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Assessment of uncertainty in land surface models is complex, mainly because of the numerous sources of
error from model parameters, initial states, input forcing data, and the model structure. These sources of
uncertainty interact together to impact the simulated output generated from the land surface model. To
account for these uncertainties, the goal in diagnostic model evaluation has been to determine the
erroneous/inadequate components of the model structure that need improvement. However, the specifi-
cation of inaccurate model components is not straightforward, requiring crucial steps to determine the
uncertainty contributions from individual error sources. Also, the interaction between the uncertainty
sources makes it difficult to assess the impact of the individual error sources on the simulated output.
The approach undertaken in this study was to quantify the specific uncertainties linked with model
parameters, states, input forcing variables, and spatial variations in landscape properties, such that the
remaining model uncertainty is equivalent to the inadequacy/inaccuracy associated with the model
structure. This study employed the Evolutionary Data Assimilation, together with multi-dimensional
clustering, to quantify these individual uncertainties for the Community Atmosphere Biosphere Land
Exchange (CABLE) model, in terms of soil moisture estimation for the Yanco area in south-east Australia.
The findings showed that the updated soil moisture was more accurate than both the open loop and
calibrated estimates. The minimum uncertainty for model components was found to reduce the original
and updated bounds by 68% and 62% respectively. The estimated model pathway has accurately repro-
duced the updated estimates with less than 0.02 m3=m3 error, and was found to be more accurate than
both the calibrated and the updated estimates when evaluated against in-situ soil moisture.

Crown Copyright � 2014 Published by Elsevier B.V. All rights reserved.
1. Introduction

Numerous sources of uncertainty in land surface models have
ratified data assimilation (DA) as a promising procedure to account
for inaccuracies (or errors) linked to the model output and the
observation data. Primarily, DA methods have been employed to
improve model predictions by correcting model state trajectories
(Dumedah and Coulibaly, 2013, 2012b; Thirel et al., 2010; Xie
and Zhang, 2010), but very few studies (Vrugt and Sadegh, 2013;
Dumedah and Walker, 2013) have actually employed DA to learn
about the land surface model physics with the aim to identify
weaknesses in the model structure. The need to learn about the
land surface model with the capacity to assess and quantify its
uncertainties has been widely recognized (Vrugt and Sadegh,
2013; Gupta et al., 2012; Clark et al., 2011; de Vos et al., 2010;
Gupta et al., 2008; Vrugt and Robinson, 2007; Liu and Gupta,
2007). This is mainly because the ultimate improvement in model
forecasts is largely linked to uncertainties from: model parameters,
initial states, input forcing data, and the model structure.

To address these sources of uncertainty, Gupta et al. (2008)
have outlined a conceptual framework for diagnostic model evalu-
ation, with the aim to determine which components/aspects of the
model need improvement, together with guidance towards the
kinds of model improvements needed. However, a crucial task in
diagnostic model evaluation is the ability to identify and quantify
model uncertainties which are specific to: state variables, parame-
ters, input forcing data, and spatial variations in landscape proper-
ties. The model parameters, initial states, and input forcing data
have direct impact on the internal dynamics of the model and its
simulated output. The landscape spatial variabilities control the
level of uncertainty for model parameters and initial states
(Gupta et al., 2012), needed to account for sub-grid heterogeneity
of vegetation and soil properties. To assess these uncertainty
sources, suitable procedures are needed to separate and quantify
the individual contributions that the various sources of uncertainty
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have on the simulated model output. Assessment of these specific
uncertainties is needed to target where improvements are needed,
and to better estimate the combined model uncertainty due to the
individual uncertainties from model parameters, initial states,
input forcing data, and model structure. Consequently, specific
steps are needed towards the detection of model weaknesses,
through the quantification of model uncertainty, conditioned on
spatial variability in the landscape (e.g. vegetation and soil)
properties.

This study assesses four crucial sources of uncertainty in land
surface models, namely model parameters, initial states, input
forcing data, and landscape spatial variability. Recent studies
including Dumedah and Walker (2013) and Dumedah and
Coulibaly (2013), have shown the capability of DA (based on the
Evolutionary Data Assimilation – EDA) to quantify the level of con-
vergence for model states and parameters. The convergence of
model parameters and states, which was estimated across several
time periods using the EDA, accounted for the spatial variations of
the landscape using vegetation and soil properties data. The con-
vergence level was estimated on a model parameter-by-parameter
basis, and the corresponding uncertainty was due to the variability
in the landscape properties. While the parameter-by-parameter
evaluation is an important step to quantify the levels of conver-
gence, the simulated model output is a product of the combined
interaction between model parameters, initial states, and input
forcing data, along with the model structure.

Therefore, an assessment of the combined uncertainty requires
a DA approach, together with a multi-dimensional clustering to
determine the dominant pathway(s) in model parameter space
(i.e. decision space). The model parameter pathway, in this case,
is a decision item representing a vector string connecting all model
parameters, initial state variables, and forcing data uncertainties.
Specifically, the parameter pathway incorporates the sum of all
individual sources of uncertainty from model parameters, states,
and input forcing data, which together approximate the overall
uncertainty for a perfect model structure. In other words, when
these individual uncertainties are estimated and accounted for,
the remaining uncertainty is equivalent to the inadequacy (or
loosely the error) associated with the model structure. As a result,
this study accounts for and quantifies the uncertainty associated
with the landscape properties, and the specific uncertainties for
model parameters, initial states, and input forcing variables.

