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ABSTRACT

Data assimilation (DA) methods are commonly used for finding a compromise between imperfect obser-

vations and uncertain model predictions. The estimation of model states and parameters has been widely

recognized, but the convergence of estimated parameters has not been thoroughly investigated. The distri-

bution of model state and parameter values is closely linked to convergence, which in turn impacts the

ultimate estimation accuracy of DA methods. This demonstration study examines the robustness and con-

vergence of model parameters for the ensemble Kalman filter (EnKF) and the evolutionary data assimilation

(EDA) in the context of the Soil Moisture and Ocean Salinity (SMOS) soil moisture assimilation into the

Joint UK Land Environment Simulator in the Yanco area in southeast Australia. The results show high soil

moisture estimation accuracy for the EnKF and EDAmethods when compared with the open loop estimates

during evaluation and validation stages. The level of convergence was quantified for eachmodel parameter in

the EDA approach to illustrate its potential in the retrieval of variables that were not directly observed. The

EDA was found to have a higher estimation accuracy than the EnKF when its updated members were

evaluated against the SMOS level 2 soil moisture. However, the EnKF and EDA estimations are comparable

when their forward soil moisture estimates were validated against SMOS soil moisture outside the assimi-

lation time period. This suggests that parameter convergence does not significantly influence soil moisture

estimation accuracy for the EnKF. However, the EDA has the advantage of simultaneously determining the

convergence of model parameters while providing comparably higher accuracy for soil moisture estimates.

1. Introduction

Data assimilation (DA) methods are used widely for

finding a compromise between imperfect observations

and uncertain model outputs. Generally, the DA pro-

cedure encompasses three major components: (i) accu-

rate estimation of the model state, (ii) determination of

the measurement/observation errors, and (iii) estima-

tion of model parameter values. The model parameter

estimation has a direct impact on the simulated outputs

and thus significantly influences the forward model runs.

Also, the model state and parameter estimation by en-

semble members is closely linked to the distribution

of model parameter values, which is indicative of their

level of convergence. However, most DA methods are

applied with the assumption that the model simulations

and the observation function are free of systematic er-

rors (Dumedah and Coulibaly 2013a; Su et al. 2011).

Several studies, including He et al. (2012), Su et al.

(2011), and Dumedah et al. (2011), have shown that

model parameter errors can result in significant differ-

ences between themodel prediction and observation. To

account for several error sources in hydrologic models,

Vrugt et al. (2005a,b) have proposed a simultaneous

optimization and data assimilation (SODA) procedure

tomerge the search capabilities of the Shuffled Complex

EvolutionMetropolis algorithmwith the ensembleKalman

filter (EnKF), in order to estimate both model param-

eters and states. Moreover, Andreadis et al. (2008) have

examined the influence of model parametric uncertainty

on multiscale snow simulation, and Dumedah et al. (2012)

have assessed the time-variant properties of model pa-

rameters in streamflow estimation. Nonetheless, the con-

tribution of model parameter convergence in relation to

the estimation accuracy of DA methods has not been

thoroughly examined in the DA literature. The conver-

gence of model parameters influences the merging of
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observations with model predictions and thus the esti-

mation accuracy of DA methods. In particular, the as-

sessment of model parameter convergence across several

assimilation time steps can provide the potential to re-

trieve variables that are not directly observed.

This study examines the contributions of model pa-

rameter convergence to overall performance of the

EnKF and the evolutionary data assimilation (EDA)

approaches, through estimation of soil moisture using

the Joint UK Land Environment Simulator (JULES)

in the Yanco area located in southeast Australia. The

EnKF and EDA methods were employed to assimilate

the Soil Moisture and Ocean Salinity (SMOS) level 2

soil moisture data into the JULES model. The distri-

bution of JULES parameter values associated with the

updated ensemble members for EnKF and EDA were

evaluated, together with their contribution to soil mois-

ture estimation. These findings are important to refine

DA procedures through multi-objective evolutionary

strategies to adequately account for contributions from

convergence of model parameters.

The EnKF and the EDA have standard analytical pro-

cedures that are well documented in the literature. The

twomethods are briefly introduced in this section, but their

implementations are outlined in section 2. The EnKF is

a Monte Carlo integration approach that estimates the

posterior density function (pdf) of the model states using

randomly generated ensemble members (Evensen 2003,

1994; Burgers et al. 1998; Houtekamer andMitchell 1998).

