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ABSTRACT

The performance of the extended Kalman filter (EKF) and the ensemble Kalman filter (EnKF) are assessed
for soil moisture estimation. In a twin experiment for the southeastern United States synthetic observations of
near-surface soil moisture are assimilated once every 3 days, neglecting horizontal error correlations and treating
catchments independently. Both filters provide satisfactory estimates of soil moisture. The average actual esti-
mation error in volumetric moisture content of the soil profile is 2.2% for the EKF and 2.2% (or 2.1%; or 2.0%)
for the EnKF with 4 (or 10; or 500) ensemble members. Expected error covariances of both filters generally
differ from actual estimation errors. Nevertheless, nonlinearities in soil processes are treated adequately by both
filters. In the application presented herein the EKF and the EnKF with four ensemble members are equally
accurate at comparable computational cost. Because of its flexibility and its performance in this study, the EnKF
is a promising approach for soil moisture initialization problems.

1. Introduction

Climate prediction at seasonal-to-interannual time-
scales depends on accurate initialization of the slowly
varying components of the earth’s system, most notably
sea surface temperature (SST) and soil moisture. While
tropical SST is often the dominant source of predict-
ability, its influence appears to be mostly limited to the
Tropics (Koster et al. 2000b). Skill in the prediction of
summertime continental precipitation and temperature
anomalies in the extratropics may instead depend on the
initialization of soil moisture and other land surface
states. Since soil moisture controls the partitioning of
the latent and sensible heat fluxes to the atmosphere, it
can influence precipitation recycling.

The initialization of the land surface states for a sea-
sonal climate forecast can be accomplished by assimi-
lating soil moisture observations into the land model up
to the start time of the prediction. With assimilation we
attempt to combine the information from the observa-
tions and the model in an optimum way. Since for sea-
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sonal forecasts we are only interested in the estimates
at the start time of the prediction, sequential assimilation
methods like Kalman filters are ideally suited to the task.
The well-known extended Kalman filter (EKF) can be
used for nonlinear applications, but the computational
demand resulting from the error covariance integration
limits the size of the problem (Gelb 1974). For this
reason, the EKF has been used mostly for problems that
focus on the estimation of the vertical soil moisture
profile (Katul et al. 1993; Entekhabi et al. 1994). More
recently, Walker and Houser (2001) have applied the
EKF to soil moisture estimation across the North Amer-
ican continent by neglecting all horizontal error corre-
lations and treating surface hydrological units (catch-
ments) independently. This yields an effectively low-
dimensional filter.

The ensemble Kalman filter (EnKF) is an alternative
to the EKF (Evensen 1994). The EnKF circumvents the
expensive integration of the state error covariance ma-
trix by propagating an ensemble of states from which
the required covariance information is obtained at the
time of the update. Reichle et al. (2002) applied the
EnKF to soil moisture estimation and found that it per-
formed well against a variational assimilation method.
Since the variational approach generally requires the
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adjoint of the hydrologic model, which is not usually
available and is difficult to derive, the obvious choices
for advanced land assimilation algorithms are the EKF
and the EnKF. There are many variants of the EKF and
the EnKF that have been used in meteorology and
oceanography, notably reduced-rank square root algo-
rithms (Verlaan and Heemink 1997), particle filters
(Pham 2001), methods that use pairs of ensembles (Hou-
tekamer and Mitchell 1998), and hybrid approaches that
combine ensembles with reduced-rank approaches
(Heemink et al. 2001; Lermusiaux and Robinson 1999)
or with variational methods (Hamill and Snyder 2000).
In this paper, we focus on the relative merits of using
the traditional EKF and EnKF for soil moisture assim-
ilation.

The major differences between the EKF and the EnKF
are (i) the approximation of nonlinearities of the hy-
drologic model and the measurement process (the EKF
uses a linearized equation for the error covariance prop-
agation while the EnKF nonlinearly propagates a finite
ensemble of model trajectories), (ii) the range of model
errors that can be represented (the EnKF can account
for a wider range of model errors), (iii) the ease of
implementation (the EKF requires derivatives of the
nonlinear hydrologic model, evaluated numerically or
from a tangent-linear model), (iv) computational effi-
ciency (it must be determined how many ensemble
members are needed in the EnKF to match the perfor-
mance of the EKF), and (v) the treatment of horizontal
correlations in the model or measurement errors (the
EKF cannot account for horizontal error correlations in
large systems for computational reasons). Insights into
many important issues can be gained from low-dimen-
sional versions of both filters.

Although approximate nonlinear filters such as the
EKF and the EnKF have been found to work well in
some applications, their value in a particular nonlinear
problem cannot be assessed a priori but must be deter-
mined by simulations (Jazwinski 1970). We investigate
the above differences in the context of soil moisture
initialization for seasonal prediction using synthetic data
in a twin experiment. Since all uncertain inputs are
known by design, such experiments are well suited for
a first assessment of algorithm performance. Tests with
actual observations will be conducted in future studies.
For retrospective analysis, surface soil moisture can be
retrieved from the Scanning Multifrequency Microwave
Radiometer (SMMR) for the period 1979–87 (Owe et
al. 2001). These retrievals are derived from the 6.6-GHz
(C band) and 37-GHz channels. Similar retrievals should
soon be available from the Advanced Microwave Scan-
ning Radiometer for the Earth Observing System
(AMSR-E). In the future, passive 1.4-GHz (L band)
sensors should also become available (Kerr et al. 2001).