It is important to point out the crucial roles for both the DA
procedure, and the clustering analysis. The DA procedure allows
a continuous evaluation of the dynamics between the simulated
output and the observation (in objective space) through time,
along with the temporal changes in model parameters, states,
and input forcing data (in decision space). In essence, the DA pro-
cedure facilitates a continuous monitoring of the changes in both
objective and decision space, with the capability to study the
model behavior in time. The temporal dimension of the DA
approach is critical, because it facilitates the testing of the model,
and its associated components under different input data and
observation conditions. Also, the temporal dimension allows the
DA procedure to be tested for consistency in time. However, to
study the model behavior, clustering analysis was used to examine
the temporal dynamics in decision space, which encompasses the
four sources of uncertainty. Clustering analysis is an exploratory
analytical approach with the capability to determine the degree
of commonality either for a single variable or for multiple variables
across sampling records. Clustering analysis is well suited to study-
ing the model behavior in time, through assessment of the tempo-
ral dynamics for updated ensemble members obtained from the DA
procedure.

The model uncertainty estimation procedure is illustrated with
the Community Atmosphere Biosphere Land Exchange (CABLE)
model for soil moisture estimation in the Yanco area in south-east
Australia. The study assimilates the retrieved soil moisture from
the Advanced Microwave Scanning Radiometer for the Earth
Observing System (AMSR-E) into CABLE using the EDA approach.
The clustering procedure was then performed on the updated
ensemble members to derive the uncertainty for the various model
components. The EDA is a formulation based on evolutionary strat-
egy (Dumedah, 2012), with stochastic and adaptive capabilities
suitable for addressing and learning about complex and indetermi-
nate problems.

2. Materials and methods

2.1. Study area, data sets, and the land surface model

The study is demonstrated for the Yanco area (shown in Fig. 1)
in the western plains of New South Wales, Australia. The terrain in
the Yanco area is flat, covered predominantly with grassland
together with scattered irrigated crops. The main soil texture
group is loam, along with few traces of clayey and sandy textured
loams. Topographically, the area is formed by plains with domes,
lunettes, and swampy depressions, separated by discontinuous
low river ridges and with prior stream systems (McKenzie et al.,
2000). The plains are traversed by stream valleys, and layered soil
and sedimentary materials that are common at fairly shallow
depths.

The soil moisture evolution was simulated using the Commu-
nity Atmosphere Biosphere Land Exchange (CABLE) model (Wang
et al., 2011; Kowalczyk et al., 2006). CABLE is a tiled model of
sub-grid heterogeneity, capable of simulating water and energy
fluxes between a vertical profile of soil layers, vegetation, and
the atmosphere. The model has five main modules including: (i)
radiation, (ii) canopy micrometeorology, (iii) surface flux, (iv) soil,
and (v) ecosystem carbon. The radiation component accounts for
the radiation transfer and absorption by the sunlit and shaded
leaves, whereas the canopy micrometeorology estimates the
surface roughness length, zero-plane displacement height, and
aerodynamic conductance from the reference height to the air
within canopy or to the soil surface (Wang et al., 2011). The surface
module comprises the energy balance, transpiration, stomatal con-
ductance and photosynthesis of sunlit and shaded leaves. The soil
component accounts for the energy and water fluxes within and
surface of the soil; and the ecosystem carbon module includes esti-
mates for the respiration of stem, root and soil organic carbon
decomposition (Wang et al., 2011). The CABLE model uses six fixed
soil layer thicknesses of 2.2-cm, 5.8-cm, 15.4-cm, 40.9-cm, 108.5-
cm and 287.2-cm respectively from top to bottom, with the
movement of water between layers estimated using the Richards
equation (Kowalczyk et al., 2006). Evaporation from bare soil is
based on the Penman–Monteith calculation for potential evapora-
tion which is then weighted by a water availability index based on
soil moisture in the top soil layer (Wang et al., 2011; Kowalczyk
et al., 2006).

The soil properties data were obtained from the Digital Atlas of
Australian Soils (McKenzie et al., 2000), provided through the Aus-
tralian Soil Resource Information System (ASRIS). ASRIS informa-
tion on soil properties include soil texture classes, along with
proportion of clay content, bulk density, and saturated hydraulic
conductivity (McKenzie et al., 2000; McKenzie and Hook, 1992).
The essential meteorological forcing data variables used in the
CABLE model include short and long wave incoming radiation, air
temperature, precipitation, wind speed, and specific humidity.
The forcing data were obtained from weather monitoring stations
at Griffith, Yanco (station Y3) and Coleambally, all shown in Fig. 1,
with precipitation obtained from the 15 weather and soil moisture
monitoring stations. Additionally, CABLE uses leaf area index (LAI)



Fig. 1. The Yanco experimental area showing the forcing data stations, the in-situ OzNet soil moisture monitoring stations, the soil texture classes, the AMSR-E grid, and the
5-km model grid.
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data to account for the energy balance partition between soil and
vegetation surfaces, and to facilitate the estimation of water use
by vegetation. The LAI data were obtained from the MYD15A2
Moderate Resolution Imaging Spectroradiometer (MODIS) data at
8-day temporal and 1-km spatial resolution. The model parameters
and input forcing data were assigned to the 5-km modeling grid by
using data from the nearest station for point-based data (e.g.
forcing data), and data from overlapping areas for grid-based data
(MODIS data). That is, the grid-based 1-km LAI data set was
spatially averaged within each 5-km modeling grid. It is noted that
the forcing data were at half-hourly interval, and as such, the mod-
eling time step was conducted at the same temporal scale.

