. In a former study (Bandara et al.,
2013b), the authors developed a methodology for estimating the
soil hydraulic properties of a heterogeneous soil column in a syn-
thetic twin-experiment framework. According to this methodol-
ogy, the soil hydraulic parameters were derived by calibrating an
LSM to soil moisture observations, such as those which would be
available from satellite observations. This study advances that
work by applying the methodology to a field application with het-
erogeneous soil column under natural conditions. Given that this is
a proof of concept study, it uses the more accurate and detailed
in situ point measurements as opposed to satellite remotely sensed
data. Satellite observed soil moisture observations were not used
at this early stage due to their coarse resolution and the difficulty
to validate results at those scales This study uses the Joint UK Land
Environment Simulator (JULES) as the land surface model (Best
et al., 2011; Clark and Harris, 2009; Clark et al., 2011), together
with the Particle Swarm Optimization (PSO) method that is based
on the complex collective behavior of individuals in decentralized,
self-organizing systems, falling within the category of ‘swarm
intelligence’ (Kennedy and Eberhart, 1995), and are discussed in
detail under Section 3 of this paper.
2. Site and data description

The work presented in this paper focuses on three sites, Y2
(34.6548 S, 146.1103 E), Y5 (34.7284 S, 146.2932 E) and Y7
(34.8518 S, 146.1153 E). These sites are located near Yanco, New
South Wales, Australia (as shown in Fig. 1), and form part of the
OzNet soil moisture monitoring sites (Smith et al., 2012); http://
www.oznet.org.au. The soil of the Yanco region is duplex, with
horizon A being approximately 0.30 m deep. The dominant horizon
A soil type at each location is loam, sandy loam and loam (Austra-
lian Bureau of Rural Science), respectively. The soil moisture has
been measured continuously at depths of 0–0.05 m, 0–0.30 m,
0.30–0.60 m, 0.60–0.90 m (as shown in Fig. 2a) as the average over
30 min intervals using vertically installed Campbell Scientific
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Table 1
Overview of the six soil hydraulic parameters and their physically feasible range, along with their respective notation, descriptive name, and unit where applicable.

Symbol Parameter name and unit Physically feasible range

b Clapp and Hornberger exponent (–) 2–15
Ks Hydraulic conductivity at saturation (mm/s) 0.0001–0.10
wa Soil matric suction at air entry (m) �0.70 to �0.10
hs Volumetric fraction of soil moisture at saturation (m3/m3) 0.10 – 0.60
hc Volumetric fraction of soil moisture at critical point (for a soil suction of 3.364 m) (m3/m3) 0.10–0.50
hw Volumetric fraction of soil moisture at wilting point (for a soil suction of 152.9 m) (m3/m3) 0.01–0.40

Fig. 1. Study site location together with the interpretation of the soil type based on the soil texture measurements made at the sites, Yanco area in the Murrumbidgee
Catchment, Australia.
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water content reflectometers and a Stevens Water surface soil
moisture Hydraprobe, to provide integrated information along
the profile, as described in Smith et al. (2012). The precipitation
was measured by a tipping bucket rain gauge, with the cumulative
rainfall recorded every 6 min (Smith et al., 2012).

This work focuses on the period between 2008 and 2010,
as 2008 and 2009 were average years for the catchment
(0.08–0.38 m3/m3 at the surface and 0.18–0.25 m3/m3 over the root
zone) while 2010 was an exceedingly wet year (0.38 m3/m3 at the
surface and 0.42 m3/m3 over the root zone). Hence, this time period
covers the complete spectrum of dry to wet soil moisture condi-
tions. The meteorological forcing data required by the JULES LSM
(long and short wave radiation, wind speed, air temperature,
humidity and pressure) were obtained from the automatic weather
station located at the nearby Y3 (34.6208 S, 146.4239 E) station
(Siriwardena et al., 2003), while precipitation and the specific soil
and vegetation parameters were obtained from measurements at
the focus site itself. To obtain initial conditions of soil moisture



Fig. 2. The complete soil profile, as simulated by JULES. (a) The 3 horizons, A, B1 and
B2, are shown with the surface and root zones as defined and (b) the thickness of
each model layer.
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and soil temperature corresponding to all seven model layers
throughout the profile, model predictions commenced two years
prior to the start of the focus period. The soil moisture of the pre-
run was initialized at the point of saturation (0.55 m3/m3) for all
layers, while soil temperature data were derived from in situ obser-
vations. The soil hydraulic parameters were obtained through four
different sources; (i) experimental observations, (ii) published val-
ues (Rawls et al., 1982), (iii) calculated pedo-transfer function val-
ues from Cosby et al. (1984) using site specific particle size
distribution data, and (iv) model calibration.