2. Kalman filtering
The standard Kalman filter is the optimal sequential

data assimilation method for linear dynamics and mea-

surement processes with Gaussian error statistics. The
EKF is a variant of the Kalman filter that can be used
for nonlinear problems (Gelb 1974). As an alternative,
Evensen (1994) described a Monte Carlo approach to
the nonlinear filtering problem, the EnKF, which is
based on the approximation of the conditional proba-
bility densities of interest by a finite number of randomly
generated model trajectories. In this section, we briefly
review the filter equations and point out the main dif-
ferences between the EKF and the EnKF.

a. System model

We can express the nonlinear land surface model in
the generic form

x 5 f (x ) 1 wk11 k k k (1)

by collecting the model prognostic variables of interest
(in our case the soil water excess and deficit variables
described in section 3) at time k into the state vector xk

of dimension Nx. The nonlinear operator fk( · ) includes
all deterministic forcing data (e.g., observed rainfall).
Uncertainties related to errors in the model formulation
or the forcing data are summarized in the model error
term wk.

Suppose we assimilate soil moisture data that are
sparse in time and space. If we assemble all observations
taken at time k into the measurement vector yk the mea-
surement process can be written as

y 5 H x 1 v ,kk k k (2)

where we have assumed a linear relationship to keep
the notation simple. The operator Hk relates the states
(in our case the soil water excess and deficit variables)
to the measured variables (in our case near-surface soil
moisture). Measurement instrument errors and errors of
representativeness are reflected in the measurement er-
ror term vk.

Adopting a probabilistic interpretation of uncertainty,
we assume that wk and vk are zero mean random vari-
ables with covariances Qk and Rk, respectively. This
provides a full statistical description if these random
variables are normally distributed. For the discussion in
this section we further assume that wk and vk are mu-
tually uncorrelated and white (uncorrelated in time), al-
though these assumptions can be relaxed (Gelb 1974).

b. Extended and ensemble Kalman filtering

Both the EKF and the EnKF work sequentially from
one measurement time to the next, applying in turn a
forecast step and an update step. Figure 1 highlights the
key differences between the two filters. During the fore-
cast step, the EKF propagates a single estimate of the
state vector (from to ). The EKF also integrates1 2x xk21 k

the uncertainty of that estimate (the state error covari-
ance, from to ), which is needed to determine21P Pk21 k

the relative weights of the model forecast and the ob-
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FIG. 1. Schematic of the extended Kalman filter (EKF) and the
ensemble Kalman filter (EnKF).

servation at the update time. The EnKF, on the other
hand, propagates an ensemble of state vectors in par-
allel, each state vector representing a particular reali-
zation of the possible model trajectories (e.g., with cer-
tain random errors in model parameters and/or a par-
ticular set of errors in forcing). The EnKF does not
explicitly integrate the state error covariance but com-
putes it instead diagnostically from the distribution of
the model states across the ensemble.

During the update step, the EKF revises its estimate
of the state vector (from to ) using the observation2 1x xk k

and the prognostic state error covariance . This re-2P k

duces the uncertainty in the state estimate, which is
reflected in the EKF update of the state error covariance
(from to ). The EnKF, on the other hand, updates2 1P Pkk

each ensemble member separately, using the observa-
tion and the diagnosed state error covariance . In the2P k

EnKF, the reduction of the uncertainty is reflected in the
reduction of the ensemble spread. While the EKF state
estimate at any time is simply the value of the state
vector or , the EnKF state estimate is given by2 1x xk k

the mean of the ensemble members.
We now present a more formal discussion of the two

approaches. Our knowledge of the state at the initial
time k 5 0 is reflected by the mean state and its2x 0

covariance , which are used to initialize the EKF. The2P 0

EnKF is initialized by generating an ensemble of initial
condition fields , i 5 1, . . . , N, with mean andi2 2x x0 0

covariance . We start the assimilation cycle by cal-2P 0

culating a matrix of weights Kk (the Kalman gain) for
the update:

2 2 21T TK 5 P H [H P H 1 R ] .k k k k kk k (3)

If no observations are available at time k we formally
set Kk [ 0. Next, we update the state estimate (EKF)
or each ensemble member (EnKF) using a linear com-
bination of forecast model states and the observations:

1 2 2EKF: x 5 x 1 K [y 2 H x ],k kk k k k

1 2 2P 5 P 2 K H P ; (4a)k k k k k

i1 i2 i2 iEnKF: x 5 x 1 K [y 2 H x 1 v ],k kk k k k k

i 5 1, . . . , N. (4b)

Here, the superscripts 2 and 1 refer to the state esti-
mates, individual ensemble members, or covariances be-
fore and after the update, respectively. They are also
known as forecast and analysis, respectively. Note that
in the EnKF the data are perturbed by adding a random
realization of the measurement error (Burgers et al.ivk

1998).
In the forecast step, the EKF estimate is propagated

forward in time with the nonlinear model, and in the
EnKF each ensemble member is integrated using a cor-
responding ensemble of N random realizations of model
error fields :iwk

2 1EKF: x 5 f (x ); (5a)k11 k k

i2 i1 iEnKF: x 5 f (x ) 1 w , i 5 1, . . . , N. (5b)k11 k k k

We also propagate the state error covariance to account for
the evolution of the uncertainty in the state estimates:

2 1 TEKF: P 5 F P F 1 Q ,k11 k k k k

] fm[F ] 5 , m, n 5 1, . . . , N ; (6a)k mn x)]x 2n xk

1
2 TEnKF: P 5 D D ,k11 k11 k11N 2 1

12 2 N2 2D 5 [x 2 x , . . . , x 2 x ],k11 k11 k11 k11 k11

N1
2 i2x 5 x . (6b)Ok11 k11N i51

The importance of error covariance propagation is ev-
ident from Eq. (3), which describes how the optimal
weights for the update depend on the error covariances.
In the EKF, is obtained by propagating the posterior2P k

state error covariance from the last update time with a
linearized matrix dynamic equation (6a). Integrating this
equation for large Nx is very computationally demand-
ing. This makes the application of the EKF to large-
scale environmental assimilation problems impossible
unless further approximations are made. In this study
we use the EKF implementation of Walker and Houser
(2001), in which all correlations between different
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catchments are neglected. In this case the error covari-
ance matrix is block-diagonal at all times and the com-
putational burden is reduced considerably.

