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Abstract Despite the importance of the coupling between vegetation dynamics and root-zone soil moisture
in land-atmosphere interactions, there is no land data assimilation system (LDAS) that currently addresses this
issue, limiting the capacity to positively impact weather and seasonal forecasting. We develop a new LDAS that
can improve the skill of an ecohydrological model to simulate simultaneously surface soil moisture, root-zone
soil moisture, and vegetation dynamics by assimilating passive microwave observations that are sensitive to
both surface soil moisture and terrestrial biomass. This LDAS first calibrates both hydrological and ecological
parameters of a land surface model, which explicitly simulates vegetation growth and senescence. Then, it
adjusts the model states of soil moisture and leaf area index (LAI) sequentially using a genetic particle filter. We
can adjust the subsurface soil moisture, which is not observed directly by satellites, because we simulate the
interactions between vegetation dynamics and subsurface water dynamics. From a point-scale evaluation, we
succeed in improving the performance of our land surface model and generate ensembles of the model state
whose distribution reflects the combined information in the land surface model and satellite observations. We
show that the adjustment of the subsurface soil moisture significantly improves the capacity to simulate
vegetation dynamics in seasonal forecast timescales. This LDAS can contribute to the generation of ensemble
initial conditions of surface and subsurface soil moisture and LAI for a probabilistic framework of weather and
seasonal forecasting.

1. Introduction

Land surface conditions are an important factor in weather and seasonal prediction. Soil moisture and terrestrial
biomass affect the energy partitioning of the land surface by regulating the albedo and Bowen ratio [e.g.,
Samain et al., 2008; Timouk et al., 2009]. Moreover, the representation of land-atmosphere interactions in
numerical simulations strongly governs the skill of regional-scale weather forecasting [e.g., Hohenegger et al.,
2009; Garcia-Carreras and Parker, 2011; Zaitchik et al., 2013]. Yuan and Wood [2013] have shown that 3month
seasonal predictions have limited skill in forecasting the onset of global drought at local scales and that local
land-atmosphere coupling, in addition to the coupling between sea surface temperature and drought, needs
to be investigated to improve this skill. To estimate soil moisture and terrestrial biomass impact on the land
surface feedbacks to the atmosphere and improve the representation of land-atmosphere interactions in the
land-ocean-atmosphere forecasting system, many land surface models (LSMs) have been developed [e.g.,
Clark et al., 2011; Lawrence et al., 2011; Yang et al., 2011; Boussetta et al., 2013].

A land data assimilation system (LDAS) can effectively combine information from an LSM with observations
and is a promising technique by which to improve LSM-based land surface forecasting [Montzka et al., 2012].
While the number of in situ observations is insufficient to address the heterogeneities of land surface
conditions, satellite observations make it possible to globally assimilate observed data into an LSM. In
particular, the application of satellite-based passive microwave remote sensing observations to an LDAS
has been intensively investigated for improving the skill of soil moisture forecast through assimilation [e.g.,
Yang et al., 2007, 2009; Qin et al., 2009; Tian et al., 2009; Li et al., 2012a; Su et al., 2013]. This is because
surface soil moisture can be retrieved well from the microwave brightness temperature observations [e.g.,
Paloscia et al., 2001; Njoku et al., 2003; Gruhier et al., 2008; Owe et al., 2008; Jackson et al., 2010; Albergel
et al., 2012]. Coupling of a microwave radiative transfer, land surface model, and atmospheric model with a
data assimilation system has already been realized [Rasmy et al., 2011].

In addition, there have been many other contributions to LDASs to improve the simulation of water cycle
components on land. For example, Li et al. [2012b] evaluated the potential of terrestrial water storage
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assimilation from the Gravity Recovery and Climate Experiment (GRACE) into an LSM to improve the
simulation of groundwater and runoff. Zhang et al. [2014] have shown that the assimilation of snow-cover
fraction from the Moderate Resolution Imaging Spectroradiometer (MODIS) improved the simulation of
snow water equivalent and snow depth considerably.

However, previous developments have focused mainly on the water cycle components of the land system
and have omitted to explicitly simulate the interactions between the water cycle and vegetation dynamics.
For correct simulation of the vegetation condition, the coupling of subsurface soil moisture and vegetation
dynamics is important. For example, Sanchez-Mejia and Papuga [2014] and Sanchez-Mejia et al. [2014] have
provided observational evidence that the dynamics of subsurface soil moisture strongly regulates the
canopy albedo and evaporative fraction. These observations highlight the importance of the coupling
between subsurface soil moisture and vegetation dynamics in land-atmosphere interactions. To forecast
this coupling, it is necessary to obtain simultaneously the initial conditions of the root-zone soil moisture
vertical profile and the terrestrial biomass.