The EnKF is popular and has been applied in numerous

studies (Pipunic et al. 2011; Xie and Zhang 2010; Weerts

et al. 2010; Clark et al. 2008; Weerts and El Serafy 2006;

Moradkhani and Hsu 2005). The EDA is a relatively new

multi-objective formulation of the evolutionary algorithm

(EA) applied in a data assimilation framework (Dumedah

and Coulibaly 2013a, 2014a; Dumedah 2012). The EDA

combines stochastic and adaptive capabilities of the EA in

a multi-objective fashion, together with the cost function

from variational DA. Its population-based approach al-

lows the selection of a subset of updated members from

the entire ensemble membership, usually chosen from

a parameter convergent population.

FIG. 1. The Yanco experimental area, showing the dominant land cover types, soil texture classes, the SMOS 15-km DGG, the 12-km

ACCESS configuration, and the ground soil moisture stations (data sources: the Australian Bureau of Meteorology, Geoscience Aus-

tralia, and Commonwealth Scientific and Industrial Research Organization).
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2. Materials and methods

a. Study area, datasets, and the land surface model

The Yanco area is located in the western plains of

New South Wales, Australia (shown in Fig. 1). In this

part of the Murrumbidgee catchment, the topography

is flat, with scattered geological outcroppings. The soil

texture class is predominantly loam, along with scat-

tered clays, red brown earths, transitional red brown

earth, sands over clay, and deep sands (McKenzie et al.

2000; McKenzie and Hook 1992). Information in the

Digital Atlas of Australian Soils shows that the domi-

nant soil landscape is characterized by plains with domes,

lunettes, and swampy depressions, divided by discontin-

uous low river ridges associatedwith prior stream systems

(McKenzie et al. 2000). The area is traversed with stream

valleys, containing layered soil and sedimentarymaterials

that are common at fairly shallow depths. The land cover

is predominantly rain-fed cropping–pasture with scattered

trees and grassland, with irrigated crops in the northwest.

The land surface model used in this study to simulate

soil moisture is the JULES model—a widely used tiled

model of subgrid heterogeneity that simulates water and

energy fluxes between a vertical profile of soil layers,

vegetation, and the atmosphere (Best et al. 2011). The

JULES model uses meteorological forcing data, surface

land cover data, soil properties data, and values for prog-

nostic variables. The soil properties datawere derived from

theDigitalAtlas ofAustralian Soils (McKenzie et al. 2000),

obtained through the Australian Soil Resource Infor-

mation System. The soil data include information on soil

texture class, along with proportion of clay content, bulk

density, saturated hydraulic conductivity, and soil layer

thickness for horizons A and B (McKenzie et al. 2000;

McKenzie and Hook 1992). Information on land cover

categories was obtained from the Australian National

Dynamic Land Cover dataset (Lymburner et al. 2011),

which was derived from the 250-m bands of the Moderate

Resolution Imaging Spectroradiometer (MODIS).

The forcing data variables required in the JULES

model include shortwave and longwave incoming radi-

ation, air temperature, precipitation, wind speed, at-

mospheric pressure, and specific humidity. The forcing

data were obtained from the Australian Community Cli-

mate andEarth-System Simulator–Australia (ACCESS-A)

at hourly time steps with 12-km spatial resolution (Bureau

of Meteorology 2010). The ACCESS-A precipitation

dataset was bias corrected using the daily 5-km gridded

rain gauge precipitation data from the AustralianWater

Availability Project obtained through the Bureau of

Meteorology, herein denoted BAWAP (Jones et al.

2007, 2009). The land cover and soil data were mapped

TABLE 1. Description of selected model parameters, forcing, and state variables for the JULES model. These model parameter intervals

were defined in concert with land cover, soil, and meteorological forcing data in the Yanco area.

Parameter Description Interval (%)

Model parameters

b Exponent in soil hydraulic characteristics curve 65

Sathh Absolute value of the soil matric suction at saturation (m) 65

Hsatcon Hydraulic conductivity at saturation (kgm22 s21) 65

sm-sat Volumetric soil moisture content at saturation (m3 water perm3 soil) 65

sm-crit Volumetric soil moisture content at critical point (m3 water perm3 soil) 65

sm-wilt Volumetric soil moisture content at wilting point (m3 water perm3 soil) 65