In the EnKF, is estimated from the spread of the2P k

ensemble prior to the update (6b). In this way, in-2P k

cludes some effects of the nonlinear dynamics that are
neglected in the EKF. On the other hand, the accurate
estimation of now depends on the size of the en-2P k

semble. Note that in the EnKF the (analysis) error co-
variance is never needed, but parts or all of it can1Pk

be computed at any time from the ensemble. Moreover,
the forecast error covariance need not be constructed2P k

explicitly. For details of the implementation see Kep-
penne (2000).

3. Land model and experiment setup

a. Land surface model

Koster et al. (2000a) have developed a new land sur-
face model, the Catchment Model, that uses hydrolog-
ical catchments rather than a regular grid as the com-
putational unit. The viability of their approach has been
demonstrated by Ducharne et al. (2000). The Catchment
Model has also performed well in the Project for In-
tercomparison of Land-Surface Parameterization
Schemes Phase 2e and the Rhone Aggregation Exper-
iment, which will be documented in forthcoming pub-
lications (S. Mahanama 2001, personal communication).

In the Catchment Model, vertical soil water transfer
as well as lateral redistribution are modeled. The lateral
movement of water is based on equilibrium concepts
for the soil moisture profile (Beven and Kirkby 1979).
The equilibrium soil moisture profile is determined from
the catchment deficit, which is defined as the amount
of water that would need to be added to bring the entire
catchment to saturation. To allow for nonequilibrium
vertical transfer of water, two additional variables are
used. The surface excess and the root zone excess de-
scribe deviations from the equilibrium profile in the sur-
face and root zone layers. We use a surface layer depth
of 2 cm and a root zone layer that extends from the
surface down to 1 m. The catchment deficit, root zone
excess, and surface excess are model prognostic vari-
ables from which we can diagnose soil moisture content
in the 2-cm surface layer, the 1-m root zone layer, and
the total profile down to the water table (Walker and
Houser 2001). We refer to these diagnostic variables as
surface, root zone, and profile soil moisture, respec-
tively.

In addition to soil moisture, the Catchment Model
also predicts snow, heat transfer in the soil, and moisture
and heat transfer in the canopy layer. Diagnostic outputs
include the latent and sensible heat fluxes to the at-
mosphere as well as base flow and runoff. The total
number of prognostic variables per catchment is 25 (3
for soil moisture, 3 for surface and canopy temperatures,
6 for subsurface temperature, 9 for snow, 3 for near-

surface humidity, and 1 for canopy interception). For
our Kalman filtering applications, we use only the model
prognostic variables that are directly related to soil
moisture as state variables for the assimilation (catch-
ment deficit, root zone excess, and surface excess). This
means that we consider just three states per catchment.
We assimilate synthetic observations of the (diagnostic)
surface soil moisture (section 3b).

b. Twin experiment

Our twin experiment is conducted over a region of
the southeastern United States that extends from 958 to
768W longitude and from 248 to 358N latitude. The do-
main contains 208 catchments with an average area of
3600 km2. In this region snow processes are relatively
unimportant, which is ideal for our focus on soil mois-
ture. On the other hand, parts of the region are covered
by dense vegetation during the summer, and accurate
remote sensing observations of soil moisture may be
difficult to obtain (Jackson and Schmugge 1991). While
dense vegetation could lead to a loss of accuracy in the
soil moisture estimates when satellite data are assimi-
lated, this does not influence the synthetic observations
that we use, and our results about the relative perfor-
mance of the EKF and the EnKF are not affected. The
twin experiment starts with a model integration that
serves as the ‘‘true’’ solution and is meant to represent
nature. We start from a spinup initial condition on 1
January 1987 and integrate the model until 31 December
1987 using standard model parameters and forcing data
from the International Satellite Land Surface Climatol-
ogy Project (ISLSCP) (Sellers et al. 1996).

Next, we integrate the model again over the same
time period but with an intentionally poor initial con-
dition and different forcing data and model parameters.
We use a perturbed initial condition generated by adding
random noise to the initial surface excess, root zone
excess, and catchment deficit with 1-, 10-, and 100-mm
standard deviation, respectively. Instead of the ISLSCP
data we use the reanalysis data of the European Centre
for Medium-Range Weather Forecasts (ECMWF) as
forcing inputs (Gibson et al. 1997). Table 1 gives an
overview of the differences between the two forcing
datasets. Precipitation, which is the most important input
so far as soil moisture is concerned, is illustrated in Fig.
2 for a representative catchment. Moreover, we change
the timescale parameters for moisture flow between the
surface excess, root zone excess, and catchment deficit.
Specifically, we use timescale parameters that have been
derived for a 5-cm surface layer and a vertical decay
factor g 5 2.17 for the saturated hydraulic conductivity
with depth (rather than for the 2-cm layer and g 5 3.26
that we use in the true integration). Collectively, these
‘‘wrong’’ inputs and parameters represent our imperfect
knowledge of the true land processes. The resulting
fields constitute our best guess prior to assimilating the
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TABLE 1. Space–time averages of the meteorological forcing inputs for the true model integration (ISLSCP) and root-mean-square
difference between the true forcing and the forcing used in the estimation (ECMWF).

Precipitation

Total Convective
Air

pressure

Radiation

Longwave Shortwave

Temperature

Air Dewpoint
Wind
speed

ISLSCP
ISLSCP 2 ECMWF

(mm day21)
3.4
8.2

(mm day21)
2.5
6.1

(mbar)
1006.5

5.1

(W m22)
353

29

(W m22)
189

72

(8C)
18.3

2.8

(8C)
12.5

2.8

(m s21)
3.1
1.2

FIG. 2. Comparison between the total precipitation of the ISLSCP
and the ECMWF datasets for a representative catchment: (top) the
cumulative total precipitation; (bottom) the difference between the
total precipitation rates (ISLSCP minus ECMWF).

remote sensing data and will be referred to as the
‘‘prior’’ (no assimilation) solution.

