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s u m m a r y

Soil moisture information is critically important for water management operations including flood
forecasting, drought monitoring, and groundwater recharge estimation. While an accurate and continu-
ous record of soil moisture is required for these applications, the available soil moisture data, in practice,
is typically fraught with missing values. There are a wide range of methods available to infilling
hydrologic variables, but a thorough inter-comparison between statistical methods and artificial neural
networks has not been made. This study examines 5 statistical methods including monthly averages,
weighted Pearson correlation coefficient, a method based on temporal stability of soil moisture, and a
weighted merging of the three methods, together with a method based on the concept of rough sets.
Additionally, 9 artificial neural networks are examined, broadly categorized into feedforward, dynamic,
and radial basis networks. These 14 infilling methods were used to estimate missing soil moisture records
and subsequently validated against known values for 13 soil moisture monitoring stations for three dif-
ferent soil layer depths in the Yanco region in southeast Australia. The evaluation results show that the
top three highest performing methods are the nonlinear autoregressive neural network, rough sets
method, and monthly replacement. A high estimation accuracy (root mean square error (RMSE) of about
0:03 m3=m3) was found in the nonlinear autoregressive network, due to its regression based dynamic
network which allows feedback connections through discrete-time estimation. An equally high accuracy
(0.05 m3=m3 RMSE) in the rough sets procedure illustrates the important role of temporal persistence of
soil moisture, with the capability to account for different soil moisture conditions.

Crown Copyright � 2014 Published by Elsevier B.V. All rights reserved.

1. Introduction

Moisture in the upper layers of the soil is a vital component of
the total water balance in the Earth-atmosphere system, playing a
crucial role in several hydrological processes. Soil moisture is one
of the main factors influencing the partitioning of rainfall into
infiltration and runoff (Mahmood, 1996; Thornthwaite, 1961),
controlling the exchange of water and energy between the land
surface and the atmosphere (Legates et al., 2010; Berg and
Mulroy, 2006; Trenberth and Guillemot, 1998; Houser et al.,
1998; Reynolds et al., 2002), and the subsurface water drainage
that influences the leaching of contaminants to groundwater
(Langevin and Panday, 2012; Legates et al., 2010). The reliability
of the above mentioned applications usually depends on the
availability of a continuous time series of soil moisture record.
Typically, soil moisture data acquired through ground (or in situ)
measurements have missing values due to equipment malfunction,

logger storage overruns, data retrieval problems, and/or severe
weather conditions (Dumedah and Coulibaly, 2011; Coulibaly
and Evora, 2007). Consequently, the infilling of missing soil
moisture values becomes a necessary procedure to generate a con-
tinuous time series record.

Several studies have infilled hydrologic variables including
precipitation (Mwale et al., 2012; Nkuna and Odiyo, 2011;
Coulibaly and Evora, 2007; French et al., 1992; Luck et al.,
2000; Abebe et al., 2000; ASCE Task Committee on Application
of Artificial Neural Networks in Hydrology, 2000b), streamflow
(Mwale et al., 2012; Ng and Panu, 2010; Ng et al., 2009;
Elshorbagy et al., 2000; ASCE Task Committee on Application of
Artificial Neural Networks in Hydrology, 2000b), evapotranspira-
tion (Abudu et al., 2010), air temperature (Coulibaly and Evora,
2007; Schneider, 2001), and soil moisture (Gao et al., 2013;
Wang et al., 2012; Dumedah and Coulibaly, 2011). The infilling
methods employed in the above studies ranged from statistical
methods (Gao et al., 2013; Wang et al., 2012; Dumedah and
Coulibaly, 2011) to artificial neural networks (Mwale et al.,
2012; Nkuna and Odiyo, 2011; Coulibaly and Evora, 2007), with
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varying levels of accuracy. While several studies have explored
different infilling approaches, very few studies have been
undertaken to actually reconstruct soil moisture records using
both statistical and artificial neural network methods. As a result,
this study investigates 5 statistical and 9 artificial neural network
methods, a total of 14 methods to estimate missing soil moisture
records. The soil moisture monitoring network located in the
Yanco region of southeast Australia (Smith et al., 2012) is used
as the demonstration data set.

The statistical methods include monthly replacement, weighted
Pearson correlation, station relative difference, and a weighted
merger of the three statistical methods. Moreover, a method based
on the concept of rough sets (Pawlak, 1997; Pawlak et al., 1995;
Pawlak, 1982) was used to determine patterns of temporal stability
of soil moisture to account for different moisture conditions. The
artificial neural networks (ANNs) evaluated in this stud are broadly
categorized into feedforward group, dynamic group and radial
basis group. Detailed descriptions for the statistical and ANN
methods are provided in the methods section. The selected
approaches constitute a varied range of methodologies to facilitate
a comprehensive inter-comparison between a range of statistical
and ANNs with the potential to identify high performing methods
to infill missing soil moisture. The infilling methods have been
evaluated for their estimation accuracy across 13 soil moisture
monitoring stations independently at three different soil layer
depths in the Yanco area. Moreover, an evaluation of the soil
moisture across the 13 monitoring stations in space and their per-
sistence of relative moisture conditions over several time periods
was demonstrated. These space–time distributions are presented
for the entire period of the chosen soil moisture data, and also
on a month-by-month basis.

2. Study area and soil moisture data

The Yanco area shown in Fig. 1 is a 60 km� 60 km area, located
in the western plains of the Murrumbidgee Catchment in southeast
Australia where the topography is flat with very few geological
outcroppings. Soil texture types are predominantly sandy loams,
scattered clays, red brown earths, transitional red brown earth,
sands over clay, and deep sands. According to the Digital Atlas of
Australian Soils, the dominant soil is characterized by plains with
domes, lunettes, and swampy depressions, and divided by contin-
uous or discontinuous low river ridges associated with prior
stream systems (McKenzie et al., 2000). The area is traversed by
present stream valleys, layered soil or sedimentary materials com-
mon at fairly shallow depths; chief soils are hard alkaline red soils,
gray and brown cracking clays.