Hcap Dry heat capacity (Jm23K21) 65

Hcon Dry thermal conductivity (Wm21K21) 65

Albsoil Soil albedo 65

Meteorological forcing variables

SWR Downward component of shortwave radiation at the surface (Wm22) 65

LWR Downward component of longwave radiation at the surface (Wm22) 65

Rain Rainfall (kgm22 s21) 65

Snow Snowfall (kgm22 s21) 65

Tempr Atmospheric temperature (K) 65

Wind Wind speed (m s21) 65

Press Surface pressure (Pa) 65

spHum Atmospheric specific humidity (kg kg21) 65

Model state variables

Canopy Amount of intercepted water that is held on each tile (kgm22) Updated

tstar-t Surface or skin temperature of each tile (K) Updated

t-soil Temperature of each soil layer (K) Updated

Sthuf Soil wetness for each soil layer; mass of soil water expressed as a

fraction of water content at saturation

Updated
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to the 12-km ACCESS-A grids through spatial overlap

and subsequent determination of the proportions of

constituent land cover and soil classes within each grid.

The forcing data together with the land cover and soil

data were incorporated into JULES to simulate the

temporal evolution of soil moisture.

The description of model parameters, forcing vari-

ables, and their associated uncertainty intervals within

which they were modified in the JULES model are

presented in Table 1. All of the forcing variables and

model parameters in Table 1 were modified using a rel-

ative percentage measure, such that a 6% uncertainty

bound means that the specified variable or parameter

was modified to within a maximum of 1% and a mini-

mum of 2% of its original value. Thus, the modified

values vary within a predetermined 6% of the original

values based on the soil and vegetation data. It is note-

worthy that the perturbed values for parameters–states

were constrained to within intervals acceptable to the

JULES model in the context of data in the Yanco area.

The original values for model parameters and forcing

variables were determined based on the soil, land cover,

and meteorological forcing data such that they are

physically meaningful for the JULES model in the con-

text of the Yanco area. Note that the model parameters

were at the same scale as the 12-km model resolution.

The observation dataset used to drive the assimilation

is the SMOS level 2 soil moisture. The SMOS level 2 soil

moisture is an estimate of SMOS-retrieved soil moisture

at the reported 15-km discrete global grid (DGG).

These SMOS data are the Soil Moisture level 2, version

4.0, User Data Product (SMUDP2), which was obtained

for the period from January to December 2010. The

SMOS level 2, version 4.0, soil moisture was retrieved

using the Mironov model (Mironov et al. 2004). It is

noted that the SMOS dataset was used at the 15-km

DGGbased on the findings fromDumedah et al. (2014),

which showed that the error involved in representing

42-km SMOS observations at the 15-km DGG is no

worse than the noise that currently exists in the original

SMOS data.

b. The ensemble Kalman filter method

The EnKF procedure used in this study is based on the

state–parameter estimation approach of Moradkhani

et al. (2005), where state variables and model parameters

FIG. 2. Computational procedure for a sequential assimilation using the EDA method (adapted from Dumedah 2012).
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were determined jointly. Accordingly, the soil moisture

state was determined using Eq. (1):

xt 5 f1[xt21,ut21, zt21]1vt21 . (1)

The ensemble members for model parameters evolve

according to Eq. (2):

z2t 5 z1t211yt21 ,

yt21 ;N(0,bz
t21) , (2)

where xt is a vector of state variables at time t; f1[�] is the
system transition function (i.e., the JULES model) that

comprises the state vector at previous time xt21, a vector

FIG. 3. Retrieval of the original truth model parameter values using the EDA method. Top two rows (left to right) parameters b,

Sathh, andHsatcon with the top row giving the parameter range as a function of time (days) and the bottom row showing the probability

score vs deviation from the mean. The middle and bottom two rows are as in the top two but for parameters sm-sat, sm-crit, and sm-wilt

in themiddle andHcap, Hcon, andAlbsoil in the bottom. The red triangles in the smaller panels and the red horizontal lines indicate the

original values, and the black circles represent the estimated EDA values. The synthetic soil moisture observation is shown in the larger

panels on the right vertical axis.
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of forcing data ut21, and a vector of time-variant model

parameters zt21;vt21 is the system noise representing all

errors associated with model structure; z2t is a vector

of model parameters for time t; z1t21 is a vector of up-

dated model parameters for the previous time; and yt21

is the model parameter error with covariance bz
t21. The

model parameter ensemble members were combined

with perturbed forcing data to determine the state en-

semble in Eq. (3):

x2t 5 f [x1t21,ut21* , z2t ] , (3)

where x2t is a vector of forecasted states at time t and

x1t21 is a vector of updated states for the previous time.