The synthetic observations used in the assimilation
are derived from the true fields by adding random mea-
surement noise. In particular, we generate synthetic ob-
servations of the soil moisture content in the 2-cm sur-
face layer (‘‘surface soil moisture’’) with an error of
5% (volumetric) once every 3 days for all catchments.
These data are subsequently assimilated into the model
using the ‘‘wrong’’ forcing and model parameters de-
scribed above. The resulting fields are referred to as the
‘‘estimates.’’

c. Filter calibration

The setup of the twin experiment implies that we do
not know the exact statistics of the model errors. In fact,
we do not even expect that additive model errors will
fully account for the differences between the true and
prior fields. In any case, filter performance depends
strongly on our choice of model error parameters, so
we must choose them very carefully. To ensure a fair
comparison of the EKF and the EnKF, we find the pa-
rameters that allow each filter to perform the best it can.

An advantage of the EnKF is its flexibility in rep-
resenting various types of model errors. Besides adding
synthetic model error fields, which will be described
below, we could use different forcing fields and model
parameters for each ensemble member or even use dif-
ferent models altogether, provided that the models de-
scribe identical physical variables. In this study, we per-
turb the ECMWF meteorological data that are used to

force each ensemble member. Standard deviations for
these perturbations are 5 K for air and dewpoint tem-
peratures, 1 m s21 for wind speeds, 50 W m22 (25 W
m22) for shortwave (longwave) radiative fluxes, 10
mbar for surface pressure, and 50% of magnitude for
precipitation. These numbers are based on simple order-
of-magnitude considerations and have not been tuned.
They can, however, be compared to the actual differ-
ences of the ISLSCP and ECMWF datasets listed in
Table 1. Such forcing perturbations represent nonad-
ditive model errors.

In the EKF, only additive model errors can be taken
into account by specifying the model error covariances
Qk. In the EnKF, we add synthetic model error fields to
each ensemble member (in addition to the forcing per-
turbations that represent nonadditive model errors).
These synthetic error fields are generated from a spec-
ified covariance matrix assuming a normal probability
distribution. In both cases we assume that the standard
deviation of each type of model error is identical for all
catchments. Furthermore, all model errors are assumed
uncorrelated; that is, Qk is diagonal. For the EnKF, we
also impose a correlation time of 3 days on the model
error time series (autoregressive process of order one),
which is inexpensive when the state is not augmented
(Reichle et al. 2002). Temporally correlated model er-
rors are not considered in the EKF because this would
require state augmentation and significantly increase the
computational burden.

With all inputs fixed except the magnitude of the
model error variances for the surface excess, root zone
excess, and catchment deficit, we calibrate these re-
maining parameters to achieve the best possible filter
performance. Since the twin experiment is designed
such that the true solution is known, a convenient mea-
sure of estimation performance is the actual error, which
is the difference between the true soil moisture and its
EKF or EnKF estimate. As an aggregate measure of
filter performance we sum up the average actual errors
in the surface excess, root zone excess, and catchment
deficit, where the average is taken in the root-mean-
square sense over all catchments from February to De-
cember 1987. The first month of the assimilation is ex-
cluded to avoid initialization effects. This aggregate
measure gives more relative weight to errors in the root
zone excess and the catchment deficit, which are more
important for seasonal prediction than errors in the sur-
face excess.
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FIG. 3. Aggregate estimation error as a function of the model error
standard deviations for the (a) EKF and (b) EnKF with N 5 10
ensemble members. The difference in scales in the aggregate esti-
mation error reflects the superior performance of the EnKF. The dif-
ference in scales in the model error parameters is due to the difference
in model error correlation times (section 3c).

For each filter, we have computed the aggregate es-
timation errors of about 200 integrations with different
model error variances. Figure 3 shows our aggregate
performance measures as a function of the model error
standard deviations. For both filters we find a single
global minimum (at the intersection of the slices in Fig.
3). At the minimum, the model error standard deviation
is greater for the root zone excess than for the catchment
deficit and the surface excess. Note that for the EnKF
the model error variance in the surface excess matters
little because we also perturb the forcing inputs.

The true model error statistics are a unique attribute
of the model (and associated forcing data) and can be
represented only approximately by the assimilation al-
gorithm. In the EKF, for example, there is an implicit
assumption of temporally uncorrelated model errors,
which explains the larger calibrated model error vari-
ances compared to the EnKF. Since soil moisture inte-
grates over the model error, adding temporally corre-
lated model error of a given variance in the EnKF leads
to much larger ensemble spread (in soil moisture) than
adding temporally uncorrelated error of the same var-
iance. Section 4f will show that the state error variances
of the EKF and the EnKF are largely in agreement.

The calibrated parameters are insensitive to our
choice of aggregate performance measure. The resulting
parameters are almost identical when we calibrate
against the average of the errors in the surface, root
zone, and profile moisture contents, a criterion which
gives much more weight to the surface layer. Our cal-
ibration of model error parameters serves mainly to
make a fair comparison of the EKF and the EnKF pos-
sible. There are many adaptive methods to determine
error statistics during filter operation (Dee 1995). Fi-
nally, note that the calibration of the EnKF is somewhat
incomplete because we did not optimize the size of the
forcing perturbations or the correlation time of the mod-
el errors, although this might have further improved the
EnKF’s performance. Table 2 summarizes the calibrated
model error parameters.