The Yanco area has 13 soil moisture profile stations which form
part of the OzNet hydrological monitoring network (www.ozne-
t.org.au) in the Murrumbidgee Catchment. Generally, profile soil
moisture monitoring at all the stations in the Yanco area have been
in operation since 2004 using Campbell Scientific water content
reflectometers (CS615, CS616) and the Stevens Hydraprobe for four
soil layers: 0–5 cm (or 0–7 cm), 0–30 cm, 30–60 cm and 60–90 cm
(Smith et al., 2012). Sensor response to soil moisture varies with
salinity, bulk density, soil type and temperature, so a site-specific
sensor calibration has been undertaken using both laboratory
and field measurements for both the reflectometers and the
Hydraprobes (Western et al., 2000; Western and Seyfried, 2005;
Yeoh et al., 2008). As the CS615 and CS616 sensors are particularly
sensitive to soil temperature fluctuations (Rüdiger et al., 2010),
temperature sensors were installed to provide a continuous record
of soil temperature at the midpoint along the reflectometers.

Fig. 1. Yanco study area in south-east Australia showing the location of soil moisture stations and the soil texture distribution.
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Calibration relationships between the sensor observations, coin-
ciding with traditional Time-Domain Reflectometer (TDR)
measurements and thermo-gravimetric measurements have been
established for both sensors. The average root mean square error
was found to be 0:03 m3=m3 for both the Campbell Scientific
(Yeoh et al., 2008) and Hydraprobe (Merlin et al., 2007) sensors.
The soil moisture observations were made at half-hourly time
intervals, but it is noted that the infilling procedure was applied
to an hourly version of the data.

3. Methods for infilling missing soil moisture records

Using the raw soil moisture data, a complete data set was
retrieved by removing all periods with missing records, such that
all soil moisture records were temporally consistent (or common)
to all stations for a specific soil layer (Dumedah and Coulibaly,
2011; Coulibaly and Evora, 2007). In other words, the complete
data set is spatially complete in a way that each record in the data
set at any one station has corresponding records available across
the remaining 12 stations for the specified soil layer. As a result,
three complete data sets were derived, with each data set corre-
sponding to one of the first three soil layer depths. The rationale
to generate the complete data set in this manner is partly because
soil moisture records are usually missing at the same station for all
three soil depths at any given time period. This approach to gener-
ate the complete data record allows the infilling of soil moisture for
any soil depth using information from other monitoring stations,
when records from other soil depths are often missing. That is,
when soil moisture is missing at the one (e.g., surface) soil layer
for any given monitoring station, there is high probability that
the soil moisture is also missing at the other (e.g., second and third)
soil layers for the same station. In practice, it is easier to find data
at other monitoring stations to infill soil moisture for the station
with the missing record for the specified time period.

It is noted that soil moisture data from only the first three soil
layers are used in this study due to limited records available across
stations for the 60–90 cm soil layer. The complete data set was
divided into two: a training data set, and a validation data set.
Using the complete data set, 20% of its records were randomly
removed (temporally and independent of monitoring station) to
makeup the validation data set, with the remaining 80% constitut-
ing the training data set for model development. As a result, all the
infilling methods were developed or trained using the training data
set, and subsequently evaluated against known values in the vali-
dation data set. The validation data of 20% represents a consider-
able proportion of missing soil moisture compared to the
proportion of missing values found in past studies, including Gao
et al. (2013); Wang et al. (2012); Dumedah and Coulibaly (2011);
and Coulibaly and Evora (2007). The descriptive statistics along
with the number of records for the training and validation data sets
are summarized in Table 1. A time series plot of the training and
validation data sets for the first and second soil layers at station
Y1 is shown in Fig. 2. This plot also illustrates the huge disparities
in the number of records and the time periods when soil moisture
is available between different soil layer depths. It is noted that the
number of records in the training and validation data sets for spe-
cific soil layers is the same across all the monitoring stations, in
accordance with the definition of the complete data. Although
the number of records in the validation data set is the same for a
specific soil layer, their time periods are unique as they were ran-
domly generated for each station independently. The infilling
methods applied for estimating the missing soil moisture are
described in the following sections.

3.1. Station layer relative difference method

The station layer relative difference (SLRD) method is based on
the concept of temporal stability of soil moisture, and uses
parametric test of relative difference, which was proposed by

Table 1
Number of records, mean and standard deviation of soil moisture (m3=m3) for training and validation data sets for the three soil layers across all 13 soil moisture monitoring
stations.

Station Statistic 0–5 cm 0–30 cm 30–60 cm

Training Validation Training Validation Training Validation

1–13 Records 5500 1375 15577 3895 15577 3895
1 Mean 0.083 0.079 0.146 0.147 0.264 0.263

STD 0.045 0.043 0.036 0.037 0.049 0.047
2 Mean 0.184 0.183 0.215 0.215 0.248 0.246

STD 0.068 0.067 0.075 0.077 0.106 0.104
3 Mean 0.125 0.127 0.125 0.125 0.153 0.152

STD 0.033 0.033 0.041 0.041 0.042 0.040
4 Mean 0.171 0.173 0.272 0.271 0.223 0.223

STD 0.077 0.078 0.091 0.091 0.071 0.071
5 Mean 0.147 0.144 0.167 0.166 0.285 0.285

STD 0.066 0.064 0.040 0.039 0.045 0.045
6 Mean 0.158 0.154 0.177 0.181 0.269 0.267

STD 0.104 0.105 0.105 0.107 0.080 0.077
7 Mean 0.112 0.112 0.187 0.187 0.361 0.361