The observation soil moisture data used to drive the assimila-
tion was the Land Parameter Retrieval Model (LPRM) derived soil
moisture from AMSR-E (Owe et al., 2008). The AMSR-E LPRM
derived soil moisture has been shown to provide improved soil
moisture when compared to other algorithms (Crow et al., 2010).
Additionally, the LPRM soil moisture data set has been validated
under different physiographic conditions and widely used in sev-
eral studies including Pipunic et al. (2011), Dumedah et al.
(2011), Champagne et al. (2010), Gruhier et al. (2010), and
Draper et al. (2009).

2.2. The evolutionary data assimilation strategy

Evolutionary algorithms are population based analytical meth-
ods which employ biological evolution and natural selection to
address complex problems (Eiben and Smith, 2003; Coello Coello
et al., 2002; Deb, 2001; Zitzler and Thiele, 1999). In evolutionary
algorithms, a population of candidate members are allowed to
compete based on evaluation conditions, after which the fittest
(i.e. the most competitive) members are naturally selected and
varied to reproduce new members for the population. The candi-
date members have both genotype information relating to their
inherent or decision space properties, and phenotype information
which is their expressed behavior in objective space (Eiben and
Smith, 2003). As a result, the variation and reproduction of mem-
bers are undertaken in genotype (or decision) space, while natural
selection and competition between members occur in phenotype
space. For a land surface model, the genotype represents a vector
string of values which makeup the internal dynamics (states,
parameters, input forcing data) of the model (Dumedah, 2012). A
simplified representation of the genotype is presented in Fig. 2,
where the land surface model components for parameters, initial
states, and forcing data uncertainties are represented as a vector
string of values. The resulting simulated model output is the
expressed behavior of the model representing the phenotype. To
assess the phenotype for multiple evaluation conditions, the con-
cept of Pareto dominance (Zitzler et al., 2004; Deb, 2001;
Goldberg, 1989) is usually employed to account for the multi-
objective evaluation of candidate members.

The EDA employs the multi-objective evolutionary strategy
based on the Non-dominated Sorting Genetic Algorithm – II
(NSGA-II) developed by Deb et al. (2002), in a DA approach that
merges the simulated model output with observation data. The
reproduction and variation of new members is conducted using
crossover and mutation operators that are stochastic, allowing
the generation of diverse members for evaluation. Crossover allows
the sharing of genotype information between competitive mem-
bers, and ensures that new observational data do not overly drive
the assimilation procedure (Dumedah and Coulibaly, 2013;
Dumedah, 2012; Dumedah and Coulibaly, 2012a). The crossover
operation has the capability to retain quality elements of the geno-
type for future assimilation time periods. The diversity in genotype
space for population members is maintained by mutation opera-
tion which perturbs the genetic makeup of members. In phenotype
space, diversity between members is achieved through a crowding
operation, by replacing crowded members with similarly compet-
itive members (Eiben and Smith, 2003; Deb et al., 2002; Coello
Coello et al., 2002). Additional information on the operators in



Fig. 2. A simplified genotype for a land surface model presented as a vector string of
values for model parameters, state variables, and forcing data uncertainties
representing a parameter pathway in decision space. The vector string indicates
the genotype information for a candidate member of a population in the
evolutionary strategy.
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multi-objective evolutionary algorithms can be found in several
sources including Dumedah (2012), Zitzler et al. (2004), Eiben
and Smith (2003), Deb (2001), and Zitzler and Thiele (1999).

The EDA procedure implemented in this study follows
Dumedah and Walker (2013) and Dumedah (2012). The EDA
procedure begins by generating an initial population obtained by
perturbing model parameters, states, and input forcing data. The
population members are applied into CABLE to generate the
ensemble predictions forward in time. A corresponding number
of observation ensemble members are generated based on the
AMSR-E observation soil moisture and its associated uncertainty.
The population members are evaluated by using the ensemble pre-
dictions and observations to determine the absolute difference
(according to Eq. (1)), and the cost function (in Eq. (2)).

AbsDiff ¼ jyi � yo;ij ð1Þ

where yi is the simulated soil moisture from a population member;
yo;i is the observed soil moisture from an observation ensemble
member.

J ¼
Xt

i¼1

JðyiÞ ¼
Xt

i¼1

yi � yb;i

� �2

r2
b

þ
yi � yo;i

� �2

r2
o

( )
ð2Þ

where yb;i is the background (i.e., forecasted) soil moisture for the
ith data point; r2

b is the variance for the background soil moisture;
r2

o is the variance for the observation soil moisture; yi represents
the analysis (i.e., the searched) soil moisture for ith data point
which minimizes JðŷiÞ; and t is the number of data points or the
time (note that t ¼ 1 in this case for sequential assimilation).