The forcing data were perturbed by adding the noise gt

with covariance bu
t at each time step to generate its

ensemble according to Eq. (4):

ut*5 ut 1gt ,

gt ;N(0,bu
t ) . (4)

The JULESmodel was run forward in time to determine

the ensemble predictions (ŷt) in Eq. (5):

ŷt 5 f2[x
2
t , z

2
t ] , (5)

where f2 represents the JULES prediction. The obser-

vation was perturbed to generate an ensemble of ob-

servations yt according to Eq. (6):

yt 5 y2t 1 et ,

et ;N(0,b
y
t ) , (6)

where et is the observation noise with covarianceb
y
t . The

ensemble predictions (ŷt) were combined with perturbed

observations yt to determine the Kalman gain (K) func-

tions separately for model parameters (Kz
t ) in Eq. (7),

Kz
t 5b

zy
t (b

yy
t 1b

y
t )

21 , (7)

and for states (Kx
t ) in Eq. (8),

Kx
t 5b

xy
t (b

yy
t 1b

y
t )

21 , (8)

where bzy is the covariance of model parameter en-

semble z2t and the ensemble predictions ŷt; b
yy is the

forecast error covariance for ensemble predictions ŷt;

and bxy is the covariance of the model state and pre-

diction ensemble. The model parameters and states

were directly updated using their respective Kalman

gain functions and the innovation vector according to

Eqs. (9) and (10), respectively:

FIG. 4. Distribution of model parameter and forcing values for updated members obtained across assimilation time steps using the EnKF

method. Note that the EnKF has 200 updated members at each assimilation time step so these are plotted for each time step.
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z1t 5 z2t 1Kz
t (yt 2 ŷt) (9)

and

x1t 5 x2t 1Kx
t (yt 2 ŷt) . (10)

c. The evolutionary data assimilation method

The EDA employs an evolutionary strategy based

on the nondominated sorting genetic algorithm II

(NSGA-II). The NSGA-II is an established multi-

objective evolutionary algorithm that has been used in

several hydrological applications (Confesor andWhittaker

2007; Efstratiadis and Koutsoyiannis 2010; Dumedah and

Coulibaly 2014b; Dumedah et al. 2011; Tang et al. 2006).

The EDA has been applied in soil moisture estimation

(Dumedah and Coulibaly 2013a; Dumedah et al. 2011)

and to facilitate streamflow estimations (Dumedah and

Coulibaly 2012, 2013b; Dumedah 2012). A schematic

outline of the EDA procedure is presented in Fig. 2.

In theEDAprocedure, a randompopulationPr of size

2n was generated at the initial assimilation time step t,

consisting of ensemble members that comprise model

states, model parameters, and forcing data uncertainties.

The variable n represents the number of updated mem-

bers to be selected for each assimilation time step. As in

the EnKF procedure, the model states were obtained

according to Eq. (3), and the forcing data perturbed using

Eq. (4). Each member of Pr was applied into the JULES

model to determine the predictions in Eq. (5). Similarly,

the observation was perturbed using Eq. (6) to generate

2n members of the observation ensemble.

The members in Pr were evaluated using the absolute

difference (AbsDiff) in Eq. (11),

AbsDiff5 jŷi 2 yo,ij , (11)

and the cost function (J) in Eq. (12),

J5 �
t

i51

J(ŷi)5 �
t

i51

�
(ŷi 2 yb,i)

2

s2
b

1
(ŷi 2 yo,i)

2

s2
o

�
, (12)

where yb,i is the background value for the ith data point,

yo,i is the perturbed observation value for the ith data

point, s2
b is the variance for the background value, s2

o is

the variance for the observation, ŷi is the analysis (i.e.,

the searched) value for ith data point that minimizes

J(ŷi), and t is the number of data points or the time (note

that t 5 1 in this case for sequential assimilation).

The AbsDiff estimates the absolute residual/difference

between the predicted and observed value, whereas J

determines a compromised value between the background

FIG. 5. As in Fig. 4, but using the EDA method. Note that the EDA has 20 updated members at each assimilation time step plotted for

each time step.
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and the observed value. The background value is the

ensemble average of soil moisture estimated by applying

updated members of the population from the previous

assimilation time step into the JULES model to make

a prediction for the current assimilation time step. It is

noteworthy that the background value for the initial

time step was determined from a randomly generated

population of members.

The minimization of AbsDiff and J allows the ranking

of the members into different nondominance levels

through Pareto dominance. The top n fittest members

were selected, varied, and recombined through cross-

over and mutation to determine new members for the

population Pr of size 2n. The above procedures were

repeated to evolve the population Pr through several

generations where each generation improved/preserved

the overall quality of members in Pr. At the referenced

generation, the final n fittest members, which are a sub-

set of all evaluated members, were chosen as the up-

dated members where they were archived into the

population Pe.