STD 0.052 0.052 0.064 0.063 0.037 0.038
8 Mean 0.101 0.103 0.106 0.106 0.235 0.236

STD 0.073 0.073 0.038 0.038 0.024 0.025
9 Mean 0.206 0.202 0.174 0.175 0.377 0.377

STD 0.090 0.090 0.046 0.044 0.057 0.058
10 Mean 0.155 0.152 0.221 0.220 0.326 0.327

STD 0.076 0.076 0.102 0.101 0.079 0.080
11 Mean 0.113 0.115 0.267 0.269 0.403 0.402

STD 0.073 0.074 0.118 0.119 0.111 0.111
12 Mean 0.143 0.145 0.236 0.237 0.337 0.343

STD 0.066 0.066 0.089 0.089 0.091 0.089
13 Mean 0.166 0.169 0.206 0.204 0.247 0.247

STD 0.075 0.077 0.107 0.106 0.077 0.075
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Vachaud et al. (1985). The relative difference, dij is estimated
according to Eq. (1); where hij is soil moisture content at location
i on time j; n is the number of sampling locations, and �hj is the spa-
tial average of soil moisture content at time j which is defined in
Eq. (2). The estimation is summarized by finding the mean, �di

and standard deviation, rðdiÞ.

dij ¼
hij � �hj

�hj
ð1Þ

�hj ¼
1
n
�
Xn

j¼1

hij ð2Þ

The SLRD was originally used to infill missing soil moisture
records in Dumedah and Coulibaly (2011), and it is applied in this
study to estimate the mean and standard deviation of relative dif-
ference for each soil moisture station using each of the three soil
layers. That is, for each soil layer the overall relative difference is
estimated for each station using data from a corresponding soil
layer across all stations. The SLRD procedure estimates the relative
wetness between the stations, indicating temporal persistence of

spatial pattern for soil moisture across stations. The relative differ-
ence was estimated month-by-month and stored in a lookup (or
reference) table for use in estimating missing soil moisture accord-
ing to Eqs. (3) and (4).

hest ¼ hi þ hi � �di ð3Þ
1
r2 ¼

1
r2

i

þ 1
r2
ðdiÞ

ð4Þ

where hest is the estimated soil moisture, r2 is the variance of the
estimated soil moisture, hi is the average soil moisture from other
stations for the current time with its associated variance r2

i , and
�di is the lookup (or reference) relative difference with its variance
r2
ðdiÞ.

3.2. Monthly average replacement method

Using the training data, the monthly (January through Decem-
ber) average and standard deviation are estimated for each moni-
toring station and soil moisture layer. The monthly average

Fig. 2. Time series plots (with horizontal axis in ‘year month day hour’ date format) of training and validation data sets for station Y1 for surface and second soil layers.
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replacement (MAR) uses the estimated monthly average and stan-
dard deviation from the training data to replace missing values for
the corresponding month in the validation data.

3.3. Weighted Pearson correlation coefficient method

The weighted Pearson correlation coefficient (WPCC) uses
Pearson correlation coefficient (PCC) as an estimate of the temporal
association between monitoring stations. The PCC values are used
as a weighting factor to estimate missing soil moisture values such
that high PCC values are weighted high and low PCCs are weighted
low. The PCC weight for the ith station is determined according to
Eq. (5), and the missing soil moisture value is estimated using
Eq. (6).

wi ¼
PCCiPn
j¼1PCCj

ð5Þ

hest ¼
Xn

i¼1

hi �wi ð6Þ

where hest is the estimated soil moisture, and hi is the soil moisture
value at the ith neighboring station.

3.4. Merged method

The merged method is an approach adopted in Dumedah and
Coulibaly (2011) to assemble the estimated soil moisture from
other methods based on their variance errors, such that estimates
with high variance errors are weighted less or highly penalized. In
this study, the merged method is used to combine three soil mois-
ture estimates from SLRD, MAR, and WPCC. The weight for the ith
method is determined according to Eq. (7), and the merged soil
moisture is estimated in Eq. (8) with its variance error in Eq. (9).

wi ¼
1=r2

iPn
j¼1 1=r2

j

� � ð7Þ

hest ¼
Xn

i¼1

hi �wi ð8Þ

1
r2 ¼

Xn

i¼1

1
r2

i

ð9Þ

where n is the number of soil moisture monitoring stations; ri is
the variance error for ith method, hest is the estimated soil moisture,
and hi is the soil moisture value for ith method.

3.5. Method based on rough sets

In the SLRD approach, an estimate of the overall relative
difference for each station in relation to the average soil moisture
representing the entire spatial area was used. While the overall
relative difference represents the rank persistence of soil moisture
for each station over long time periods, the unique properties of
certain soil moisture conditions (e.g., extreme dry or wet seasons)
may be over generalized or smoothed. To account for unique prop-
erties of soil moisture conditions, the rough sets theory is used to
determine unique soil moisture groupings across the monitoring
stations, where patterns of relative difference are determined for
each moisture category. A rough set is a classical set with a non-
empty boundary when approximated by another set (Pawlak
et al., 1995; Pawlak, 1982). The concept of rough sets is proficient
for the discovery of hidden patterns and the characterization of
relationships (Dumedah and Schuurman, 2008; Dumedah et al.,

2008; Ohrn, 1999; Pawlak, 1997), which is suitable to categorize
patterns of temporal persistence of soil moisture for different
moisture conditions.

The rationale to employ rough sets is to examine whether a pat-
terned relative difference for different moisture conditions will
provide a better estimate of the missing soil moisture record than
the overall relative difference used in the SLRD. The rough sets
approach is applied using the following procedure.

(i) Using the training data, the relative difference is computed
temporally at each station for each of the three soil layers
using Eq. (1).