The high performing members with optimal compromise
between the simulated output and the observation are selected
and varied to determine new members for the population. This
complete cycle comprising evaluation, selection and variation of
members, and reproduction of new members constitutes one cycle
of a generation. Consequently, the ensemble members undergo
evolution within a population, whereas the population as a unit
undergoes evolution across several generations. At the referenced
generation when population members have been evolved across
several generations, the final evolved members are chosen to rep-
resent the updated members. The updated members, in this case,
are a subset of all members that have been evaluated at the current
assimilation time step. The evolution procedure is repeated to
determine the updated members for each assimilation time step.
It is noted that updated members were seeded between assimila-
tion time steps, and also applied to make model forecasts forward
in time for subsequent assimilation time steps.

2.3. Evolutionary data assimilation approach for model uncertainty
estimation

In the EDA approach, updated ensemble members for each
assimilation time step were obtained as a subset of several
members which have been evaluated and evolved over numerous
generations at each assimilation time period. It is noted that the
genotype information for previous assimilation time steps were
seeded and shared with future assimilation time periods. The pro-
cedure to seed updated members for future time periods is an
established evolutionary strategy, elitism (Zitzler et al., 2004;
Eiben and Smith, 2003; Deb, 2001), allowing competition between
old and new population members with the capacity to retain qual-
ity members for future generations. The uncertainties in the simu-
lated output and the observation were accounted for through the
cost function and the absolute bias in phenotype space. Accord-
ingly, the changes in genotype space measure the temporal
changes of the updated members which is indicative of the internal
dynamics of the model, needed for the optimal compromise
between the model and the observation.

It is important to emphasize the unique nature of the updated
ensemble members obtained from the EDA procedure. The updated
members are equally competitive, in the sense that each member
provides a unique tradeoff between the simulated output and the
observation. Based on the evaluation conditions, the updated
members were not dominated by other members, that is, they
are fitter than all other members which have been evaluated at
each assimilation time period. For a given assimilation time period,
the updated members represent the optimal model dynamics (in
terms of parameters, states, and input forcing data), chosen from
among several scenarios, to best merge the simulated output to
the observation with the least tradeoff. Given these unique proper-
ties of the updated ensemble members obtained from the EDA, it is
crucial to assess the model behavior, the tradeoffs, the model-
observation dynamics, and the dynamics in genotype space
through time with the potential to learn about the various compo-
nents of the model.

In genotype space, the updated ensemble members can be
examined in two different phases: (i) convergence, and (ii) param-
eter pathway evaluations. The convergence analysis evaluates the
updated members using clustering analysis on a parameter-by-
parameter basis across all assimilation time steps, to obtain the
level of convergence achieved for each parameter. The estimation
of convergence for model parameters, states, and input forcing
uncertainty follows the procedure outlined in Dumedah and
Walker (2013). For the updated members, the sub-string of the
genotype comprising model parameters and states represent the
landscape properties from the model standpoint. Consequently,
their clustering across time is equivalent to the spatial variations
in the landscape properties data. That is, the convergence estimate
approximates the spatial variation in the landscape properties data
in concert with the model-observation dynamics.

Given that the dynamics between the simulated output and the
observation is optimally compromised in phenotype space, the
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associated changes in genotype space need evaluation. Accord-
ingly, the persistent temporal clustering for the individual model
parameters in genotype space represents the spatial variations in
landscape properties, needed to obtain the compromised merging
between the simulated output and the observation. It is noted that
the convergence estimate is the minimum uncertainty needed for
each model parameter, and state variable, to obtain a consistently
optimal compromise between the model and observation across all
assimilation time periods. As a result, the estimated convergence
levels approximate the minimum threshold for landscape spatial
variability, within which to obtain the optimal merger between
the simulated output and the observation across the assimilation
time periods.

It is noteworthy that the temporal changes in model parameters
are due to a selection from among several parameter scenarios,
derived from a spatially varied landscape. That is, the temporal
changes in model parameters were mainly in response to spatial
variations in the landscape, rather than the fluctuations in meteo-
rological forcing data. In concert with the landscape data, the
ensemble of model parameter values are equally valid because
they represent a natural mix of landscape properties. In brief, the
landscape is spatially varied in a way that is best represented with
an ensemble of model parameter values. Therefore, given the spa-
tial variations in the landscape, the estimated convergence repre-
sents the corresponding optimal uncertainty in model states and
parameters from the model standpoint. The combined EDA and
clustering procedure is capable to determine the optimal uncer-
tainty in model parameters and states needed to account for a
given spatial variation in the landscape.

In the parameter pathway analysis, the updated members are
examined using multi-dimensional clustering to determine the
persistent parameter pathway in decision space. The updated
members for each assimilation time step represent the optimal val-
ues for model parameters, state variables, and the forcing data
uncertainties. The multi-dimensional clustering of these updated
members across all assimilation time steps determines the overall
optimal parameter pathway, and therefore the individual uncer-
tainties for model parameters, states, and input forcing variables.
That is, given a perfect model structure, the estimated parameter
pathway approximates the uncertainty for each model parameter,
state variable, and input forcing data uncertainty. The estimated
parameter pathway represents the minimum uncertainty interval
within which to obtain a consistently optimal compromise in
phenotype space across all time periods. The significance of the
estimated parameter pathways lies in the monitoring of model
components, which are intricately linked through the updated
members, and their temporal persistence under different input
data, states and observation conditions.