The experimental values were used for validation purposes,
derived from a combination of field and laboratory measurements.
The double-ring (twin-ring) infiltrometer method (Cook, 2002) was
used for measuring the hydraulic conductivity at saturation (Ks) for
the surface layer, while the well permeameter (McKenzie, 2002)
was used to obtain the saturated hydraulic conductivity for the
subsequent layers. A minimum number of two replicates of
observations for each horizon were obtained at each site. The
water level of the outer ring of the double-ring infiltrometer was
kept constant while the change in water level of the inner ring
was recorded every one minute. A similar procedure was followed
when using the well permeameter, with measurements at 0.30 m,
0.90 m and 1.50 m depths. The equipment was dismantled when
steady state flows were obtained. A minimum of three replicates
of undisturbed soil core samples to a depth of 1.00 m were
collected from all sites. These samples were then used in the
laboratory to obtain the suction at air entry (wa) using the filter
paper method [ASTM D5298]. Accordingly, about ten samples were
extracted from the core for each horizon using small metal rings.
These were then subjected to different moisture conditions so as
to acquire at least 8–10 data points along the soil water character-
istic curve. The long term record of observed soil moisture was
used to estimate the residual water content and the volumetric
water content at saturation. The minimum and maximum
observed values of the soil moisture over the period 2008–2011
were used as proxies for the volumetric water content at wilting
point (hw) and at saturation (hs), respectively. These values are only
used as a reference in discussing the results, in a manner similar to
using the experimental soil hydraulic properties.

3. Modeling algorithms

This study uses JULES (Best et al., 2011; Clark and Harris, 2009;
Clark et al., 2011) to simulate the time-series soil moisture profile
corresponding to specified soil hydraulic parameters, with the
particle swarm optimizer (Kennedy and Eberhart, 1995) used to
‘retrieve’ the best estimate of hydraulic parameters by matching
predicted and observed soil moisture.

3.1. Land surface model (LSM)

JULES is a process based land surface model (LSM) that simu-
lates the fluxes of carbon, water, energy and momentum between
the land surface and the atmosphere, and is a derivative of the Met
Office Surface Exchange Scheme (MOSES) (Cox et al., 1999). It can
function either as a stand-alone model or coupled to a global circu-
lation model. In a previous study, Bandara et al. (2011) assessed
the performance of JULES and recommended it as a suitable model
for this type of study.

The JULES LSM consists of four sub-models: soil, snow, vegeta-
tion and radiation (Best et al., 2011; Clark and Harris, 2009; Clark
et al., 2011). Of these, the focus in this study is on the soil sub-
model and the simulation of soil moisture. Herein, JULES is run
with 7 soil layers of 0.025 m, 0.025 m, 0.125 m, 0.125 m, 0.30 m,
0.30 m, and 2.0 m thickness respectively (as shown in Fig. 2b),
resulting in an overall soil depth of 2.9 m. Following extensive
studies (which are not within the scope of the work presented in
this paper), it was found that JULES was most stable with these
layer thicknesses, and a timestep size not exceeding sixty minutes.
When running JULES, it is necessary that the parameters and initial
state values be correctly specified for each soil layer at the start of
the simulation period. Consequently, initial state estimates were
derived by setting all layer values to the point of saturation and
undertaking a 2 year pre-run prior to the focus period (Bandara
et al., 2013a – under review); the pre-run is repeated for each iter-
ation of the model. Soil hydraulic parameters are governed by the
Richards’ equation and the van Genuchten (1980) constitutive rela-
tionships that are used in the calculation of soil moisture. More-
over, vegetation parameters are defined by a model tiling
approach with up to nine surface types; broad leaf trees, needle
leaf trees, C3 (temperate) grass, C4 (tropical) grass, shrubs, urban,
inland water, bare soil and ice. Due to the prevailing surface condi-
tions, the soil columns modeled in this study all have a single grass
vegetation type.

The soil module of the JULES land surface model requires sev-
eral parameters as inputs, and while it would be ideal to retrieve
all of the soil parameters, it is not practical for several reasons. This
is because some parameters play a more direct role in soil temper-
ature simulation than on soil moisture, and the large number of
parameters used by land surface models presents an equifinality
issue. Moreover, the influence of some parameters on soil moisture
simulation is comparatively higher than others. Hence, studies
were conducted (Bandara et al., 2011; Bandara et al., 2013b) to
identify the most sensitive parameters and to assess the capability
of the LSM to retrieve such parameters. The soil hydraulic param-
eters retrieved in this paper include; (i) Clapp and Hornberger
exponent, (ii) hydraulic conductivity at saturation, (iii) soil matric
suction at air entry, (iv) volumetric fraction of soil moisture at sat-
uration, (v) volumetric fraction of soil moisture at the critical point,
defined as being equivalent to a soil suction of 3.364 m and, (vi)
volumetric fraction of soil moisture at wilting point, defined as
being equivalent to a soil suction of 152.9 m; see Table 1.