(ii) A number of rough sets categories x (e.g., 4) is chosen to
group the relative difference values. This number x is used
to generate x categories of relative difference groups for each
monitoring station. The grouping intervals are not necessar-
ily the same for different monitoring stations but they are
dependent on the distribution of the relative difference val-
ues at each station.

(iii) For each x category at each station, the relative difference
values at the other stations which correspond temporally
to the current station are extracted. The pattern between
the current station and each of the other remaining stations
is determined by finding the dominant or the most
frequently occurring group. The derived pattern is a fre-
quency-based probability with the group having the highest
probability representing the lower approximation of
the rough sets. This procedure is repeated to determine the
pattern for each of the x categories at each station; the
patterns are stored in a lookup (i.e., a reference) table for
use in estimating missing soil moisture records.

(iv) It is noteworthy that for each pattern, evaluation measures
including support, strength in Eq. (10), certainty or accuracy
in Eq. (11), and coverage in Eq. (12) are determined to assess
the reliability of the derived pattern. These pattern evalua-
tions are also used as a basis to choose the number of cate-
gories (x) referred to in step (ii) above.

Strength ¼ rðk! bÞ ¼ supportðk; bÞ
jUj ¼ jCðxÞ \ DðxÞj

jUj ð10Þ

where k is a combination of descriptors or condition attri-
butes denoted CðxÞ (e.g. relative difference from other sta-
tions), b is a decision value denoted DðxÞ (e.g. relative
difference category for current station), k! b denotes a deci-
sion rule, supportðk;bÞ which is read as the support of the
decision rule k! b represents the number of objects (i.e. soil
moisture records) which have both properties of k in condi-
tion attributes and b in decision values. The jUj is the cardi-
nality of U, and U is a non-empty set of objects (or records)
representing the full universe of objects in the decision table
(Ohrn, 1999; Pawlak et al., 1995). The CðxÞ is the pattern for
condition attributes; DðxÞ is the pattern in decision attribute.

Accuracyðk! bÞ ¼ PrðbjkÞ ¼ supportðk;bÞ
supportðkÞ ¼

jCðxÞ \ DðxÞj
jCðxÞj

ð11Þ

where supportðkÞ and CðxÞ represent the pattern for condition
attributes.

Coverageðk! bÞ ¼ PrðkjbÞ ¼ supportðk; bÞ
supportðbÞ ¼

jCðxÞ \ DðxÞj
jDðxÞj

ð12Þ

where supportðbÞ and DðxÞ represent the pattern for decision
attributes.
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(v) To infill a missing record at a monitoring station, the relative
difference is determined for the other monitoring stations
with available soil moisture record for the specified time.
The estimated relative difference values are compared to
the lookup (i.e. the reference) patterns to find a matching
category for the current station.

(vi) The matching category is then applied to estimate the miss-
ing soil moisture record. The rough sets infilling procedure is
such that different (or unique) relative difference values will
be used for the same station depending on the matching
between the current pattern and the lookup pattern found
during the training stage. That is, the rough sets procedure
provides several lookup patterns to account for a specific soil
moisture condition (wet, dry, etc).

3.6. Artificial neural network models

Artificial neural networks have been used to infill hydrological
variables including evapotranspiration, precipitation, air tempera-
ture, and streamflow (ASCE Task Committee on Application of
Artificial Neural Networks in Hydrology, 2000b). The three broad
groups of ANN which have been widely used in several studies,
and used in this study to infill missing soil moisture records
include: feedforward network, dynamic network, and radial basis
network. Feedforward neural networks represent nonlinear static
configurations with no feedback or delay components such that
the output is derived from the input through a feedforward con-
nection (Beale et al., 2012; Hagan et al., 1996). Dynamic networks,
in contrast, use the direct input–output relationships together with
feedbacks from current or previous inputs, outputs, or states of the
network (Beale et al., 2012; Coulibaly and Evora, 2007; Hagan
et al., 1996). Radial basis networks have a similar configuration
as feedforward networks but use memory-based learning for their
design in a way that learning is viewed as a curve-fitting problem
in a high-dimensional space (Beale et al., 2012; ASCE Task
Committee on Application of Artificial Neural Networks in
Hydrology, 2000a; Hagan et al., 1996). Radial basis networks spe-
cifically have a single hidden layer with linear output layer and
are considered local approximations. The individual ANNs are
briefly described below.

1. Feedforward neural networks (FF): the feedforward neural
network (NN) uses a basic configuration shown in Fig. 3 to
connect an input layer of source nodes to an output layer
of neurons (i.e., computation nodes) through a series of
weights (Ananda Rao and Srinivas, 2003; Haykin, 1999).
Between the input and output layer is one or more layers
of hidden nodes which extract important features contained
in the input data. The hyperbolic tangent sigmoid transfer
function is used to generate the output from the jth node
in the hidden layer according to Eq. (13).

x2
j ¼ S k2

j

� �
¼ ek2

j � e�k2
j

ek2
j þ e�k2

j

ð13Þ

where xn
j is the information from node j in the nth layer, and

k2
j is the weighted sum of the information going into jth node

in the hidden layer, expressed according to Eq. (14).

k2
j ¼

Xl1

i¼1

w1
ijx

1
i þ b2

j ð14Þ

where xn
i is the information from node i in the nth layer, wn

ij is
the weight of the connections between the ith node from the
nth layer and the jth node from the nþ 1th layer, l1 is the
total number of nodes in the first layer, and l2 is the total
number of nodes in the second layer.
A linear transfer function is used to generate the output
according to Eq. (15).

x3
1 ¼

Xl2

i¼1

w2
ijx

2
i þ b3

1 ð15Þ

The training process is supervised as input and output data
are supplied to the network for reference. The algorithm used
in the training process to adjust the weight between the
connections is the Levenberg–Marquardt back propagation
algorithm (Hagan et al., 1996) and the performance of the
network is evaluated using the mean square error function.