It is noted that the clustering analysis performed for both con-
vergence and parameter pathway evaluations provides an interval
for model parameters, state variables, and forcing data uncertain-
ties. The clustering performed in both cases explored the degree
of commonality across assimilation time periods: for each param-
eter at a time in the convergence case, and simultaneously for all
parameters in a multi-dimensional approach for the parameter
pathway case. The significance of the estimated clusters is due to
their persistence across the assimilation time periods, supported
by the level of commonality between the individual time steps.
Consequently, this uncertainty estimation procedure accounts for
the inaccuracies due to changes in observation and input forcing
data under different time periods, and the associated model
response with respect to these changes. It is important to point
out that other analytical classifiers can be used to assess the distri-
bution of the updated ensemble members, and that the choice of
cluster analysis should not be thought of as the norm. The rationale
for the use of clustering (Dumedah et al., 2010) is, if and only if, a
pattern of clustering is observed following the ‘knee’ testing proce-
dure outlined in Thorndike (1953).

The convergence and parameter pathway evaluations estimate
specific uncertainties for landscape spatial variability, model
parameters, initial states, and input forcing variables. These uncer-
tainty estimates represent significant error sources for a perfect
model structure, and it is assumed that the remaining uncertainty
in the simulated model output is due to model physics.
2.4. Setup of model and data assimilation runs

The EDA procedure was used to assimilate the AMSR-E derived
soil moisture into CABLE at a daily time step from July 1, 2006 to
June 31, 2007. A population of 40 members was evolved across 5
generations, with 20 updated members selected for each assimila-
tion time step. That is, for each assimilation time step an ensemble
of 200 (i.e. 40� 5) members were evaluated after which 20
optimal ones were selected as the updated members. The initial
population members were generated based on the uncertainty
intervals for model parameters, states, and input forcing variables
in Table 1. For subsequent population members and assimilation
time steps, the uncertainty values for model parameters, states,
and forcing variables were derived from the population members,
with the uncertainties constrained to the lower and upper bounds
found in Table 1. It is noted that the original values for model
parameters and states were determined by soil and land cover data
in concert with the CABLE model. Using these original values, the
model parameters were perturbed using a relative measure, such
that an ensemble value for a model parameter is always relative
to the original model parameter value determined from the land-
scape properties data. Similarly, the input forcing variables were
perturbed using a relative measure. The state variables were also
perturbed using a relative measure from their updated values.

The observation uncertainty used for the AMSR-E derived soil
moisture was set to 0.05-m3=m3 (Pipunic et al., 2011), whereas
the simulated soil moisture uncertainty was derived adaptively
from the updated population members. It is important to point
out that the simulated soil moisture for the first layer (i.e., top
2.2-cm) in CABLE were used in the evaluation against the observa-
tion AMSR-E soil moisture, since the AMSR-E observation is equiv-
alent to the top �2-cm soil moisture. Following the standard
NSGA-II implementation, a crossover probability of 0.8 and a muta-
tion probability of 1=m (where m is the number of variables) were
used to perturb and reproduce new population members.
3. Results and discussion

3.1. Evaluation of the updated soil moisture

A typical evaluation of the assimilation procedure is the com-
parison of its updated estimates against the open loop estimate
and some ‘truth’ estimates. The open loop soil moisture was deter-
mined by using CABLE input values, which are randomly selected
from the minimum and maximum bounds of model parameters,
initial states, and forcing variables in Table 1. The soil moisture
comparison between the open loop and the updated estimate is
shown in Fig. 3, where the AMSR-E is taken as the truth estimate
for the surface layer. The assimilation procedure has improved
upon the open loop estimates with reductions in both root mean
square error (RMSE) and bias by 0.066 m3/m3 and 0.063 m3/m3

respectively. These improvements amount to about 60% reduction
in RMSE and about 70% reduction in bias. Usually, an increased
accuracy in the updated estimate of the surface soil moisture rela-
tive to the assimilated observations is expected against the open
loop estimate, so additional evaluation of the updated estimate is



Table 1
Description of model parameters, initial states and input forcing variables for the CABLE model. These model parameter
intervals were estimated in concert with land cover, soil and meteorological forcing data in the Yanco area.

Parameter Description Interval (%)

Model parameters
clay Fraction of soil which is clay (–) �10
sand Fraction of soil which is sand (–) �10
silt Fraction of soil which is silt (–) �10
froot Fraction of roots in each soil layer (–) �10
albsoil Snow free shortwave soil reflectance fraction (–) �10
bch Parameter b, Campbell eqn 1985 (–) �10
css Heat capacity of soil minerals (J/kg/C) �10
hyds Hydraulic conductivity at saturation (m/s) �10
rhosoil Density of soil minerals (kg/m3) �10
sucs Suction at saturation (m) �10
sfc Fraction of soil volume which is water at field capacity (–) �10
ssat Fraction of soil volume which is water at saturation (–) �10
swilt Fraction of soil volume which is water at wilting point (–) �10

Meteorological forcing variables
SWdown Downward shortwave radiation (W/m2) �10
LWdown Downward longwave radiation (W/m2) �10
Tair Near surface air temperature (K) �10
Qair Near surface specific humidity (kg/kg) �10
Rainf Rainfall rate (mm/s) �10
Wind Surface wind speed (m/s) �10
LAI Leaf area index (m2/m2) �10

Model state variables
SoilMoist Average layer soil moisture (m3=m3) Updated
SoilTemp Average layer soil temperature (K) Updated
CanopInt Canopy intercepted water storage (kg/m2) Updated

Fig. 3. Soil moisture comparison between the open loop, the updated and the calibrated estimates for all grids at the surface soil layer.
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needed. A calibration procedure has been undertaken to match the
AMSR-E soil moisture to the model estimates from CABLE. The
calibrated soil moisture estimates are compared to the updated
estimates in Fig. 3. The calibration procedure also improved upon
the open loop estimation, yet its accuracy is not up to those
obtained from the updated estimate. The calibration and the
updated estimates have similar bias values, whereas a superior
RMSE was obtained for the updated estimate with a reduction of
about 37%.