3.2. Particle Swarm Optimizer

The Particle Swarm Optimization (PSO) algorithm is based on
the complex collective behavior of individuals in decentralized
self-organizing systems, created through a population of individu-
als that interact both with each other and with the community.
One benefit of using PSO is that it is easy to understand and to
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implement (Kennedy and Eberhart, 1995). However, the key fea-
ture of PSO is that it is less susceptible to getting trapped in a local
minimum of the objective function since it is population-based,
and thus has the capability to control the balance between the
local and global search space (Engelbrecht, 2005b). This algorithm
has been successfully utilized in a diverse range of applications,
such as calibration of water and energy balance models
(Scheerlinck et al., 2009), multi-machine power-system stabilizers
(Abido, 2002), practical engineering designs (Hu et al., 2003),
structural designs (Perez and Behdinan, 2007), and addressing
generation planning problems (Kannan et al., 2004).

In the framework of PSO, particles are projected through a
hyper-dimensional search space where changes to any selected
particle’s position are based on the social-psychological tendency
of that individual to mimic the success of others (Engelbrecht,
2005b). Changes to the position of particles within the search space
are therefore influenced by the experience and/or knowledge of its
neighbor, in addition to its’ own. The PSO algorithm comprises of
three components; (i) the momentum, so that the velocity of the
‘swarm’ cannot change abruptly, (ii) the ‘cognitive’ or personal
component (c1), representing the particle’s ability to learn from
its own flying experience and fitness, and (iii) the ‘social’ compo-
nent (c2), representing the cooperation with other particles and
thus learning from the flying experience of the group (Kennedy
and Eberhart, 1995). One disadvantage of updating the velocity
of the swarm is that it may become too high and cause particles
to leave behind ‘good’ solutions, or too slow such that the search
space is not explored adequately. Thus, to overcome this problem,
Shi and Eberhart (1998) introduced an additional parameter,
termed as the ‘inertia weight’ to control the velocity. The work pre-
sented in this paper uses the PSO code from Scheerlinck et al.
(2009), with some slight modifications to facilitate parallelization.

The PSO algorithm uses four parameters: three inherent param-
eters and the population size defining the behavior of the swarm.
Therefore, the first step of using the algorithm is to identify the
‘best’ parameters for driving the swarm. The size of the swarm
was considered first, as larger swarms need a higher number of
iterations to converge compared to smaller swarms, with very
small swarms not yielding good solutions. Eberhart and Shi
(2000) showed that a population size of 30 is adequate and this
swarm size was adopted by Trelea (2003), Engelbrecht (2005b),
Scheerlinck et al. (2009) and others. Hence, a swarm size of 30 par-
ticles was chosen for this study.

Shi and Eberhart (1998) identified that when w (the inertia
weight) is less than 1, PSO is able to find the global minimum quite
rapidly as it tends to act like a local search algorithm under this
scenario, and targets an acceptable solution within the initial
search space. However, when w P 1, the velocities of the swarm
increase with time, the swarm diverges, and the particles fail to
change direction towards regions with potential minima
(Engelbrecht, 2005a). Additionally, Engelbrecht (2005a) states that
c1 > c2 is more beneficial when applied to multimodal problems, as
lower values of c1 and c2 yield smooth particle trajectories. Thus,
the ranges that best fit the work presented in this paper were
identified from existing literature, as discussed above, and the best
combination of parameters for this problem was shown to be
w = 0.4, c1 = 1.4 and c2 = 1.3 (Bandara et al., 2013b).