To increment the assimilation time step from t to t1 1,

the nmembers in Pe at twere used to generate n number

of forecasts of soil moisture for future time t 1 1. The

estimated ensemble average and its associated variance

from the ensemble members were used as background

information. The Pe from t was also used as a seed pop-

ulation for t 1 1, where it was varied and recombined

to generate a new population Pr of size 2n. At t 1 1, the

new Pr was again evolved through several generations to

determine the final n updated members for t 1 1. These

procedures were repeated for all assimilation time steps

to evolve members through several generations and to

determine the updated members.

d. Setup of model and data assimilation runs

The procedures for the EnKF and the EDA methods

were used to assimilate SMOS level 2 soil moisture into

the JULES model. For the initial assimilation time step,

the uncertainties for model parameters and forcing

variables presented in Table 1 were used. For subsequent

assimilation time steps, the uncertainties were determined

FIG. 6. Comparison between model parameter values from the EnKF and EDAmethods for the median ensemble member at the end of

the assimilation period, showing the spatial latitude–longitude distribution of model parameter values across model grids.
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from the ensemble members, but these uncertainties

were constrained to the lower and upper bounds speci-

fied in Table 1. The soil moisture error that comes along

with the SMOS level 2 soil moisture was used as the

observation uncertainty. It is noted that the error in the

SMOS level 2 soil moisture is only associated withmodel

inversion error and not the sensor error. In the EnKF,

the model error and the variance of parameter values

were determined from the ensemble members. The

time-variant model error in the EDA was estimated

adaptively using the background error estimation pro-

cedure outlined in section 2c. The initial population was

generated by using the model parameter bounds and the

forcing data uncertainties in Table 1. As in the standard

NSGA-II procedure, the crossover probability of 0.8 and

a mutation probability of 1/m (wherem is the number of

variables) were used in the variation and recombination

procedures.

The assimilation was run at a daily interval with a

200-member ensemble from January to July 2010. To eval-

uate 200 members, the EDA divides the ensemble size of

200 into smaller populations of 40 members (i.e., 2n 5
40), where they were evolved through five generations. A

subset of n5 20 members was determined from the final

population for each assimilation time step to represent

the updatedmembers.As a result, the number of updated

members was 200 for the EnKF, and 20 for the EDA

method for each assimilation time step.

3. Results and discussion

a. Preliminary test of convergence for the EDA
method

Prior to presenting the modeling outputs with actual

SMOS data, a preliminary experiment was undertaken

to illustrate the capability of the EDA procedure to re-

trieve model state and parameter values. The experi-

ment is synthetic in a way that ‘‘truth’’ values of initial

model state and parameters were generated randomly

based on the parameter bounds in Table 1 and were

subsequently applied into the JULES model to obtain

FIG. 6. (Continued)
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a synthetic surface (0–8 cm) soil moisture from January

to December 2010. This synthetic soil moisture dataset

was then used as the observation to drive a daily time

step soil moisture assimilation into the JULES model

using the EDA. The EDA employed time variant model

state and parameter values such that their updated es-

timates were obtained for each assimilation time step.

The ensemble estimate of soil moisture from the EDA

was compared to the original synthetic soil moisture

observation, with a root-mean-square error (RMSE) of

about 0.02m3m23 and R2 of 0.75. Moreover, the up-

dated model parameter estimates from the EDA are

compared to the original truth values in Fig. 3. These

results illustrate the EDA method to both retrieve

model parameter values and accurately estimate soil

moisture. The results also raise theoretical challenges

such as those identified in Vrugt and Sadegh (2013) and

Gupta et al. (2008) for diagnostic model evaluation.

As illustrated in Fig. 3, the model parameter values

change between assimilation time steps in response to

changes in observation data. It is noted that the changes

in model parameter values are not linked to changes in

the watershed, but that the changes are constrained to

the landscape properties in the study area. The JULES

model parameter values used were determined from

soil and land cover data, and the interval bounds are

physically meaningful in the context of the JULES

model. In essence, each ensemble member that has been

evaluated is valid in terms of the landscape properties

and is not some random scenario to simply obtain a good

agreement between observation and model output.

Based on these original model parameter values and

their intervals (both determined from soil–land cover

data), a large population of members (or samples)

can be determined. No member chosen from this

population should be deemed statistically invalid be-

cause it satisfies some conditions at a specific space and

time.