2. Fitting problem neural network (FP): The fitting neural net-
work is a type of feedforward neural network that is used
to fit an input–output relationship (Beale et al., 2012;
ASCE Task Committee on Application of Artificial Neural
Networks in Hydrology, 2000a; Hagan et al., 1996). The FP

Fig. 3. Schematic configuration of the feedforward neural network.
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establishes a relationship between the station under inves-
tigation (output data) and the remaining stations (input
data). The output layer consists of one node which repre-
sents the station under investigation, while the input layer
contains 12 nodes, each representing one of the remaining
12 stations. The network configuration and the transfer
functions in the hidden and output layer are exactly the
same as the feedforward neural network.

3. Cascade-forward neural networks (CF): The cascade-forward
neural network has a similar configuration as the FF net-
work, but includes additional layers to learn complex
input–output relationships more quickly (Beale et al.,
2012; Hagan et al., 1996). The additional layers allow
weight connection from the input to each layer, and from
each layer to the successive layers (Omaima AL-Allaf,
2012; Beale et al., 2012). The transfer function for the hid-
den layer in the FF layout is also used in the CF, but the
transfer function for the output layer is no longer a linear
function but a hyperbolic tangent sigmoid transfer function
as in the hidden layer.

4. Pattern recognition neural network (PR): The pattern recogni-
tion neural network uses the same configuration as the FF
network but includes a classification of the input data into
specific classes (ASCE Task Committee on Application of
Artificial Neural Networks in Hydrology, 2000a; Hagan
et al., 1996). In reference to the FF configuration, the PR uses
a hyperbolic tangent sigmoid transfer function for both the
hidden and output layer. The hyperbolic tangent sigmoid
transfer function is used in the output layer because the
output of the function ranges between �1 and +1, for classi-
fication of input into different categories.

5. Time delay neural network (TD): The time delay network as a
dynamic configuration uses feedback and delay connections
to provide a dynamic interaction between layers (Beale
et al., 2012; ASCE Task Committee on Application of
Artificial Neural Networks in Hydrology, 2000a). The TD
uses the feedforward configuration with a tapped delay line
at the input. A schematic layout of the TD network is shown
in Fig. 4. The tapped delay line used in this case has a delay
from 1 to 2, meaning that the maximum delay of the net-
work is a 2 time step with the prediction done for one time

step ahead. The transfer functions, training algorithm and
the performance function used for the network is the same
as in the feedforward neural network. Due to the tapped
delay line used to hold past information, a slight adjustment
to the variables in the transfer function is necessary. The
weighted sum of the information going into the jth node
in the second layer (hidden layer) at time t is determined
according to Eq. (16).

k2
j ðtÞ ¼

Xl1

i¼1

Xm

d¼0

w1
ijðdÞx1

i ðt � dÞ þ b2
j ð16Þ

where m is the memory length of the tapped delay line, and d
represents the delayed time step. The output from the transfer
function of the hidden layer is estimated using Eq. (17).

x2
j ðtÞ ¼ S k2

j ðtÞ
� �

¼ ek2
j ðtÞ � e�k2

j ðtÞ

ek2
j ðtÞ þ e�k2

j ðtÞ
ð17Þ

Since the transfer function of the output layer is a linear
function and has only one output node present, the output
is estimated according to Eq. (18).

x3
1ðtÞ ¼

Xl2

i¼1

w2
ijx

2
i ðtÞ þ b3

1 ð18Þ

6. Nonlinear autoregressive neural network (NA): The NA uses
the same network configuration as the TD network, but
employs nonlinear autoregression to represent the forward
dynamics of the output through a general discrete-time
nonlinear estimation (Beale et al., 2012; Omaima AL-Allaf
and AbdAlKader, 2011; Chow and Leung, 1996). Whereas
the feedback in the TD network is limited to the input layer
and feedforward networks, the feedback in the NA network
is recurrent such that it encloses several layers of the net-
work (Beale et al., 2012; Safavieh et al., 2007; Chow and
Leung, 1996; ASCE Task Committee on Application of
Artificial Neural Networks in Hydrology, 2000a). The NA,
as a time series model, regresses the next value of the
dependent output on previous values of the output and pre-
vious independent input values. According to the NA model

Fig. 4. Schematic configuration of the time delay neural network.
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defined in Eq. (19), an accurate estimation of the output is a
function of the information on previous values on the out-
put variable y and the exogenously determined variable u
such that.

yt ¼ Fðyt�1; yt�2; yt�3; . . . ; yt�Dy
;ut ;ut�1;ut�2;ut�3; . . . ;ut�Du Þ

ð19Þ

where yt is the output variable of interest to be predicted, F is
the nonlinear network; and ut is the exogenously determined
input variable associated with yt . The exogenous inputs,
ut; . . . ; ut�Du can be determined with an input delay line with
memory of order Du. Similarly, the endogenous inputs,
yt�1; . . . ; yt�Dy

can be estimated with an input delay line with
memory of order Dy. That is, the NA relates the current output
value to be estimated with (i) previous values of the output
variable and (ii) current and previous values of the exogenous
inputs.

7. Nonlinear autoregressive neural network with external input
(NAE): The NAE has a similar configuration as the NA neural
network, with the same transfer function, training algorithm
and performance function (Beale et al., 2012; Omaima AL-
Allaf and AbdAlKader, 2011; Chow and Leung, 1996). While
the NA does not use exogenous inputs the NAE specifically
employs the external inputs to estimate the output.