For this work, the root mean square error (RMSE) for the soil
moisture prediction compared to observations has been utilized
as the objective function of PSO. Additionally, parameters are
restricted during the optimization process from moving beyond
physically feasible values (as shown in Table 1). To further con-
strain the parameter from leaping to either end of the parameter
space, a penalty was added to the RMSE, calculated between the
true and simulated soil moisture. The imposed penalty was such
that the parameter to be retrieved was given an initial approximate
or best-guess value, and this value was allowed to vary three times
the standard deviation of that parameter, thereby making the
parameter space somewhat smaller and directing the optimization
algorithm away from boundary values. The initial soil hydraulic
parameters were based on the pedo-transfer function estimates
using the soil texture information, with the standard deviations
set according to the published values. However, PSO does not treat
the initial values as a ‘priori’; it is merely a value that contributes to
the calculation of the objective function, the RMSE in this case.
4. Methodology

The objective of this study was to retrieve soil hydraulic param-
eters from soil moisture observations, and was approached in two
steps. First, the soil hydraulic parameters for the complete soil pro-
file were retrieved using both surface and root zone soil moisture
observations, to provide a benchmark in the validation process.
Second, only the surface moisture observations were used in
retrieving the soil parameters for the complete soil profile. In both
cases the retrieved parameters were validated against the experi-
mentally observed parameter values. The predicted root zone soil
moisture corresponding to observed, retrieved and published soil
hydraulic parameters was also validated against the observed root
zone soil moisture. For this proof of concept study, observational
errors were not considered, and hence all field observations of soil
moisture were assumed to be correct.

Though literature identifies the soils of Yanco as duplex, this
study has allowed the soil profile to consist of three distinct hori-
zons with potentially different soil properties; horizon A, horizon
B1 and horizon B2 (as shown in Fig. 2a). This is because distinct dif-
ferences in the particle size distribution were observed throughout
the soil profile.
4.1. Benchmarking

Before assessing the proposed surface soil moisture calibration
methodology for (i) retrieving the soil hydraulic parameters and
(ii) more accurately predicting the root zone soil moisture, the
capability of JULES to match the observed soil moisture measure-
ments across the soil profile was tested. This not only shows short-
comings of JULES, but obtains a ‘benchmark’ for both retrieved
hydraulic soil parameters and derived soil moisture predictions.
Accordingly, PSO was used to retrieve soil parameters for the full
profile, utilizing corresponding observed soil moisture data. In this
setting, the simulated soil moisture is compared and soil parame-
ters adjusted to best match the observed soil moisture for that par-
ticular soil layer, thus minimizing the objective function and
yielding the ‘best’ values for each soil horizon.

The profile simulated by JULES has 7 layers of 0.025 m, 0.025 m,
0.125 m, 0.125 m, 0.300 m, 0.300 m and 2.000 m thickness, while
field observations of soil moisture were for 4 layers of 0–0.05 m,
0–0.30 m, 0.30–0.60 m and 0.60–0.90 m depth from the soil sur-
face. Consequently, weighted averages of the simulated soil mois-
ture were used for comparison against the layer thicknesses of the
field observations. The soil module of JULES utilizes eight parame-
ters; Clapp and Hornberger exponent, volumetric fraction of soil
moisture at saturation, critical point and wilting point, hydraulic
conductivity at saturation, soil matric suction at air entry, dry heat
capacity, and dry thermal conductivity. Results from the sensitivity
study by Bandara et al. (2013b) show that of these eight parame-
ters, the soil moisture simulations was mainly sensitive to six
parameters only. Based on these findings, only the six soil param-
eters shown in Table 1 were estimated, as the soil moisture simu-
lation was found to be most sensitive to changes in those
parameters. It was also shown that the most suitable methodology
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for multi-parameter retrieval is a sequential approach, starting
with the three most sensitive parameters (the volumetric fraction
of soil moisture at critical point and at saturation, and the Clapp
and Hornberger exponent) for all soil types, followed by the
remaining three soil parameters. The main reason identified was
that when the most sensitive parameters change, there is a signif-
icant change to the resulting soil moisture as opposed to changes
in the less sensitive parameters. However, at least 3 cycles of
sequential retrieval is completed to ensure that the best parameter
combination is obtained.

4.2. Parameter retrieval with surface observations only

This study tests the hypothesis that root zone soil hydraulic
parameters can be retrieved from surface soil moisture observa-
tions alone. A flow chart of the methodology is presented in
Fig. 3. The surface soil moisture simulated by JULES was compared
with that observed using in situ sensors, and the six soil hydraulic
parameters listed in Table 1 retrieved for the complete soil profile
using PSO, such that the objective function between the simulated
and observed time-series was a minimum. The retrieved parame-
ters were then compared with experimental observations, and
the predicted root zone soil moisture compared with the observed
root zone soil moisture. The initial LSM states were again obtained
through a 2-year pre-run initialized at the point of saturation for
each iteration. The objective function of PSO compares the simu-
lated surface soil moisture from JULES with the corresponding soil
moisture observations, and converging on the soil hydraulic
parameters that minimize the RMSE between the two time-series.
Given that the thickness of the observed surface layer is 0.05 m, the
weighted average of the first two model layers in the simulation
has been used.