4. Results and discussion

a. Soil moisture estimates

In this section we discuss the results of the twin ex-
periment described in section 3. Figure 4 shows the time
average (root-mean-square) actual errors of the moisture
content variables from February to December 1987. Re-
call that the actual errors are the differences between
the true soil moisture (from the control experiment) and
its EKF or EnKF estimate. Obviously, the errors are
higher for the surface moisture content than for the root
zone and profile moisture contents. This is because the
surface moisture content varies on timescales of a day
or less, while we assimilate observations only once ev-
ery 3 days. When an observation of surface soil moisture
is assimilated, the estimation error of the surface mois-
ture content typically falls well below 5%. But between
observation times, errors in the model timescales and
in the forcing (notably in precipitation) degrade the sur-
face estimates significantly. Thus, to improve the quality
of the surface moisture estimates it would be necessary
to assimilate observations more frequently.

The situation is different for the root zone and profile
moisture contents. These lower layers exhibit greater
memory, and variations in their moisture content occur
over longer timescales. Consequently, short-term errors
in the forcing do not significantly impact the root zone
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TABLE 2. Inputs to the true, prior, and assimilation integrations. Model error standard deviations s are calibrated (section 3c). Forcing
inputs for individual ensemble members are perturbed from ECMWF data (see text). The scalar g is the exponential decay factor of the
saturated hydraulic conductivity with depth.

True Prior EKF EnKF

Initial condition
Forcing

Spinup
ISLSCP

Perturbed soil water excess/deficit
ECMWF Perturbed ECMWF

Parameters Calibrated for 2-cm surface layer
and g 5 3.26

Timescales for 5-cm surface layer and g 5 2.17

Model error
ssurface excess

sroot zone excess

scatchment deficit

Correlation time

N/A
N/A
N/A
N/A

Unknown
Unknown
Unknown
Unknown

0.05 mm
1.40 mm
0.20 mm
0

0
0.050 mm
0.015 mm
3 days

FIG. 4. Time-average error of the moisture content (m.c.) (left-hand column) prior to the assimilation, (middle column) for the EKF, and
(right-hand column) for the EnKF with N 5 10 ensemble members. Shown are the errors for the (top row) surface, (middle row) root zone,
and (bottom row) profile soil moisture content. The average is from Feb to Dec 1987 in the rms sense. Units are volumetric moisture percent.

and profile estimates. Table 3 lists the time and space
average (root-mean-square) actual errors of the moisture
content variables and the state variables. We can see
that the improvement over the prior estimates from the
assimilation is relatively small in the surface and the
root zone excess. By comparison, the catchment deficit
is much closer to the truth after the assimilation. The
difference in the performance of the EKF and the EnKF
is small when compared to the prior errors. Neverthe-
less, the EnKF with N 5 4 ensemble members performs
as well as the EKF, and it outperforms the EKF for N
$ 10 (section 4b).

The computational effort of the EnKF is largely de-

termined by the size of the ensemble that is propagated.
For the EKF the numerical differentiation scheme im-
plies that the computational cost corresponds roughly
to an ensemble of m 1 1 members, where m is the
number of state variables per catchment. In our appli-
cation m 5 3 and the computational effort of the EKF
corresponds to an ensemble of four members. This
means that the EKF and the EnKF are equally expensive
for comparable performance (Table 3).

To assess further the performance of the filters, we
can compare the actual errors to what the filters ‘‘think’’
they should be. These expected errors are given by the
square root of the diagonal elements of the error co-
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TABLE 3. Actual errors (root-mean-square average over all catchments from Feb to Dec 1987) of the moisture content (m.c., in volumetric
percent) and the state variables. Filter-derived (expected) error standard deviations are shown in parentheses. Moisture content errors are
computed from 6-hourly output, excess/deficit errors from daily output.

Ensemble size N (2)
Prior
N/A

EKF
N/A

EnKF

4 10 30 100 500

Surface m.c. (%)
Root zone m.c. (%)
Profile m.c. (%)
Surface excess (mm)

Root zone excess (mm)

Catchment deficit (mm)

6.1
5.3
5.6
0.86

6.3

120

3.7
2.3
2.2
0.74

(0.43)
4.6

(11)
33

(31)

3.7
2.3
2.2
0.71

(0.36)
4.5

(5.0)
34

(24)

3.6
2.2
2.1
0.69

(0.39)
4.3

(5.1)
32

(26)

3.6
2.2
2.1
0.68

(0.41)
4.3

(5.2)
31

(27)

3.6
2.2
2.0
0.68

(0.41)
4.3

(5.2)
30

(28)

3.6
2.2
2.0
0.68

(0.42)
4.3

(5.2)
30

(28)

variance matrix P (section 2) and are summarized in
Table 3. Both filters clearly underestimate the actual
errors in the surface excess, and the EKF overestimates
the errors in the root zone excess by more than a factor
of 2. While it is possible to tune both filters in such a
way that the expected errors match the actual errors
more closely, this would imply an increase in the es-
timation errors, which contradicts the objective of our
filter calibration (section 3c).

The discrepancy between expected and actual errors
is the result of nonlinearities and our poor knowledge
of the true model errors. Recall that the true soil mois-
ture has been derived with forcings and model param-
eters that are different from the ones used in the esti-
mation (Table 2). In the filtering framework, we try to
account for such deficiencies by making statistical as-
sumptions about the model error term w. We specify
the statistical properties of w, most notably its covari-
ance Q, which has a direct influence on the weights K
that are used in the update. The mismatch between ex-
pected and actual errors suggests that the differences
between the true solution and our best (prior) guess are
not fully represented by additive Gaussian errors (or by
additional forcing errors in the EnKF). Nevertheless,
considering that we only assimilate surface soil moisture
once every 3 days, the resulting estimates are quite
good.

b. Convergence of the EnKF with ensemble size

Obviously, the EnKF’s most critical approximation is
the finite size of the ensemble, and it is important to
understand how many ensemble members are needed to
obtain satisfactory estimates. Table 3 shows that for
ensemble sizes of four or more the average actual errors
of the EnKF are equal to or smaller than the EKF errors.
If the problem had been linear and all errors had been
Gaussian, the EKF would have been more accurate, and
the EnKF errors would have converged to the EKF er-
rors only as the ensemble size tended toward infinity.
The superior performance of the EnKF in our appli-
cation must be due to the nonlinear nature of the prob-

lem and the EnKF’s greater flexibility in representing a
wide range of model errors (sections 4d and 4f).