8. Exact radial basis network (RBE): The radial basis neural net-
work is a three layer: input, hidden and output network pro-
posed by Broomhead and Lowe (1988). The RBE has a
similar configuration as the feedforward network, but its
transfer function in the hidden layer is a radial basis func-
tion. The radial basis function estimates the output by using
the standard Euclidean distance between the input and its
corresponding weight (Beale et al., 2012; ASCE Task
Committee on Application of Artificial Neural Networks in
Hydrology, 2000a; Hagan et al., 1996). That is, for each node
the Euclidean distance between the center and the input
vector is estimated and subsequently transformed by a non-
linear function that determines the output of the nodes in
the hidden layer (ASCE Task Committee on Application of
Artificial Neural Networks in Hydrology, 2000a).

9. Generalized regression neural network (GR): The GR network
uses the same network configuration as the radial basis
layer but with additional special linear layer. In the GR,
the number of nodes can be as many as the number of input
vectors, and nodes weighted input is the standard Euclidean
distance between the input vector and its weight vector
(Beale et al., 2012).

To allow the network configurations to function at their optimal
level, the number of nodes in each of the layers for all the networks
was determined. Typically, the number of input nodes in the input
layer is determined by the number of soil moisture monitoring sta-
tions available. The NA and NAE neural networks used 13 input
nodes; all the remaining networks used 12 nodes in the input
layer. The optimal number of nodes in the hidden layer of the neu-
ral network is determined using a trial-and-error procedure for all
networks except the exact radial basis neural network and the gen-
eralized regression neural network. The number of nodes tested
ranged from 2 to 30; the optimal number of nodes and its associ-
ated trained network were used to infill the missing soil moisture
record for subsequent validation period with known data.

4. Results and discussion

The application of the 14 infilling methods is presented in two
stages. The first stage illustrates the spatial–temporal variation of

soil moisture for the 13 monitoring stations; whereas the second
stage presents the evaluation of the infilling methods to estimate
the soil moisture records. The infilling methods are evaluated in
three phases: surface soil layer, second soil layer, and the third soil
layer independently.

4.1. Space–time variation of station soil moisture

The space–time variation of soil moisture is examined through
evaluation of the seasonal distribution based on the relative differ-
ence across the 13 monitoring stations for each soil layer. The over-
all relative difference for each monitoring station which was
estimated using the entire period of data in the training data set
is shown for the three soil layers in Fig. 5. The level of variability
(based on the standard deviation) in the estimated relative differ-
ences is highest at the surface soil layer due to its dynamic interac-
tion with the atmosphere, and lowest at the deeper (i.e. the third)
soil layer. These differences in the level of variability across soil
layers are consistent with findings in Dumedah and Coulibaly
(2011); Brocca et al. (2010); Brocca et al. (2009); Cosh et al.
(2008); Cosh et al. (2006); Martinez Fernandez and Ceballos
(2005); and Martnez Fernndez and Ceballos (2003). Moreover,
the result shows and identifies for each soil layer, the relative soil
moisture content of the monitoring stations. Across the three soil
layers, there are monitoring stations including Y05, Y08, and Y10
with varied soil moisture conditions which have retained tempo-
rally consistent moisture conditions relative to other stations.
However, inconsistent relative moisture conditions are observed
at monitoring stations including Y01, Y04, and Y09. Overall, the
pattern of relative soil moisture conditions across the monitoring
stations is not consistent between different soil layers when the
entire period of the training data set was used.

To further examine the differences in moisture conditions for
the soil layers, the seasonal distribution of the relative moisture
conditions is examined through a month-by-month evaluation of
the relative differences. The month-by-month variations of the sta-
tion relative differences are presented for the second and third soil
layers in Figs. 6 and 7. Due to the overlapping soil depths between
the surface (0–7 cm) layer and the second (0–30 cm) soil layer, the
plot for the surface soil layer is not shown here. The relative mois-
ture conditions in these results remain consistent from month-to-
month, with relatively wetter and drier stations retaining their
moisture conditions for both the second and third soil layers. In
addition, the relative moisture conditions remain consistent
between the two soil layers, such that relatively drier stations such
as Y03 and Y08, and wetter stations including Y11 and Y12 have
retained their moisture conditions across both layers. Overall, rel-
ative moisture conditions are far more consistent between the two
soil layers in this month-by-month evaluation compared to the
lumped evaluation based on the entire period of the training data
set. The consistency of relative soil moisture for the month-by-
month evaluation suggests that the soil moisture memory (i.e.,
the persistence of wet or dry condition) is strongly dependent on
seasonality. That is, the soil moisture content at a given station
in relation to other stations is highly stable when the overall soil
moisture condition across all stations is either dry or wet. But
the entire data period masks or conceals the soil moisture dynam-
ics associated with the different seasons.

4.2. Evaluating the soil moisture estimation accuracy for infilling
methods

The infilling methods were applied to estimate missing soil
moisture records separately for each of the three soil layers. The
infilling methods were assessed using both the training and the
validation data sets. The estimated soil moisture values are
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Fig. 5. Comparison between overall station relative differences for the three soil layers. The relative differences were estimated using only the training data set.

Fig. 6. Month-by-month variation of station relative differences for the second soil layer. The relative differences were estimated using only the training data set.
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assessed using two widely used evaluation measures: the root
mean square error (RMSE), and the coefficient of determination
(R2). The RMSE quantifies the overall predictive error such that soil
moisture estimates with RMSE values closer to zero indicate accu-
rate estimates, and higher RMSE values represent inaccurate soil
moisture estimation. The R2 measures the predictive power or
the goodness of fit of the infilling method; its values vary between
0 and 1, with values closer to 1 indicating accurate estimates, and
those closer to zero representing inaccurate soil moisture
estimation.