The corresponding RMSE between the observed and simulated
soil moisture, using the retrieved parameters, was calculated along
with the Nash–Sutcliffe model efficiency coefficient (Nash and
Sutcliffe, 1970). The Nash–Sutcliffe coefficient E can range from
�1 to 1, with a perfect match between the modeled simulation
and observation resulting in a value of E = 1. When E = 0, the model
predications are no more accurate than simply using the mean of
the observed data, whilst values of E < 0 can be interpreted as
the observed mean being a better predictor than the model.
5. Results

The ability of JULES to match the observed soil moisture when
using the entire profile of soil moisture observations as a constraint
Fig. 3. Schematic of the parameter retrieval process using surface soil moisture
observations.
was first determined. This provided the benchmark for subsequent
retrievals when only surface soil moisture observations were used.
Tables 2 and 3 provide a comparison of the published, retrieved
and experimentally determined soil hydraulic parameters for sites
Y2 and Y5 respectively. Of the three sites used in this study, results
from only these two sites are presented, as both Y2 and Y7
provided similar results and had similar soil properties.

5.1. Benchmarking

When compared with experimentally observed soil parameters
(Table 2), all retrieved benchmarking soil hydraulic parameters for
Y2 were higher than the observed value, with the exception being
the horizon A volumetric water content at saturation and critical
point. The RMSE between the observed and predicted soil moisture
(Table 4) was 0.049 m3/m3 and 0.014 m3/m3 for the surface and
root zone when observed soil hydraulic parameters were used.
These values were reduced to 0.038 m3/m3 and 0.020 m3/m3 when
the retrieved soil hydraulic parameters were used. Thus the RMSE
for the surface decreased by 0.011 m3/m3 while the root zone
increased by 0.006 m3/m3 when optimized soil parameters were
used to predict the soil moisture, as opposed to the experimentally
observed soil parameters. The Nash–Sutcliffe efficiency for the sur-
face was 0.684 when optimized soil hydraulic parameters were
used, compared to 0.521 when observed soil hydraulic parameters
were used. For the root zone, these values were 0.242 and �0.004
respectively. These values suggest that when experimentally
observed soil hydraulic parameters were used, they provided a
marginally more accurate root zone soil moisture prediction as
compared to the optimized parameters. In either case the LSM pro-
vides little skill as compared to the mean value alone, suggesting
that the model physics are in need of further improvement. This
is highlighted further in Fig. 4, showing that JULES was unable to
successfully capture the wet period towards the middle of 2009.
At the same time, it should also be noted that the root zone soil
moisture showed very little variation from the mean value. The soil
moisture prediction with the observed soil parameters better cap-
tured the dynamics of the root zone, whereas the prediction with
optimized parameters was unable to dry down as much as the field
soil moisture. This resulted in the observed soil parameters better
capturing the dry end but showing limitations in capturing the wet
up. The scatter plots corresponding to the time series of soil mois-
ture are depicted on the right-hand side of Fig. 4. It was seen that
the soil moisture prediction using the optimized soil parameters
was mostly wetter than the observed soil moisture, while the soil
moisture prediction from the observed soil parameters under-
predicted the observed soil moisture. Since the root zone was less
dynamic, a concentration of points was observed at approximately
0.2 m3/m3, while the rest of the points were distributed horizon-
tally. This horizontal distribution of points when the optimized soil
parameters were used in the predictions was mostly due to the
discrepancies in soil moisture for the first half of 2008 and 2009.
When observed soil parameters were used in the soil moisture
prediction, the discrepancies were spread throughout the year
2009, resulting in a flat distribution of points.

Similar to Y2, it is seen from Table 3 that the optimized param-
eters for Y5 were higher than those observed experimentally, with
the exception being the volumetric soil moisture content at satura-
tion and wilting point for horizons B1 and B2. The RMSE of the
predictions using observed soil hydraulic parameters matched
the observed surface soil moisture to within 0.033 m3/m3, while
the optimization yielded a comparable accuracy of 0.035 m3/m3.
However, the prediction with the optimized soil hydraulic
parameters out-performed that with the observed soil hydraulic
parameters for the root zone by a margin of 0.033 m3/m3. Similar
results to Y2 were obtained for E, with the exception that a much



Table 2
Soil hydraulic parameters for horizon A (HA), horizon B1 (HB1) and horizon B2 (HB2) from; (i) experimental observation, (ii) Rawls et al., (iii) Cosby et al., (iv) Benchmarking
optimization using surface and root zone soil moisture, and (v) optimized for the profile using surface soil moisture only. Site Y2.