FIG. 7. Proportion of EDA-converged forcing and model parameters as indicated by the coverage (in fraction) of largest membership

clusters. The coverage is estimated as the ratio of the number of cluster members to the total number of members across all assimilation

time steps.

TABLE 2. Converged model parameter intervals from the EDA

method, represented by the largest membership clusters. The

definition of their coverage of parameter space is given by their

centroids and lower and upper bounds. The coverage is presented

as a fraction, where a maximum value of unity represents a per-

fectly converged cluster and a value close to zero represents

a sensitive cluster.

Parameter Centroid Lower bound Upper bound Coverage

Model parameters

b 0.04160 0.03210 0.0499 0.4419

Sathh 20.0310 20.0478 0.0077 0.9795

Hsatcon 20.0079 20.0278 0.0299 0.7844

sm-sat 0.00590 20.0278 0.0299 0.4672

sm-crit 20.0124 20.0433 0.0299 0.8395

sm-wilt 20.0091 20.0478 0.0277 0.9946

Hcap 20.0037 20.0411 0.0344 0.9941

Hcon 0.00920 20.0278 0.0455 0.9921

Albsoil 0.00250 20.0278 0.0299 0.9396

Meteorological forcing variables

SWR 0.03560 20.0078 0.0499 0.8744

LWR 0.04220 0.03210 0.0499 0.5377

Rain 20.0079 20.0278 0.0299 0.5483

Tempr 0.04060 20.0034 0.0499 0.9174

Wind 0.02930 20.0167 0.0499 0.9862

Press 20.0136 20.0433 0.0299 0.7927

spHum 20.0217 20.0478 0.0277 0.9965
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In the EDA procedure, the updated members were

chosen from the physically meaningful population be-

cause they meet some set conditions in space and time.

The degree to which the chosen members represent

meaningful parameter values in the JULES model was

based on the landscape properties data. This is because

the lack of observations for model parameters, together

with the problem of nonuniqueness and the inherent

complexity in land surfacemodeling, mean that the closest

proof of statistical validity of chosen members is based on

proper representation of the landscape properties.

It is noted that more experimentation is needed to

diagnose model deficiencies through further evaluation

of the updated ensemble members. While the temporal

evaluation on a parameter-by-parameter basis is impor-

tant, the interconnectedness between model parameters

is crucial for further examination of model weaknesses.

These evaluations have the potential to quantify the

combined temporal changes in model parameters in

relation to the changes in observation data.

b. Convergence of model parameter ensemble from
the EnKF and the EDA

The convergence of model parameters in the EnKF

and the EDA is examined through the distribution of

model parameter values for the updated ensemble

members across assimilation time steps. The distribution

of parameter values for updated members across the

assimilation time steps are shown in Fig. 4 for the EnKF

method and in Fig. 5 for the EDA method.

In the EnKF output, the parameter values are dis-

tributed between the lower and upper bounds of the

defined model parameter range. This pattern is consis-

tent across all model parameters and from one assimila-

tion time step to the next. The near-uniform distribution

of model parameter values show that the ensemble

FIG. 8. Evaluation of the open loop estimate of surface soil moisture together with the updated ensemble estimates, based on the mean

and standard deviation (for the error bars) of the ensemble from the EnKF and the EDA compared against the SMOS soil moisture for

four different SMOS grids: Grid numbers (top left) 6 and (top right) 14; and (bottom left) 8 and (bottom right) 16.
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predictions were obtained from values within the entire

range for each model parameter. In other words, the

ensemble predictions can account for the uncertainty of

model parameters based on the entire interval between

the lower and upper bounds. As a result, the parameter

distributions for updated members do not converge in

the EnKF approach, and the test of clustering according

to Thorndike (1953) fails. It is noted that the indepen-

dence of the errors associated with the state variables

and model parameters may partly influence the non-

convergence found in the EnKF. The complex dynamics

between model state and parameter values, and the as-

sociated lack of observation for model parameters,

mean that statistical validation of the output is difficult.

Thus, the physical meaning of the chosen members is

preferable, with the capability to account for the land-

scape properties.

The EDA output shows a clustering of the parameter

values and, more importantly, a convergence of model

parameters. Overall, the pattern of parameter clusters is

consistent across assimilation time steps in away that cluster

locations are almost predictable between assimilation

time steps. The recurrence of these cluster groups show

that the converged parameter values for one assimilation

time step are consistent and applicable to other assimila-

tion time steps. In the EDA, these updated members

represent model parameter values with the optimal com-

promise between ensemble predictions and observations.