Additionally, the assimilation procedure was assessed by com-
paring the updated estimates to OzNet in-situ soil moisture in
Fig. 4. The OzNet comparison to the AMSR-E soil moisture (in the
left-hand panel) shows an inaccurate temporal relationship
between the two data sets. This inaccurate temporal accuracy is
reflected in the OzNet soil moisture comparison to the updated
estimate, with a slightly improved RMSE and bias values in com-
parison to the AMSR-E data. The calibrated estimate, which is
based on the matching between the OzNet in-situ soil moisture
and the CABLE model estimate is shown in the right-hand panel
(in Fig. 4). The comparisons show that the calibration and the
updated estimates have similar evaluation accuracies in both RMSE
and bias values. That is, the updated estimate is no worse than the
inaccuracy that exists between the OzNet and AMSR-E data sets,
and has an accuracy comparable to those obtained from the cali-
bration estimate.

3.2. Estimation of minimum uncertainty due to landscape spatial
variation

To estimate the minimum uncertainty for model parameters
and states needed to account for the landscape spatial variations,
the parameter-by-parameter clustering described in Section 2.3
was performed on all the updated members to determine the dom-
inant clusters. The updated members comprise an archive of all
ensemble members obtained for each assimilation time step. The
estimated dominant clusters were used to represent convergence



Fig. 4. OzNet in-situ soil moisture comparison to the AMSR-E, the updated estimate, and the calibrated estimate based on OzNet data for all model grids overlapping the 13
OzNet monitoring stations in the Yanco area.
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estimates for model parameter and states, which in turn, were
equated to the minimum uncertainty required from the model
standpoint to accommodate the spatial variations in the landscape.
A test of clustering according to the knee approach (Thorndike,
1953), was performed for each variable in decision space, and the
suitable number of clusters was selected to group the parameter
values. The selected cluster for each parameter and their centroid,
minimum and maximum bounds, and their coverage of the entire
decision space are presented in Table 2. The coverage, in this case,
is a frequency based estimate which was determined as the ratio of
the number of members in the largest membership cluster to the
total number of updated members available across all assimilation
time steps. This frequency based estimate of the coverage is
equivalent to the level of convergence attained for each model
parameter (Dumedah and Walker, 2013).

The clustering results show that the number of cluster groups
range between 4 and 8, with 80% of the parameters having a cov-
erage greater than 50%. The plot of the dominant cluster bounds,
and the updated bound in relation to the initial bound for all deci-
sion variables are shown in Fig. 5. The updated bound represents
the minimum and maximum values obtained for each updated
decision variable across all assimilation time steps. It is noted that
even though the updated bound is presented as a continuous
interval, the frequency of values within this interval is not
Table 2
Dominant intervals for model parameters, initial states, and input forcing variables, represe
parameter) space is given by number of clustering groups, their centroids and lower and u
representing a perfectly converged cluster and a value close to zero represents a sensitive

Parameter Clusters Centroid

clay 7 �0.0343
sand 8 0.0046
silt 6 0.0058
froot 7 �0.0322
albsoil 4 �0.0069
bch 5 �0.0048
css 6 0.0041
hyds 5 �0.0171
rhosoil 5 �0.0072
sfc 4 �0.0209
ssat 6 �0.0145
sucs 6 �0.0111
swilt 6 �0.0301
SWdown 5 �0.0752
LWdown 8 �0.0749
Tair 5 0.0348
Qair 7 0.0919
Rainf 5 0.0837
Wind 7 0.0900
LAI 5 0.0901
uniformly distributed. Given that the updated ensemble is a
selected subset of all evaluated members, the intervals for individ-
ual model parameters, states and forcing variables are unique. The
proportion of the area covered by the updated bound as a percent-
age of the original bound is 75%, indicating a 25% reduction in the
search space of the original bound. However, the dominant cluster
bound has further reduced the original bound by 76%. The propor-
tion of the area covered by the dominant cluster as a percentage of
the updated bound is about 30%, representing a 70% reduction of
the search area covered by the updated bound. In general, an over-
all clustering of 6 groups was found to have a frequency based cov-
erage of about 56%, with a 70% reduction of the updated bound.
The estimated values of the dominant cluster bound are equivalent
to the minimum uncertainty needed from the model standpoint to
account for the landscape spatial variations.

3.3. Estimation of the minimum uncertainty for model components

While the individual uncertainties that account for landscape
spatial variations in the above section are important, the simulated
soil moisture from the model is subject to the simultaneous
interactions from all model components. Consequently, the uncer-
tainties for model parameters, states and input forcing data were
quantified through a multi-dimensional clustering analysis of the
nted by the largest membership clusters. The definition of the coverage in genotype (or
pper bounds. The coverage is expressed in percentage, with a maximum value of 100
cluster.