Parameter Observed Rawls et al. parameters Cosby et al. parameters Optimized – benchmark Optimized – surface only

HA HB1/HB2 HA HB1/HB2 HA HB1/HB2 HA HB1 HB2 HA HB1 HB2

b 4.780 4.780 5.300 5.300 5.680 7.680 7.711 5.098 2.486 5.036 6.023 6.743
Ks 0.0017 0.0017 0.0072 0.0072 0.0040 0.0024 0.0029 0.0089 0.0040 0.0055 0.0054 0.0054
wa 0.100 0.100 0.786 0.786 0.300 0.387 0.315 0.500 0.499 0.301 0.375 0.384
hs 0.410 0.400 0.485 0.485 0.446 0.458 0.395 0.437 0.390 0.421 0.350 0.443
hc 0.370 0.233 0.369 0.369 0.291 0.346 0.348 0.347 0.270 0.350 0.349 0.171
hw 0.050 0.180 0.179 0.179 0.149 0.210 0.240 0.237 0.145 0.095 0.186 0.170

Table 3
Soil hydraulic parameters for horizon A (HA), horizon B1 (HB1) and horizon B2 (HB2) from; (i) experimental observation, (ii) Rawls et al., (iii) Cosby et al., (iv) benchmarking
optimization using surface and root zone soil moisture, and (v) optimized for the profile using surface soil moisture only. Site Y5.

Parameter Observed Rawls et al. parameters Cosby et al. parameters Optimized – benchmark Optimized – surface only

HA HB1/HB2 HA HB1/HB2 HA HB1/HB2 HA HB1 HB2 HA HB1 HB2

b 5.730 4.740 4.900 5.390 4.740 6.890 4.146 8.999 7.063 5.040 6.770 6.782
Ks 0.0018 0.00002 0.0725 0.0070 0.0104 0.0040 0.0043 0.0020 0.0069 0.0076 0.0061 0.0074
wa 0.100 0.100 0.095 0.200 0.109 0.235 0.117 0.171 0.210 0.109 0.109 0.236
hs 0.400 0.420 0.435 0.451 0.406 0.438 0.413 0.450 0.450 0.450 0.351 0.430
hc 0.300 0.350 0.210 0.267 0.197 0.298 0.339 0.340 0.113 0.260 0.280 0.348
hw 0.010 0.180 0.096 0.132 0.088 0.171 0.187 0.149 0.108 0.095 0.172 0.186

Table 4
The root mean square error (RMSE) and Nash–Sutcliffe correlation coefficient (E), calculated between the observed and predicted surface and root zone soil using the observed,
profile (benchmark) optimized, surface optimized, Cosby et al. and Rawls et al. soil parameters.

Y2 Y5

RMSE (m3/m3) E RMSE (m3/m3) E

Surface Root zone Surface Root zone Surface Root zone Surface Root zone

Observed parameters 0.049 0.014 0.521 0.033 0.242 0.054 0.797 �1.184
Optimized parameters (benchmark) 0.038 0.020 0.684 �0.004 0.035 0.021 0.776 0.482
Optimized parameters (surface only) 0.037 0.027 0.645 �1.514 0.036 0.042 0.763 �0.398
Cosby et al. soil parameters 0.053 0.037 0.524 �3.935 0.035 0.044 0.751 �0.476
Rawls et al. soil parameters 0.038 0.044 0.688 �5.447 0.036 0.071 0.732 �2.153
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larger value was obtained for the root zone in this instance,
indicating that JULES was better able to capture the root zone
dynamics of the sandy loam soil at this site as compared to the
loam soil at Y2. However, Fig. 5 shows that JULES still struggled
to capture the dynamics towards the end of 2010, despite being
a close approximation for the remainder of the time sequence.
Unlike in Y2 (Fig. 4), it was observed that the soil moisture predic-
tions from both the observed and optimized soil parameters were
quite similar, as shown from the scatter plot for the surface of Y5.
As in the previous site, a flat distribution of points for the root zone
was observed, mainly due to the large discrepancy between the
observed and the predicted soil moisture.