The spatial distribution of themodel parameter values

across the 12-km model grids is shown in Fig. 6 for the

median ensemble member from the EnKF and EDA

methods at the end of the July 2010 assimilation time

step. A comparison of this spatial distribution to the soil

texture groups in Fig. 1 shows that the model parameter

values from the EDA are fairly consistent to soil texture

classes spatially across the model grids, whereas there is

a poor agreement with those derived from the EnKF.

To quantify the level of convergence of model pa-

rameters from the EDA, a clustering analysis was per-

formed to evaluate the persistence of cluster groups

across all assimilation steps for each model parameter.

The clustering analysis was conducted on the ensemble

parameter values where the appropriate number of

clusters was determined using the ‘‘knee’’ procedure in

Thorndike (1953). The number of cluster groups ex-

amined when determining the appropriate number of

clusters typically varied between four and eight. The

cluster with the largest membership was determined

along with its coverage of the parameter space, with the

centroid and the lower and upper bounds representing

the converged parameter space with the largest weight.

The largest membership cluster for each model parame-

ter across all assimilation time steps is shown in Table 2.

The coverage of parameter space represents the pro-

portion of members in the largest membership cluster in

relation to the total number of members across all as-

similation time steps. The coverage, therefore, quan-

tifies the weight of the cluster with largest membership

and accounts for variability of cluster memberships due

to different cluster groupings. The coverage represent-

ing the level of convergence for each model parameter

across all assimilation time steps is shown in Fig. 7.

The convergence of model parameter values shown in

Table 2 and Fig. 7 for the EDA output is significant.

Across all assimilation time steps the uncertainty ap-

plied to rainfall was found to be between22.8% and 3%

with a coverage of about 55%. About 12 model pa-

rameters out of 16 converged to within about 80%

coverage across all assimilation time steps. The evalua-

tion also identified model parameters b and sm-sat, and

forcing variables LWR and rain, as having the least

convergence and therefore the most sensitivity across

different observation/assimilation time steps. The high

level of convergence for the 12model parameters means

that their clustered intervals are consistently reliable

FIG. 9. The overall absolute difference between the SMOS soil

moisture (m3m23) and the updated ensemble estimations of soil

moisture from (top) the EnKF and (bottom) the EDA method

across all assimilation time steps.
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across the assimilation time steps. The significance of

these findings is that the convergence of parameter values

across different observation–assimilation time steps is

valuable in the retrieval of variables that are not ex-

plicitly observed. This illustrates the potential of the

EDA approach for examining the convergence of model

parameters and their associated clusters through time, in

order to determine their relationships, sensitivities, and

their responses to changes in observation and forcing

data.

c. Soil moisture estimations from the EnKF
and the EDA

The surface soil moisture estimations from the EnKF

and the EDA were compared in two stages: (i) an eval-

uation using the SMOS soil moisture for the assimilation

time period and (ii) a subsequent validation using SMOS

soil moisture for an independent estimation time period

outside the assimilation. The open loop estimates and the

updated ensemble estimates based on the ensemblemean

from EnKF and EDA for the assimilation period are

compared to the SMOS soilmoisture inFig. 8. The SMOS

grids shown in these comparisons were randomly chosen

without bias toward any of the methods. It is noteworthy

that, in this case, the open loop is the soil moisture esti-

mated from ensemble members that were not updated.

Both the EnKF and the EDA show an improvement in

estimation accuracy compared to the open loop estimates

across all SMOS grids.

The EDA has a higher estimation accuracy than

the EnKF based on their comparison to the SMOS soil

moisture using the estimated RMSE. The high perfor-

mance of the EDA is consistent across SMOS grids,

demonstrated by its low residual between the estimated

soil moisture and the SMOS soil moisture in Fig. 9. The

soil moisture residuals shown in this case were obtained

as the overall absolute difference between the SMOS

soil moisture and the ensemble estimates of soil mois-

ture from EnKF and EDA methods across assimilation

time steps for all grids.

FIG. 10. As in Fig. 8, but for the forward estimations. The forward estimations fromEnKFandEDAwere determined by using the updated

members at the end of July 2010 into the JULES model to estimate soil moisture from August to December 2010.
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An evaluation procedure was undertaken to examine

the differences in soil moisture estimates from using the

updated model parameters from both methods for fu-

ture time periods beyond the assimilation time period.