The joint assimilation of surface soil moisture and leaf area index (LAI) has been realized by Sabater et al.
[2008], which introduced in situ observation into the ISBA-A-gs LSM. Sabater et al. [2008] investigated
how to improve root-zone soil moisture simulation by assimilating only land surface information [see
also Albergel et al., 2010; Bardu et al., 2011]. Nearing et al. [2012] assessed the impact of LAI and soil
moisture assimilation for wheat yield estimates by an observing system simulation experiment and
concluded this joint assimilation has the limited capacity to improve yield estimates due mainly to a lack
of root-zone soil moisture information. Since it is difficult to directly obtain information of subsurface soil
moisture from space, how to propagate the land surface observation to deeper soil layers has been
deeply discussed.

As a globally applicable satellite product, the visible-infrared MODIS LAI has been frequently used to
improve the simulation of vegetation phenology. Jarlan et al. [2008] have described a LAI data
assimilation system using MODIS LAI and Carbon-TESSEL LSM. Stöckli et al. [2008] and Stöckli et al.
[2011] have realized a global long-term reanalysis of vegetation phenology by assimilating MODIS LAI
and a fraction of photosynthetically active radiation into the simple phenology model. However, these
studies did not discuss the simulation of surface and subsurface soil moisture. A satellite-based LDAS
that can simultaneously improve the simulation of soil moisture and vegetation dynamics has yet to
be developed.

Vegetation dynamics can also be retrieved from the microwave brightness temperature [e.g., Paloscia and
Pampaloni, 1988; Owe et al., 2001; Jones et al., 2011; Liu et al., 2011]. Therefore, passive microwave remote
sensing also has the capacity to improve the simulation of vegetation dynamics using data assimilation
techniques, thus mitigating the need to rely upon cloud-limited optical data. Sawada and Koike [2014a,
2014b] have demonstrated that it is possible to simultaneously calibrate hydrological and ecological
parameters in an ecohydrological model using passive microwave satellite observations and improve the
skill of simulating both soil moisture and LAI.

The aim of this paper is to develop an LDAS that can generate an ensemble initial surface soil moisture,
subsurface soil moisture, and terrestrial biomass conditions for probabilistic forecasting [e.g., Wood and
Lettenmaier, 2008; Pan et al., 2013; Yuan and Wood, 2013] by assimilating passive microwave satellite
observations. This LDAS, a Coupled Land and Vegetation Data Assimilation System (CLVDAS), has an LSM
coupled with a dynamic vegetation model (DVM) to calculate vegetation growth and senescence, and a
radiative transfer model (RTM) to predict emission in the microwave region. First, the CLVDAS optimizes
both hydrological and ecological model parameters simultaneously by comparing modeled and observed
microwave brightness temperatures. Second, the CLVDAS adjusts the model state of surface soil moisture,
subsurface soil moisture, and LAI at the same time by assimilating satellite-observed brightness
temperatures using genetic particle filtering (GPF). We can adjust the subsurface soil moisture by
assimilating satellite vegetation observations because we explicitly model the interactions between
subsurface soil moisture and vegetation dynamics. Sawada and Koike [2014a, 2014b] have already
described and tested the parameter optimization part of the CLVDAS. Thus, in this paper, we focus on the
capability of GPF to adjust the model state to generate ensemble initial conditions by assimilating
Advanced Microwave Scanning Radiometer 2 (AMSR2)-observed brightness temperatures.
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2. Coupled Land and Vegetation Data Assimilation System

Figure 1 shows the CLVDAS structure. EcoHydro-SiB calculates the surface soil moisture, LAI, surface temperature,
and canopy temperature, which are fed into the RTM to estimate brightness temperatures (TB in Figure 1) in the
microwave region. We defined this model chain as the Core-Model in Figure 1.

The CLVDAS has three different modules: parameter selection, parameter optimization, and data assimilation.
First, we analyze the parameter sensitivities of EcoHydro-SiB using a global sensitivity analysis approach to
reduce the number of optimized parameters. Second, the parameter optimization module estimates the
hydrological and ecological parameters by fitting estimated brightness temperatures to the observed
brightness temperatures. Third, in the data assimilation module, we adjust the vertical soil moisture profile
and LAI using GPF.