The EnKF estimation errors change little with the size
of the ensemble, and convergence is achieved quickly.
This fast convergence is, of course, related to the ef-
fectively very small size of the state vector. Since there
are only 3 degrees of freedom in each catchment (the
three soil water excess and deficit variables), and since
all catchments are treated independently, a small en-
semble is sufficient to achieve good results. To suppress
statistical noise in small ensembles, we force the sample
mean of the synthetic error fields to match the theoretical
mean of zero. This idea could be taken further by gen-
erating second-order accurate ensembles (Pham 2001)
in which the model error trajectories are generated in
such a way that their sample covariance is exactly equal
to the prescribed theoretical covariance Q.

The actual errors of the state estimates are only one
of many possible performance criteria. Covariance es-
timates, for instance, are rather noisy with a small en-
semble of 10 or fewer members. To illustrate this point,
Fig. 5 shows the analysis error standard deviations for
a typical catchment. Here, a larger ensemble is clearly
superior. The error standard deviations of the 20-mem-
ber ensemble are very close to the 500-member ensem-
ble and therefore are not shown in Fig. 5. Similar results
are found for the correlation coefficients (section 4f).
Additional experiments using synthetic observations of
near-surface soil moisture with 2% measurement error
(as opposed to the 5% measurement error used through-
out the paper) show that the relative advantage of the
500-member EnKF over the EKF is larger when the
observations are more accurate. Note finally that the
requirements on the size of the ensemble are bound to
increase once horizontal correlations are taken into ac-
count.

c. Numerical considerations and the EKF

In the EKF we need the state transition matrix F of
the linearized dynamical system for the propagation of
the state error covariance (6a). Since the Catchment
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FIG. 5. Filter-derived (expected) error standard deviations of the
state variables for a representative catchment: (top) surface excess,
(middle) root zone excess, and (bottom) catchment deficit.

TABLE 4. Average actual errors of the moisture content (m.c., in
volumetric percent) with the first 3 days excluded from the average
calculation after each EKF covariance reset (section 4c).

Ensemble size N (2)
Prior
N/A

EKF
N/A

EnKF

4 10 100

Surface m.c. (%)
Root zone m.c. (%)
Profile m.c. (%)

6.0
5.3
5.7

3.4
2.3
2.2

3.5
2.3
2.2

3.4
2.2
2.1

3.3
2.1
2.0

Model includes many switches, analytic derivatives are
difficult to obtain. Walker and Houser (2001) therefore
evaluate F numerically and approximate the derivative
via F 5 df /dx ø [ f (x 1 h) 2 f (x)]/h. Although con-
ceptually straightforward, this numerical differentiation
scheme is not without problems. As shown in Fig. 5,
the error standard deviation of the surface excess in our
representative catchment becomes very large around
days 232, 267, 287, and 306. This is attributed to nu-
merical problems in the calculation of the state transition
matrix F. The problem is that small perturbations h typ-
ically lead to numerical problems, while large pertur-
bations result in a loss of accuracy in the derivative and
are also more likely to hit nonlinear thresholds. When
implemented without additional constraints, the numer-
ical differentiation scheme fails frequently, which has
a negative effect on the soil moisture updates.

In practice, Walker and Houser (2001) found it nec-
essary to implement various checks on the EKF co-
variance propagation (6a). Due to numerical problems
with the linearization, the state error covariance matrix
P is not always positive definite. In such cases, the
covariance is reset according to a set of prespecified
rules. Likewise, the covariance is confined within pre-
specified bounds and reset if these bounds are exceeded.
Note that every time the error covariance is reset, in-
formation from earlier updates is partially lost. We have
measured the influence of this by excluding from the
error average calculation the first 3 days after each co-
variance reset. These modified average estimation errors
are shown in Table 4. Although the errors generally
decrease when the problematic times are excluded from
the average, the relative performance of the EKF and
the EnKF remains the same. This means that the inter-
ruption of the EKF covariance propagation is not a ma-

jor source of error, and the numerical instabilities ex-
perienced by the EKF do not affect the comparison with
the EnKF.

d. Measuring nonlinearity

There are generally two kinds of nonlinearities that
appear in a hydrological model: differentiable functions
and nondifferentiable switches and steps. The first kind,
differentiable functions, can be treated with a standard
Taylor series expansion of the model trajectory around
the most recent estimate, as is done in the EKF for the
error covariance forecast. For nonlinearities of the sec-
ond kind, which are inherently nondifferentiable, we
cannot expect that the linearization approach of the EKF
will produce accurate estimates.

Verlaan and Heemink (2001) described a nondimen-
sional number V 2 [ bTP21b to measure nonlinearities,
where b is the bias in the estimate and P is the state
error covariance. The bias is related to nonlinearities in
the model (see the appendix). By construction, V can
only measure nonlinearities that are differentiable. Such
nonlinearities are significant if V k , where Nx isÏNx

the dimension of the state vector. We have computed V
for our application and found that differentiable non-
linearities are largely insignificant. Since the catchments
are completely uncorrelated in this study, we compute
V for each catchment separately and compare it to the
effective state dimension 5 3. It turns out that VN9x
exceeds at only 1.5% of all computational nodesÏ3
and time steps between 1 April and 31 December 1987.
(The first three months of 1987 are neglected to elim-
inate initial condition effects of the bias integration.)
We have found no evidence that errors in the moisture
content grow with V. Moreover, the differences between
the estimates from the standard EKF and a bias-cor-
rected assimilation are negligible. We conclude that the
first-order local linearization of the EKF adequately ac-
counts for differentiable nonlinearities in the Catchment
Model and that finite higher-order corrections add little
information.