The estimated values for the two evaluation measures (RMSE
and R2) based on the training data set for all 13 monitoring stations
for each soil layer are shown in Table 2. All the infilling methods
have an overall RMSE of about 0.03 m3=m3 or better, except the
radial basis neural network method which has unacceptably high
RMSE values greater than 0.2 m3=m3 for the difference soil layers.
The top three high performing methods are the nonlinear auto
regressive neural network, the rough sets method, and the general-
ized regression neural network. Since the majority of the infilling

methods show a high estimation accuracy for the training data
set, they can be safely used to infill missing values represented
by the validation data set. Moreover, the soil moisture sensor has
an accuracy limit of about 0.03 m3=m3, which is equivalent to
the overall RMSE obtained by most of the infilling methods.

Using the validation data set, the known soil moisture records
and the estimated values determined from the infilling methods
are compared for the 13 monitoring stations in Fig. 8 for the sur-
face soil layer, Fig. 9 for the second soil layer, and Fig. 10 for the
third soil layer. In the surface soil layer estimations, 8 of the infill-
ing methods have RMSE values less than 0:1 m3=m3 and R2 values
greater than 0:5. The highest performing infilling method is the
nonlinear autoregressive neural network showing a highly accu-
rate prediction of the missing soil moisture with RMSE of
0:03 m3=m3 and R2 of 0:86. The remaining ANN methods per-
formed poorly, on the basis of RMSE and R2 measures compared
to the statistical methods. The merged method as a weighted com-
bination of the station layer relative difference, monthly replace-
ment method and the weighted Pearson correlation, performed

Fig. 7. Month-by-month variation of station relative differences for the third soil layer. The relative differences were estimated using only the training data set.

Table 2
Values of evaluation measures for all infilling methods based on the training data set for the first three soil layers.

Infilling methods 0–5 cm 0–30 cm 30–60 cm

RMSE R2 RMSE R2 RMSE R2

Station relative difference 0.0331 0.886 0.0365 0.868 0.0397 0.848
Pearson correlation method 0.0394 0.867 0.0552 0.820 0.0789 0.498
Monthly replacement method 0.0250 0.857 0.0224 0.892 0.0216 0.856
Merged method 0.0225 0.898 0.0216 0.904 0.0257 0.717
Rough sets method – 4 sets 0.0276 0.961 0.0268 0.935 0.0199 0.962
Rough sets method – 5 sets 0.0273 0.957 0.0254 0.953 0.0233 0.960
Rough sets method – 6 sets 0.0303 0.948 0.0272 0.950 0.0232 0.964
Cascade forward neural network 0.0005 0.680 0.0005 0.786 0.0436 0.742
Feedforward neural network 0.0005 0.709 0.0003 0.768 0.0961 0.632
Fitting problem with neural network 0.0005 0.724 0.0004 0.730 0.0762 0.772
Nonlinear auto regressive NN 0.0001 0.978 0.0000 0.997 0.0025 0.999
Nonlinear auto regressive, exact input NN 0.0006 0.577 0.0003 0.827 0.0412 0.949
Generalized regression neural network 0.0003 0.905 0.0003 0.921 0.0221 0.961
Pattern recognition neural network 0.0005 0.768 0.0005 0.782 0.0395 0.747
Time delay neural network 0.0006 0.652 0.0000 0.652 0.0528 0.757
Exact radial basis neural network 0.2717 0.432 0.1466 0.323 0.2928 0.306
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better than the individual methods that were combined (based on
RMSE and R2). The statistical methods show stratification in their
estimations which is due to loss of soil moisture variability for
different times within months with multiple missing records. The
performance of the rough sets method (for set categories of 4, 5,
and 6) is notable with high temporal consistency between the
known and estimated soil moisture values. The set categories
represent the number of relative difference patterns subject to a
specific soil moisture condition that were used to estimate the
missing records. The rough sets estimations show no stratifications
as found in the other 4 statistical methods. It is noteworthy that

different set categories ranging from 2 to 8 have been evaluated
for the rough sets method, and that the most competitive set cat-
egories are 4, 5, and 6 which are the ones presented for evaluation.

The evaluation of the infilling methods for the second and third
soil layers show similar levels of performance between the meth-
ods, indicating that different soil layers have limited effect on the
estimation accuracy of the infilling methods. The overall level of
performance based on RMSE and R2 values for the infilling methods
is shown in Fig. 11 for each of the three soil layers. The result
shows the decreasing order of performance for the methods, with
the nonlinear autoregressive neural network remaining the highest

Fig. 8. Validation of infilling methods through a comparison between observed soil moisture (in m3=m3) and estimated soil moisture (in m3=m3) infilled using the various
methods for the surface soil layer across all 13 monitoring stations.

Fig. 9. Validation of infilling methods through a comparison between observed soil moisture (in m3=m3) and estimated soil moisture (in m3=m3) infilled using the various
methods for the second soil layer across all 13 monitoring stations.
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performing method. Overall, the rough sets method is the second
highest performing method followed by the monthly replacement,
merged method, station relative difference, and so on to the exact
radial basis neural network representing the least performing
method. In addition, the RMSE values for the infilling methods
remain similar across the three soil layers, whereas the temporal
accuracy based on R2 values has increased from the first layer
through to the third layer. The increased temporal accuracy with
increasing soil depth is due to less variability in soil moisture for
the deeper soil layer, whereas the surface soil layer is highly
variable because of its dynamic interaction with the atmosphere.
Mostly, infilling methods tend to accurately estimate missing val-
ues in less varied data sets than highly dynamic data sets such as
that represented in the surface soil layer.

4.3. Implications on using the infilling methods

Together with the evaluation of infilling methods presented in
the previous section, it is important to outline the implications of
using the above methods for estimating missing soil moisture
records. In the three categories of ANNs examined, the feedforward
group (FF, CF, FP and PR), the dynamic group (TD, NA, and NAE),
and the radial basis group (RBE, GR) show different levels of
accuracy to estimate the missing soil moisture records. Across
the three soil layers, the dynamic group has the highest soil mois-
ture estimation accuracy followed by the feedforward group, and
the radial basis representing the least performing configuration.