Fig. 6 shows a comparison of the observed soil moisture for both
the surface and root zone, against predictions using soil hydraulic
parameters from (i) the most commonly used published values
(Rawls et al., 1982), (ii) calculated values using the pedo-transfer
functions of Cosby et al. (1984), (iii) optimized benchmarking val-
ues, and (iv) experimentally observed values. Fig. 6(a) corresponds
to the soil moisture prediction curves using the parameter combi-
nations shown in Table 2, while Fig. 6(b) is for the values in Table 3.
From Fig. 6, it is observed that the predictions using the experi-
mental and optimized soil hydraulic parameters best captured
the moisture dynamics of the surface and root zone for both sites,
when compared to parameters derived from either the published
or pedo-transfer functions. From Table 4, it is observed that the
highest RMSE for the root zone, 0.044 m3/m3 and 0.071 m3/m3

for Y2 and Y5 respectively, has been obtained for the soil moisture
predictions using the Rawls et al. (1982) soil parameters. For the
surface soil of Y2, the soil moisture predictions from Cosby et al.
(1984) had the highest RMSE of 0.053 m3/m3. For both sites, under
all four scenarios (except with the observed parameters for Y2 and
the optimized parameters for Benchmarking of Y5), the root zone
shows high negative values for E, thereby indicating that the root
zone soil moisture predictions are worse than the observed mean
values. The only time that the simulations using parameters from
Rawls et al. (1982) and Cosby et al. (1984) showed a better match
with observed soil moisture is for site Y2 during the wet period in
2009.

5.2. Parameter retrieval

This section addresses the main objective of this study, testing
the feasibility of retrieving soil hydraulic parameters of a duplex
soil column using soil moisture observations only. When compared
with the experimentally observed and benchmark soil hydraulic
parameters, it is observed that the optimized soil hydraulic param-
eters always lie between the two, sometimes closer to one or the
other. For example, the surface suction at air entry and volumetric
water content at the critical point for Y2 are close to the bench-
marked values, while the same parameters at Y5 showed a closer
match with the experimentally observed soil hydraulic parame-
ters. As expected, Table 4 shows that the smallest RMSE for the sur-
face soil moisture prediction at Y2 was obtained when optimized
with the near-surface soil moisture alone, while the RMSE for the



Fig. 4. Observed and predicted soil moisture for Site Y2 (silt loam soil) using (i) optimized and (ii) experimentally observed soil hydraulic parameters. Retrieved soil hydraulic
parameters are from using both surface and root zone soil moisture observations to provide a benchmarking scenario. The corresponding scatter plots for the surface and root
zone are shown on the left of the time series.

Fig. 5. Observed and predicted soil moisture for Site Y5 (loamy sand soil) using (i) optimized and (ii) experimentally observed soil hydraulic parameters. Retrieved soil
hydraulic parameters are from using both surface and root zone soil moisture observations to provide a benchmarking scenario. The corresponding scatter plots for the
surface and root zone are shown on the left of the time series.
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Fig. 6. Observed and predicted soil moisture for (a) Site Y2 and (b) Site Y5 using (i) Rawls et al., (ii) Cosby et al., (iii) optimized (Benchmark) and (iv) experimentally observed
soil hydraulic parameters.

Fig. 7. Observed and predicted soil moisture for (a) Site Y2 and (b) Site Y5 from (i) experimentally observed and (ii) optimized soil hydraulic parameters, using surface soil
moisture observations alone.
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root zone soil moisture was much larger when compared to all the
other retrieval scenarios. The root zone RMSE is twice as that when
predictions are made using observed parameters and therefore, E is
�1.514, indicating that the observed mean is a better predictor
than the model. For site Y5, the root zone soil moisture predictions
corresponding to the observed and optimized parameters using
surface only observations did not yield positive values for E (only
the benchmarking scenario had a positive E). Of the two, the sur-
face only retrieval worked best with an RMSE of 0.042 m3/m3

and E = �0.398, as opposed to 0.054 m3/m3 and �1.184. However,



Fig. 8. The suction and hydraulic conductivity for (a) Site Y2 and (b) Site Y5, plotted against the volumetric water content of the soil.
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the RMSE for the root zone between the observed soil moisture and
prediction using surface moisture only retrieved parameters was
twice that obtained through benchmarking.

It can be seen from Fig. 7(a) that the predicted soil moisture
using observed soil parameters is most able to capture the dynam-
ics of the root zone of Y2. Fig. 7(b), corresponding to Y5, shows that
neither predictions are able to match the root zone soil moisture
dynamics. From the same table, it is observed that the root zone
RMSE corresponding to Cosby et al. (1984) and Rawls et al.
(1982) for Y2 (0.037 m3/m3 and 0.044 m3/m3) are significantly lar-
ger than the RMSE obtained when only surface observations are
utilized to retrieve soil parameters for the complete soil profile
(0.027 m3/m3). Site Y5 performs in a similar manner. The E corre-
sponding to the root zone when using either Cosby et al. (1984)
or Rawls et al. (1982) is a large negative number when compared
with either experimental or optimized parameters in the soil mois-
ture prediction (e.g. �3.935 and �5.447 as opposed to 0.242 and
�0.004/�1.154 for Y2). Therefore, when optimized parameters
from the surface-only retrieval were used, the soil moisture RMSEs
for the surface and root zone were almost equivalent to the ‘best’
results, which were obtained from benchmarking. This degradation
is almost zero for the surface (0.001 m3/m3), less than 0.02 m3/m3