It is important to reiterate that V cannot yield infor-
mation about the impact of step functions and switches.
The Catchment Model, like any other land surface mod-
el, contains many such nondifferentiable nonlinearities.
Another measure for the impact of nonlinearities in the
model can be obtained from the EnKF. Nonlinearities,
differentiable or not, are likely to induce asymmetries
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FIG. 6. Relative histogram of the innovations for all catchments
and all update times. For comparison, the probability density of the
standard normal distribution N (0, 1) is also shown.

in the sample distribution of the ensemble members. We
define the skewness coefficient as s 5 {[x 2 (x)]3}/E E

, where ( · ) is the expectation operator and sx is3s Ex

the standard deviation of x. For the surface excess, s .
5 for 8% of all times and catchments (EnKF with 500
ensemble members). The primary reason for high skew-
ness is that soil moisture and the corresponding Catch-
ment Model states have upper and lower bounds. A
positive skewness coefficient indicates that the distri-
bution has a large, positive tail and is concentrated at
the lower end. We find that such positive skewness oc-
curs when the soil dries out completely at the surface
for lack of rain.

The skewness information that we gain in the EnKF
is very informative, but it is not fully used in the EnKF
update. Recall that for the update we derive only the
sample covariance from the ensemble. Higher-order mo-
ments, although present and fully propagated in the en-
semble, are not used in the computation of the gain
matrix (3). Fortunately, high skewness does not imply
large estimation errors. In fact, when the distribution of
the surface excess is very positively skewed with a nar-
row peak close to the lower bound, it is likely that the
soil is in fact very dry. An update in such a case will
most likely produce a soil moisture value close to the
lower bound, regardless of the sophistication of the up-
date scheme. In summary, the bias and skewness results
demonstrate that nonlinearities are in fact present but
are not a dominant source of estimation error in the
EKF and the EnKF.

e. Innovations

Examination of the innovations sequence is a standard
tool to evaluate filter performance. This tool is partic-
ularly important because it can also be applied in an
operational setting when the true soil moisture is un-
known and actual errors cannot be derived. The inno-
vations sequence nk [ yk 2 Hk describes the differ-2x k

ence between the actual observations and the forecast.
If the problem is linear and the filter operates in ac-
cordance with its underlying statistical assumptions, nk

is a Gaussian and white (temporally uncorrelated) pro-
cess with covariance (nk ) 5 Hk 1 Rk. This termT 2 TE n P Hkk k

is easily output from both filters, which allows us to
normalize the innovations. Figure 6 shows a relative
histogram of the normalized innovations of all catch-
ments and all updates. Also shown is the standard nor-
mal distribution N (0, 1). We can see that the normalized
innovations are not fully consistent with a standard nor-
mal distribution. The histogram is broader, which re-
flects the underestimation of the actual covariance of
the innovations. This is to be expected, given that the
filter-derived error variances typically underestimate the
actual errors (Table 3).

We can test for the whiteness of the innovations se-
quence by computing its sample autocorrelation func-
tion (Jenkins and Watts 1968). Out of the 208 catch-

ments, the EKF innovations sequence of 24 catchments
is not white at the 5% significance level (its lag-one
autocorrelation coefficient does not contain zero in a
95% confidence interval). Similarly, the EnKF inno-
vations for 27 (or 24; or 22) catchments using N 5 4
(or N 5 10; or N 5 500) are not white at the 5%
significance level. Moreover, for some catchments (and
both filters) the sample autocorrelation function exhibits
oscillatory behavior, which also suggests that the in-
novations sequence is not perfectly white. In summary,
both filters produce innovations that indicate slightly
suboptimal performance, which stems from the imper-
fect representation of the model errors and from the
presence of nonlinearities.

f. Error covariance modeling

The EKF and the EnKF differ mostly in how they
approximate the error covariance propagation (6a,b).
This has implications for how model error covariances
can be represented in each filter. Note the difference in
the analysis error standard deviation of the surface ex-
cess for the typical catchment shown in Fig. 5. While
the error standard deviation of the surface excess varies
rapidly in the EnKF, the EKF produces much smoother
error standard deviations at the beginning of the year.
This difference is entirely dependent upon the experi-
ment setup. Here, we choose to add errors to the forcings
of each ensemble member according to the actual forc-
ing conditions. For example, we added larger errors
when the forcing indicated that precipitation was falling.
This leads to the very nonstationary behavior of the
EnKF error standard deviation. In the EKF, on the other
hand, a constant model error covariance Q was added
at each time step to the forecast error covariance (6a).

In addition to the error standard deviations, the filters
also produce error correlations for the states and the
measured variable, in our case surface soil moisture.
These correlations can be derived easily from the off-
diagonal elements of the state error covariance matrix
P and the measurement operator H (EKF), or directly
from the ensemble (EnKF). Figure 7 shows time series
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FIG. 7. Filter-derived error correlation coefficients for a
representative catchment.

of the correlation coefficients for a representative catch-
ment. As expected, the error correlation between the
surface excess (or root zone excess) and the surface
moisture content is mostly positive, with the correlation
being more erratic in the case of the surface excess.
Likewise, we find the expected anticorrelation between
errors in the catchment deficit and the surface moisture
content. This strong coupling between the surface soil
moisture and the profile variables is particular to the
Catchment Model. The catchment deficit describes the
equilibrium profile for a given amount of water within
the catchment and thereby determines the surface soil
moisture to first order. The surface and root zone excess
terms are only corrections to the equilibrium profile.
Provided that we succeed in a satisfactory model cali-
bration, the Catchment Model approach offers great ad-
vantages for estimating deep soil moisture from obser-
vations of the surface moisture content.