In the first two modules (Pass0 and Pass1 in Figure 1), a long time window was chosen (1 year in this study)
because model parameters do not change in a short period of time, whereas in the third module (Pass2 in
Figure 1), a shorter time window (5 days in this study) was used because initial conditions of soil moisture
and LAI have a short-term effect on the system state variables [see also Yang et al., 2009]. The dual-pass
data assimilation, which uses the observation data in the two different passes (parameter optimization and
model state adjustment), has already been implemented in the previous microwave LDAS studies [Yang
et al., 2007, 2009; Tian et al., 2009]. Vrugt et al. [2013] pointed out that if both the model parameters and
state variables are simultaneously adjusted in the single short time window, the posterior distributions of
model parameters can change considerably through time due to temporal changes in parameter
sensitivity. To obtain time-invariant single optimized parameters, the dual-pass data assimilation has been
chosen as the algorithm for the CLVDAS.

In this section, we describe the models (EcoHydro-SiB and RTM) and these three modules. As Sawada and
Koike [2014b] have already presented an explanation of the CLVDAS, except for the GPF data assimilation
part, we mainly describe the new modules (Pass2 in Figure 1) and modifications from the version of
Sawada and Koike [2014b] in this paper. Please see the detailed explanation and complete formulations in
Sawada and Koike [2014b], although a brief description is presented in this paper.

2.1. Land Surface Model: EcoHydro-SiB

EcoHydro-SiB is the LSM of the CLVDAS. This model was originally the coupled model of Hydro-SiB and DVM.
Hydro-SiB was developed byWang et al. [2009c] by improving the hydrology of the Simple Biosphere Model
2 [Sellers et al., 1996]. Many studies have evaluated Hydro-SiB within the framework of a distributed

Figure 1. Structure of the coupled land and vegetation data assimilation system (CLVDAS).
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hydrological model [e.g.,Wang et al., 2009a, 2009b, 2009c, 2011; Saavedra et al., 2010; Jaranilla-Sanchez et al.,
2011; Xue et al., 2013].

In Hydro-SiB, the vertical interlayer flows within the unsaturated zone are described using a one-dimensional
Richards’s equation. In Sawada and Koike [2014b], the capillary suction and hydraulic conductivity are
calculated by van Genuchten’s water retention curve [van Genuchten, 1980]. However, in this paper, we
calculate capillary suction using the modified van Genuchten model, as suggested by Ciocca et al. [2014],
to describe the water dynamics of dry soil, but with the original van Genuchten’s equations to calculate
the hydraulic conductivity. The formulations are as follows:

ψ θð Þ ¼ 1
α

SMVG
1=m�

� �1=n�
; (1)

K θ; zð Þ=Ks zð Þ ¼ S1=2 1� 1� S1=m
� �mh i2

; (2)

S ¼ θ � θrð Þ= θs � θrð Þ; (3)

SMVG ¼ θ=θs (4)

m ¼ 1� 1=n; m� ¼ 1� 1=n�; (5)

where z is the distance from the surface with positive values increasing vertically downwards (m), θ is the
volumetric water content (m3/m3), ψ(θ) is the capillary suction (m), K(θ, z) is the hydraulic conductivity (m/s),
Ks(z) is the saturated hydraulic conductivity (m/s), θr is the residual water content (m3/m3), θs is the
saturation water content or porosity (m3/m3), and α, n, and n* are model parameters. In the original
formulations of van Genuchten [1980], S was used for calculating capillary suction, but it is replaced with
SMVG here. In the CLVDAS, we firstly specify parameters α and n and then calculate n* by fitting our water
retention curve to the original van Genuchten’s water retention curve under wet conditions (θ> 0.1) [see
also Ciocca et al., 2014].

We assume the saturated hydraulic conductivity decreases exponentially with increasing soil depth [Cabral
et al., 1992; Robinson and Sivapalan, 1996]:

Ks zð Þ ¼ Ks 0ð Þexp �f zð Þ; (6)

where f is the decay factor. This assumption is derived by a number of field studies [Beven, 1982]. A detailed
explanation of the hydrology of Hydro-SiB can be found in Wang et al. [2009c].

We have developed the DVM to be coupled with Hydro-SiB (EcoHydro-SiB). The capability of estimating water
cycle and vegetation dynamics has been evaluated within the framework of the distributed hydrological
model [Sawada and Koike, 2013; Sawada et al., 2014]. In the grassland case, carbon-pool dynamics are
modeled by the following equations:

dCleaf

dt
¼ aleafNPP� dleaf þ γþ λð ÞCleaf (7)

dCroot

dt
¼ arootNPP� drootCroot; (8)

where Cleaf and Croot are the carbon pools of leaves and roots, respectively [kg/m2], aleaf and aroot are the
carbon allocation fractions of leaves and roots, respectively, and aleaf + aroot = 1. NPP is the net primary
production (mol/m2/s), dleaf and droot are the normal turnover rates of leaves and roots, respectively, and γ
and λ are water- and temperature-related stress factors for leaves, respectively. In the woody biomass case,
we consider the sapwood carbon pool.