for the root zone, and a significant improvement over using pedo-
transfer functions (approximately 0.02 m3/m3 for both the surface
and root zone) or published values (approximately 0.03 m3/m3 for
the root zone). It is also observed that the soil moisture predictions
from optimized parameters using surface-only observations
performed no worse than if experimental values were used. This
is in vivid contrast to using either pedo-transfer functions or pub-
lished values, which resulted in degraded model performances.

Fig. 8 shows the soil water characteristic curves (SWCC)
obtained through the laboratory experiments together with the
hydraulic conductivity curves. These are compared with those
derived from the parameter combinations shown in Tables 2 and 3,
for site Y2 and Y5 respectively. While all curves are within the
standard deviation of the parameters given in Clapp and
Hornberger (1978), the SWCC for the optimized parameters
corresponding to Y2 sits closer to the SWCC of Cosby et al. (1984)
parameters than to the observations. However, curves of the
optimized parameters match closely with curves corresponding
to the observed parameters for Y5. It is also observed that the
published values and pedo-transfer functions encompass the
optimized and observed parameters, illustrating the large amount
of uncertainty in using these approaches.

6. Discussion and conclusions

This study showed that the JULES LSM was able to predict the
soil moisture evolution to within 0.04 m3/m3 of observed surface
and root zone soil moisture, providing the soil hydraulic properties
were experimentally observed or calibrated using the soil moisture
distribution across the profile. Any errors in observed soil moisture
and/or precipitation observations were neglected, with the error
assumed to be solely from the model predictive capability (i.e. its
underlying physics). However, it was observed that model predic-
tions were not able to perfectly match the field observed soil mois-
ture, even using experimentally observed or calibrated (using the
entire soil moisture profile) soil hydraulic parameters, and that
the Nash Sutcliffe coefficient was typically low for the root zone
soil moisture prediction, indicating a deficiency in the model
physics that needs further investigation.

When using the surface soil moisture observations alone to
retrieve the soil hydraulic parameters, the RMSE of surface soil
moisture prediction was equivalent to that for the benchmarking
case, which used the entire soil profile as a constraint, while the
predicted root zone soil moisture was not as good as that of the
benchmark. It was also observed that the optimized soil hydraulic
parameters using near-surface soil moisture alone out-performed
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the soil moisture predictions (by approximately 0.02 m3/m3 for the
surface and 0.03 m3/m3 for the root zone) using the published val-
ues of Rawls et al. (1982) and pedo-transfer functions of Cosby
et al. (1984). It is therefore concluded that the use of soil moisture
observations to retrieve soil hydraulic parameters for a duplex soil
column should lead to an improvement on prediction skill when
compared to the current approach of using published values. Thus,
this method should be explored for large scale applications using
soil moisture observations from satellite.

In this proof of concept study using in situ observed data, it has
been assumed that the data are perfect at the point location. This
was because the focus of the paper was to show the feasibility to
retrieve meaningful parameters for the complete soil profile of a
heterogeneous column of soil, using only the near-surface soil
moisture observations. Satellite observed soil moisture observa-
tions were not used at this early stage due to its coarse resolution
and difficulty to validate. In this study, many parameters corre-
sponding to other model modules have been fixed, with only six
parameters being retrieved. Hence, some of the discrepancies
between the observed and optimized parameters may be due to
compensating errors due to inadequacies of the model physics
and prescribed parameters. Additionally, there are uncertainties
in precipitation and other related forcing data, all of which are
assumed to be without error. When a long time series of soil mois-
ture is used, as in this study, the surface is a reflectance of the deep
soil moisture through capillary redistribution. It was also observed
that when optimized parameters from the surface-only retrieval
were used, the soil moisture RMSEs were almost equivalent to
the results obtained from benchmarking. Additionally, Bandara
et al. (2013b) investigated the requirements for the soil hydraulic
parameter retrieval of a heterogeneous column of soil, using
near-surface soil moisture observations only, and found that the
minimum required period was 12 months. With the present work
focusing on three years the confidence in the retrieved parameters
for the root zone is quite high.
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