The high estimation accuracy found in the dynamic network is
due to its evaluation of feedback between layers through discrete-
time nonlinear estimation, with missing values estimated from
distinct time delays. Soil moisture as a spatial–temporal variable,
dynamically responds to changes in antecedent moisture condi-
tions and the atmosphere. The decreasing order of performance
in the dynamic group is NA, NAE, and TD; where NA is the highest
performing of all the infilling methods evaluated. The differences
in estimation accuracy show that the NA method best represents
the dynamics of the missing soil moisture record.

In the feedforward group the decreasing order of performance is
CF, PR, FP and FF. These four networks in the feedforward group all
use the same transfer function for the hidden layer, but with
different transfer functions for the output layer. The FF and FP
use a linear transfer function whereas the CF and PR use a
hyperbolic tangent sigmoid transfer function. Given the relatively
higher estimation accuracy for CF and PR compared to FF and FP,
the hyperbolic tangent sigmoid transfer function is better suited
for infilling missing soil moisture records, as the linear transfer
function is unable to accurately represent the complex relation-
ships in the missing soil moisture records. The accurate estimation
in the CF is due in part to additional hidden layers used in its
training stage.

In the radial basis group, the GR has a higher estimation
accuracy than the RBE network which was found to be the least
performing network of all methods evaluated. The performance
of the GR network is notable, ranking 6th and 8th for RMSE and
R2 respectively across all 16 infilling approaches. Overall, regres-
sion-based neural networks have higher estimation accuracy and
are preferred to the other neural networks when infilling missing
soil moisture records.

It is important to outline drawbacks of using ANN to infill
missing soil moisture records. Generally, ANNs require training
to generate the prediction in a way that the trained network is
highly dependent on the amount of data records added to the
training data set. For practical purposes, the number of records in
the training data set may change due to additional temporal data
records, or soil moisture monitoring stations. Due to the computa-
tional procedure of network training, the general neural network is
expected to be considerably affected by the amount of data in the
training data set compared to statistical methods. The required
training of the neural network prior to prediction and its depen-
dency on changes in the training data set is an important limitation
on the estimation procedure. Note that the changes in training data
set referred to in this case are limited to the additional soil mois-
ture data added to the training data set from sources such as addi-
tional temporal records or data records from additional monitoring
stations.

Fig. 10. Validation of infilling methods through a comparison between observed soil moisture (in m3=m3) and estimated soil moisture (in m3=m3) infilled using the various
methods for the third soil layer across all 13 monitoring stations.
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The statistical methods along with the rough sets technique
have estimation accuracy competitive to those obtained from the
neural network configurations. In the statistical and rough sets
methods, the decreasing order of performance is: rough sets,
monthly replacement, merged method, station relative difference,

and weighted Pearson correlation method. The high estimation
accuracy in the rough sets method shows that temporal persis-
tence of soil moisture when properly classified can provide a
highly competitive estimation of missing soil moisture record.
The rough sets approach consistently has a higher estimation

Fig. 11. Overall performance of the infilling methods based on the RMSE (the top panel) and R2 (the bottom panel) evaluations across the 13 monitoring stations for the three
soil layers.
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accuracy than the station layer relative difference for each of the
three soil layers, meaning that the rough sets grouping which
accounts for the unique moisture conditions provides a better esti-
mation procedure than the lumped station relative difference
across the entire time period. Specifically, the rough sets method
has an accuracy increase of 5% in RMSE and 3% in R2 when com-
pared to the station relative difference method, thus demonstrat-
ing the significance of the rough sets approximation.

5. Conclusions

This study has evaluated 14 infilling methods including
artificial neural network and statistical techniques, to estimate
missing soil moisture records at 13 monitoring stations indepen-
dently for three different soil layers. An evaluation of the estimated
soil moisture values against known records showed that the top
three highest performing methods are the nonlinear autoregressive
neural network, the rough sets method, and the monthly replace-
ment. The high estimation accuracy (RMSE of 0.03 m3=m3) found
in the NA network was the result of its regression based dynamic
network, which allows feedback connections through discrete-
time estimation. Despite the high estimation accuracy of the NA
network, the ANNs in general lack a space–time explanation or
any insight into the relative soil moisture conditions at the moni-
toring stations. Hence, the NA method is best suited for soil mois-
ture estimations for cases where the physical space–time
relationships between monitoring stations are not of primary
focus.

The rough sets approach is advantageous because of its equally
high estimation accuracy (RMSE of 0.05 m3=m3) associated with its
pattern-based and space–time explanation of relative moisture
conditions across monitoring stations. The equally high estimation
accuracy in the rough sets procedure illustrates the important role
of temporal persistence in soil moisture and its grouping to
account for different soil moisture conditions (e.g. wet, dry, etc).
The estimation procedure also illustrates the utility of the rough
sets approximation to determine patterns of temporal persistence
of soil moisture that are relevant to different moisture conditions.
Consequently, the rough sets method is the preferred approach to
extrapolating soil moisture in space and time for other locations,
with the capability to account for seasonality. It is noteworthy that
while the monthly replacement provides an accurate estimation of
the missing soil moisture, its infilled values are usually stratified
into layers due to multiple missing values in the same month.

The findings from this study point to the potential of these
methods to infill other hydrologic variables such as air and soil
temperature, precipitation, and evapotranspiration, which are also
plagued with missing records. Moreover, the findings are directly
applicable to soil moisture time series data from remote sensing,
which can be affected by missing records due to radio frequency
interference, frozen and ice conditions, problems with retrieval
algorithm convergence, and satellite orbital issues.
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