Lower bound Upper bound Coverage (%)

�0.0556 �0.0156 50.45
�0.0112 0.0110 44.58
�0.0112 0.0199 59.11
�0.0556 �0.0156 44.30
�0.0556 0.0199 73.94
�0.0556 0.0199 79.21
�0.0112 0.0199 51.81
�0.0556 0.0110 72.54
�0.0556 0.0199 61.66
�0.0556 0.0199 68.05
�0.0556 0.0110 65.31
�0.0556 0.0199 70.73
�0.0556 �0.0156 55.24
�0.0867 �0.0600 42.18
�0.0867 �0.0600 35.19
�0.0023 0.0598 43.15

0.0643 0.0998 74.70
0.0643 0.0998 49.53
0.0643 0.0998 57.78
0.0643 0.0998 32.90



Fig. 5. Model parameter/variable intervals showing the original intervals, the updated bound obtained from the EDA procedure, and the dominant clusters obtained through
the assessment of the updated members in genotype space.
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updated members, as described in Section 2.3, to determine the
optimal parameter pathway. It is worth emphasizing that the
parameter pathway analysis accounts for the inter-connectedness
of model components, together with the temporal persistence of
parameter values across the assimilation time steps. Using the
knee approach (Thorndike, 1953) for the test of clustering, the
appropriate number of cluster groups was found to be 8, with an
overall frequency based coverage of 50%. The largest membership
cluster found was used to represent the dominant parameter path-
way (or simply, the dominant pathway), and is shown in Fig. 6.

The multi-dimensional clustering result shows that the area
covered by the dominant pathway as a percentage of the original
bound is about 32%, indicating a 68% reduction in the original
search area. The area covered by the dominant pathway expressed
as a percentage of the updated bound is 38%, representing a 62%
reduction in the search area of the updated bound. The estimated
dominant pathway represents the temporally stable values for
model parameters, states, and forcing data uncertainties, which
have remained persistent across all the assimilation time steps.
The estimated values of the dominant pathway are equivalent to
the minimum uncertainties needed for the individual model
parameters, states, and input forcing variables to obtain a
comparable estimate of the updated soil moisture across all the
assimilation time steps.
Fig. 6. Model parameter/variable intervals showing the original intervals, the updated
obtained through the assessment of the updated members in genotype space.
To assess the robustness of the estimated dominant pathway,
an ensemble of 20 members was generated based on the dominant
pathway and applied into CABLE to estimate the soil moisture. The
rational for this estimation was to compare the estimated soil
moisture from the dominant pathway to the updated soil moisture
obtained through the assimilation procedure. The AMSR-E soil
moisture comparison to the estimate from the dominant pathway
is shown in Fig. 7, with the updated estimate shown earlier in
Fig. 3. The soil moisture comparison shows that the accuracy
decline from the updated estimate to the dominant pathway esti-
mate is about 47% (�0.02 m3/m3) based on the RMSE, together
with an improved estimate of bias in the dominant pathway
output.

Additionally, the dominant pathway estimate is evaluated
against the OzNet in-situ soil moisture in Fig. 8, with the calibrated
and updated estimates shown earlier in Fig. 4. In this case, the
dominant pathway improved the estimated soil moisture when
compared with the calibrated and updated estimates, based on
both the RMSE and bias values. When compared with the cali-
brated estimate, the dominant pathway estimate has reduced the
RMSE value by 17%, and the bias value by 57%. A higher accuracy
increase was found when compared to the updated estimate, with
a 28% and 68% decline in RMSE and bias respectively from the
dominant pathway estimate. The higher soil moisture estimation
bound obtained from the EDA procedure, and the dominant parameter pathway



Fig. 7. Comparison between the AMSR-E soil moisture and the estimate from the
dominant pathway.
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accuracy from the dominant pathway demonstrates its high pre-
diction potential given its small number of ensemble membership
and limited uncertainty interval.

3.4. Significance and implication of findings

The predictive potential demonstrated through the improved
soil moisture estimates obtained from the assimilation procedure
and its dominant pathway is important. But the key findings of this
study are focused on learning about the land surface model from
decision space while using the model predictions in objective
space only as a guide. The EDA approach has uniquely facilitated
this learning process, providing updated members which capture
the model dynamics both in decision space and objective space
through time. The EDA being a natural union between the evolu-
tionary strategy and temporal updating of data assimilation,
accommodates the simultaneous interactions between model
components and their persistence through time. But the key poten-
tial of the EDA contribution lies in the assessment of its updated
members, mainly in decision space. While the updated member-
ship is massive with several strings of values, some of which
may be redundant at certain time periods, their inclusion is
important to maintain the adaptive nature of the updated
Fig. 8. OzNet in-situ soil moisture comparison to the estimate from dominant
pathway for all model grids overlapping the 13 OzNet monitoring stations in the
Yanco area.
ensemble with the capability to accommodate changing environ-
ment (landscape, climate, etc) conditions.