Figure 7 also illustrates that the correlations change
with the general hydrologic conditions. There are strong
(anti-) correlations between the root zone excess (or the
catchment deficit) and the surface moisture content in
the first half of the year, when the catchment is relatively
wet. In the second half of the year, the catchment is
much drier and the root zone excess and catchment def-
icit decouple from the surface soil moisture, while the
surface excess is more strongly correlated to surface
moisture content. Generally, the EKF and the EnKF
produce correlations that are consistent.

5. Summary and conclusions

In this paper, we compare two promising data assim-
ilation methods for soil moisture initialization in sea-
sonal climate prediction. The extended Kalman filter
(EKF) and the ensemble Kalman filter (EnKF) were

used to assimilate synthetic surface soil moisture ob-
servations into the Catchment Model, with model error
parameters calibrated against actual estimation errors.
The best results are obtained for both filters when the
model error in the root zone excess is large compared
to the model errors in the surface excess and the catch-
ment deficit. Using the calibrated filter parameters we
find that the EKF and the EnKF produce satisfactory
estimates of soil moisture.

The EKF and the EnKF (with four ensemble mem-
bers) show comparable performance for comparable
computational effort. For 10 or more ensemble mem-
bers, the EnKF outperforms the EKF. This is ascribed
to the EnKF’s flexibility in representing nonadditive
model errors. The actual estimation errors of the EnKF
converge quickly with increasing ensemble size, even
though the filter-derived (expected) error covariances
are noisy for small ensembles. The numerical differ-
entiation scheme used in the EKF requires frequent
checks in order to avoid divergent error covariances or
loss of positive definiteness. Although these checks in-
terrupt the integration of the error covariances, and in-
formation from earlier updates is partially lost, they are
not a major source of error.

The normalized innovations are found to be incon-
sistent with a standard normal distribution. This is be-
cause our representation of model errors cannot fully
account for the effects of uncertainties in the forcing
and imperfectly known model parameters that we use
in our twin experiment. Nonlinearities in the land model
generate skewness in the distribution of ensemble states.
But this skewness information is only very approxi-
mately used in the EnKF update and is not available in
the EKF. Fortunately, the nonlinearities are not a dom-
inant source of error, because the local linearization
strategy of the EKF is for the most part successful and
because the nature of the soil moisture bounds limits
the actual estimation errors.

Catchment-to-catchment error correlations could
arise from large-scale errors in the forcing or from un-
modeled lateral fluxes such as river or groundwater flow.
Moreover, satellite data are likely to exhibit horizontal
error correlations. The present paper compares the EKF
and EnKF under the assumption that horizontal error
correlations can be neglected. The importance of such
correlations is a topic of active research. If horizontal
error correlations turn out to be important, information
can be spread laterally, in particular from observed to
unobserved catchments. When horizontal error corre-
lations are taken into account in the EnKF, small error
correlations associated with observations that are far
apart must be filtered out (Mitchell and Houtekamer
2000). For computational reasons, the EKF must be ap-
proximated using a rank-reduction technique such as the
reduced-rank square root method (Verlaan and Heemink
1997).

Before soil moisture assimilation can become a rou-
tine tool for seasonal climate prediction, many more
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questions will need to be addressed. Important areas of
research include the investigation of multivariate assim-
ilation using more Catchment Model prognostic vari-
ables as states, the direct assimilation of radiances as
opposed to soil moisture retrievals, and the assimilation
of other types of remote sensing data such as soil tem-
peratures or vegetation parameters. Finally, soil mois-
ture estimates from the assimilation must then be shown
to improve the accuracy of seasonal climate forecasts.
In summary we can say that the EnKF is more robust
and offers more flexibility in covariance modeling (in-
cluding horizontal error correlations). This leads to its
slightly superior performance in our study and makes
the EnKF a promising approach for soil moisture ini-
tialization of seasonal climate forecasts.
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APPENDIX

Bias and Nonlinearity

The differentiable part of the nonlinearities can be
examined by integrating an estimate of the bias along
with the state estimate. This yields a nondimensional
number that describes the importance of nonlinearities.
We follow the method described by Verlaan and Heem-
ink (2001) and refer to their paper for details. If the
forward operator f is nonlinear, the EKF forecast equa-
tion (5a) becomes biased. Using a Taylor series expan-
sion we get

1
2E [f (x)] 5 f[E (x)] 1 (P] f) 1 · · · , (A1)

2

where ( · ) is the expectation operator and [P]2f] i [E
Pmn(]2f i/]xm]xn) (i 5 1· · ·Nx) is a second-orderNxSm,n51

correction term. Higher-order terms are neglected. Let
us now define the bias as the expected error of the
estimate with respect to the true state xk, that is, [1bk

[xk 2 ] and [ [xk 2 ]. The bias is integrated1 2 2E x b E xk k k

according to (Verlaan and Heemink 2001)

2 1 2b 5 F b 1 [P] f] (A2)k21k k21 k21

1 2 2b 5 b 2 K H b , (A3)k kk k k

starting from the initial condition [ 0. Obviously,1b0

for linear f( · ) we have bk [ 0. The bias is forced by
the product of system nonlinearities (]2f) and the un-
certainty (P). This means that system nonlinearities are
less important when the uncertainty is small.

When the estimate is biased, the expected magnitude
of the state estimation errors is approximately given by

P 1 bbT (Dee and da Silva 1998). The relative impor-
tance of the bias can then be measured by V 2 5 bTP21b
(Verlaan and Heemink 2001). Since for unbiased esti-
mates the expected value of the log likelihood function
is equal to Nx, the bias is significant for V k andÏNx

insignificant for V K . Note again that V can onlyÏNx

represent nonlinearities in the model that are differen-
tiable.
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