The updated ensemble of model states and parameters

from the EnKF and EDA, which were obtained on 31

July 2010 (i.e., end of assimilation period), were applied

into the JULESmodel to estimate soil moisture forward

in time fromAugust to December 2010. It is noteworthy

that 20 members were used in the EDA, as these rep-

resent the updated members at each assimilation time

step; this is unlike the EnKF, where all 200 members

were updated. The forward estimates from the EnKF

and EDA are compared to the observed SMOS soil

moisture in Fig. 10. The comparison between the for-

ward estimations shows that the EDA (with RMSE of

0.089m3m23) has a slightly higher accuracy than the

EnKF (with RMSE of 0.097m3m23 for SMOS grid 16).

The RMSE for all the SMOS grids are shown in Fig. 11.

The high accuracy in the EDA members illustrates the

contribution of model parameter convergence for im-

proved forward estimations. These results show that the

convergence of model parameters can contribute posi-

tively at the evaluation stage and at subsequent valida-

tion of forward estimates. However, contributions of

convergence of model parameters at the time of update

do not have a significant impact on the EnKF method.

Additional validation was undertaken to compare the

ensemble estimates from EnKF and EDA to the in situ

OzNet data (Smith et al. 2012). It is noteworthy that the

in situ OzNet data are point observations, with overall

daily variability during the modeling period between

0.036 and 0.116m3m23 across stations in the Yanco area.

Accordingly, the validation results are described in rec-

ognition of the spatial–temporal variation of soil mois-

ture, and theOzNet observation is, spatially, a fractional

subset of the updated ensemble estimations at the 12-km

SMOS DGG. The soil moisture comparisons are shown

in Fig. 12 for stations Y3, Y5, Y8, and Y12.

The validation results show that the updated ensem-

ble estimations from EnKF and EDA had higher ac-

curacy than the SMOS soil moisture, and that both

assimilation procedures had improved soil moisture es-

timation. The comparison between the EnKF and the

EDA showed that there is an improved accuracy in

the EDA output across the OzNet monitoring stations.

Overall, the soil moisture estimation accuracy from the

EnKF and the EDAwas equivalent based on the SMOS

evaluation, with the EDA showing an improved accu-

racy in the context of the OzNet validation data.

4. Conclusions

This study has examined the contributions of model

parameter convergence for the EnKF and the EDA

methods in soil moisture estimation using the JULES

model. The SMOS level 2 soil moisture has been as-

similated into the JULESmodel using the EnKF and the

EDA methods, with their updated members examined

for convergence of model parameter values along with

accuracy of soil moisture estimation.

The results showed that convergence of model pa-

rameters can be obtained through the EDA approach.

The level of convergence has been quantified for each

model parameter using clustered intervals within which

the recurrence of parameter values is highest. Aside

from information on convergence, the EDA provides

information on the level of sensitivity of model pa-

rameters across assimilation time steps. The ensemble

parameter values from the EDA provide the potential

for further investigation into the dynamics of model

structure and identification of model weaknesses.

The EDA approach is also shown to be robust for

model parameter estimation across different obser-

vation scenarios.

FIG. 11. As in Fig. 9, but for the overall RMS difference for the

evaluation time period.
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The soil moisture estimation accuracies from both

EnKF and EDA have been shown to be higher than the

open loop estimates in the evaluation procedure. At the

evaluation stage, the EDA was shown to have a higher

estimation accuracy compared to the EnKF across assimi-

lation time steps and SMOS grids. However, validation of

the forward soil moisture estimates from the two methods

showed comparable results, with theEDAhaving a slightly

higher accuracy. These findings showed that the conver-

gence of model parameters does not significantly influence

the estimation accuracy in the EnKF method. However,

it has been found that the EDA approach simultaneously

provided converged model parameters, along with slightly

superior accuracy of soil moisture estimates.

It is noted that not all model parameters/states have

converged and that further experimentation is needed to

examine the interconnectedness between parameters/

states. Though convergence may not be necessary in all

cases, an improved understanding of these model pa-

rameters is needed. The temporal changes observed in

model states and parameter values were simply linked

to the complex nature of the landscape (soil and land

cover) properties. It is important to separate the model

state–parameter changes associated with the spatial

variability of the landscape from the temporal changes

associated with the physical makeup of the landscape.

The change associated with spatial variation in soil and

land cover is what has been examined in this study and

constitutes the bedrock to examining the dynamic changes

linked with landscape makeup. These investigations are

needed in future studies to better diagnose model weak-

nesses, with the potential to improve our understanding of

the landscape process representation in models.
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