The assessment of the updated members in decision space
through clustering analysis quantified the minimum uncertainty
needed from the model standpoint to accommodate the spatial
variations in the landscape. While this uncertainty is usually
ignored or not accounted for in the past, our findings showed the
significance of considering this inaccuracy in the diagnosis of
model uncertainty. Additionally, the evaluation of the updated
members demonstrates the need for finding robust pathways in
decision space, instead of single scenarios of parameter values.
Our findings in the dominant pathway illustrate that values for
model parameters, states, and forcing data uncertainty can be tem-
porally persistent over several assimilation time periods, with the
potential for trading-space-for-time (Troch et al., 2009) analysis.
Moreover, the assessment of the updated members showed how
the individual model parameters, states and input forcing variables
respond from the model standpoint to changes in observation data.
For example, the model response to precipitation data was to
increase rainfall input when accounting for landscape spatial vari-
ations, but when considered in relation to other parameters, the
model response was to moderate/reduce the rainfall input. Another
distinct example is the model response to LAI data; the model
needed more vegetation cover to account for the landscape spatial
variations whereas the dominant pathway analysis showed that
less vegetation cover is needed when considered in relation to
other parameters.

Additionally, it is noted that the uncertainty intervals for the
individual model parameters, states and forcing variables repre-
sent their sensitivity levels in accordance with the definition of
robustness in Willink (2008), Ross et al. (2008), and Deb and
Gupta (2006). That is, smaller uncertainty intervals represent
highly sensitive parameters, where small changes in their uncer-
tainty values will produce considerable model response in the soil
moisture output. The larger uncertainty intervals signify robust
parameters, where small changes in their uncertainty values will
not cause considerable changes in the simulated soil moisture.
When accounting for the spatial variability of the landscape, all
the forcing variables were found to be sensitive in comparison to
the model parameters and states. Since the landscape properties
are more closely linked to model parameters and states, their
uncertainty intervals were much larger, thus incorporating the
different aspects of the landscape properties. In the dominant
pathway evaluation, the uncertainty intervals were mostly found
to be robust mainly because these intervals focused on the inter-
connectedness of all model components.

Furthermore, our findings showed that the path towards the
diagnosis of model inaccuracy is not straightforward, and that
frameworks are needed to study the model dynamics, particularly
in decision space, and for the quantification uncertainties in
relation to both individual and combined impacts of model compo-
nents. The EDA approach and the subsequent assessment of its
updated members have been shown to quantify uncertainties for
model components, with the potential to steer future research
towards further diagnosis of model weakness.
4. Summary and conclusion

This study has examined the uncertainties associated with
model parameters, initial states, input forcing variables, and land-
scape spatial variations for the CABLE land surface model in a soil
moisture estimation for the Yanco area in south-east Australia. The
uncertainties for the model components were assessed by assimi-
lating the LPRM retrieved soil moisture from the AMSR-E into the
CABLE model through the EDA approach. The comparison of the
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updated soil moisture to both open loop and calibrated estimates
showed improved estimation accuracy from the EDA procedure.
When the updated members were compiled in decision space
across all assimilation time periods, it was found to cover 75% of
the original uncertainty bound, indicating a 25% reduction in the
original uncertainty interval.

The updated ensemble members were analyzed mainly in deci-
sion space through clustering analysis to quantify the uncertainties
for specific model components. The assessment of the updated
members in decision space was performed in two phases: (i) in a
one-dimensional parameter-by-parameter clustering to assess
the uncertainty associated with landscape spatial variations, and
(ii) in a multi-dimensional clustering to determine the temporally
persistent parameter pathway with dominant coverage in decision
space. The findings from the parameter-by-parameter clustering
analysis showed that the overall minimum uncertainty needed
from the model standpoint to account for the landscape spatial
variability was 24% of the original uncertainty bound and 30% of
the updated bound, representing a search space reduction of 76%
and 70% for the original and updated bounds respectively. More-
over, it was found that the model parameters and initial states
were generally more robust in comparison to forcing variables
when accounting for the spatial variability of the landscape.

The estimated dominant pathway was found to cover 32% of the
original uncertainty bound and 38% of the updated bound, repre-
senting a search area reduction of 68% and 62% for the original
and updated bounds respectively. The temporal persistence of
the dominant pathway showed its robustness level, with small
changes in the uncertainty bound for individual parameters, result-
ing in less dramatic (or minor) changes in the model response.
Additional evaluation of the dominant pathway showed that its
estimated soil moisture can reproduce (or approximate) the
updated estimate with a RMSE smaller than 0.02 m3/m3 and with
superior bias estimate. When evaluated against OzNet in-situ soil
moisture, the dominant pathway estimate of soil moisture was
found to be more accurate than both the calibrated and the
updated estimates. Thus, the dominant pathway is reasonably rep-
resentative in both: (i) decision (or genotype) space representing a
38% area coverage and a 50% frequency based coverage of the
updated bound, and (ii) objective (or phenotype) space approxi-
mating the updated soil moisture with comparable accuracy levels.

These findings are significant and provide solid steps towards
integrated assessment of the weaknesses in land surface prediction
models. Moreover they point to both a diagnostic and a prediction
potential of the EDA approach, providing an assessment of its
updated ensemble membership. It is important that future studies
develop additional techniques to assess the updated members,
with the capability to identify landmarks in decision space. Addi-
tional methodologies are needed for the assessment of the updated
membership to map out unique pathways which are associated
with specific model response in objective space, for example,
model response to extreme weather conditions, extreme changes
in the landscape or landuse change.
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