A water-related stress factor is derived from the vertical distribution of soil moisture, following the method of
Arora and Boer [2005] using a soil moisture index (SMI):

βT ið Þ ¼ min 1;max 0;
θi � θw
θo � θw

� �� �
; (9)

where βT(i) is the SMI of the i-th soil layer, θi is the volumetric soil moisture, θw is the wilting point, and θo is the
point of stress onset. To obtain θw and θo, we specify the corresponding suction value and inversely solve
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equations (1) and (4). βTOT is calculated by aggregating the SMI in the root-zone layers, weighted by the root
biomass fraction, as in the model of Jackson et al. [1996].

Y dð Þ ¼ 1� Bd (10)

where Y is the cumulative root fraction from the surface to depth d (cm) and B is an empirical parameter that
is <1. Thus, βTOT is calculated by

βTOT ¼
XN
i¼1

βT ið Þ� Y Δzi�ið Þ � Y Δzi� i � 1ð Þð Þ½ �; (11)

where N is the number of soil layers and Δzi is the depth of each. This method was used in Ivanov et al. [2008].
Water-related stress factor γ in our DVM is defined by

γ ¼ γmax 1� βTOTð Þ4; (12)

where γmax is the maximum stress loss. The methodology to calculate other factors in equations (6) and (7)
can be found in Sawada and Koike [2014b] and Sawada et al. [2014].

Once we have estimated a carbon pool of leaves, the LAI and vegetation water content (VWC) can be obtained
using the empirical relationships proposed by Calvet et al. [1998] and Paloscia and Pampaloni [1988]:

LAI ¼ SLA�Cleaf ; (13)

VWC ¼ exp LAI=3:3ð Þ � 1; (14)

where SLA is the specific leaf area that indicates leaf thickness (m2/kg) [see Arora and Boer, 2005] and VWC is
one of the input variables of the RTM.

The time step of the model was set to 1 h, and the thicknesses of the soil layers were set to 5 cm. The root-
zone soil is arbitrary defined as the soil layer 5–95 cm from the surface. However, please note that the root
biomass is not uniformly distributed in the root-zone soil of EcoHydro-SiB [see equation (10)]. Soil
moisture-vegetation coupling in shallower layers is therefore much stronger than that in deeper layers (see
also section 3.1). The total soil thickness was set to 150 cm.

2.2. Radiative Transfer Model

Because we directly assimilate brightness temperatures into the model instead of derived soil moisture and
vegetation products, we need to have an RTM to convert the land surface conditions to microwave
brightness temperatures. The inputs of the RTM are surface soil moisture, surface temperature, canopy
temperature, and the VWC calculated by EcoHydro-SiB. The total emission and attenuation from the land
surface and vegetation canopy can be calculated using the equation [Mo et al., 1982]:

Tb ¼ Tbs exp �τcð Þ þ 1� ωcð ÞTc 1� exp �τcð Þð Þ þ Rp 1� ωcð ÞT c 1� exp �τcð Þð Þ exp �τcð Þ (15)

where Tb is the brightness temperature at radiometer level, Tbs is the brightness temperature at ground level
Tbs = (1� Rp)Ts, Ts and Tc are the physical land surface and canopy temperatures, respectively, ωc is the single
scattering albedo of the canopy, Rp is the reflectivity of the land surface, and subscript p indicates the
polarization (vertical or horizontal). τc is the vegetation optical depth (VOD), which is calculated using

τc ¼ b’λcxVWC
cosθ

; (16)

where b’ is the vegetation parameter that is independent of wavelength (λc), x is a parameter that shows a
dependence on wavelength (in shorter wavelength, microwave is easier to be attenuated by the
vegetation water content), and θ is the incident angle. Equation (16) was proposed by Jackson and
Schmugge [1991].
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Calculating land surface emissivity (= 1� Rp) is the important part of the RTM. In the CLVDAS, we use an
Advanced Integral Equation Model with the incorporation of a shadowing effect [Kuria et al., 2007]. This
model is suitable for describing surface emission and surface scattering for a wide range of surface
roughness conditions characterized by rms height (hmv) and correlation length (Qmv). Kuria et al. [2007]
validated this RTM through field experiments. The formulations of this model can be found in Kuria et al.
[2007] and Sawada and Koike [2014b].

2.3. Parameter Selection Strategy

Although the model has a large number of unknown parameters, we can calibrate simultaneously a limited
number of them by considering the efficiency of the optimization computation. Therefore, the CLVDAS
realizes the parameter sensitivity analysis to select those parameters to be calibrated (Pass0 in Figure 1).
We perform a variance-based global sensitivity analysis [Qin et al., 2009; Saltelli et al., 2010; Marzban, 2013;
Pappas et al., 2013] for several parameters of EcoHydro-SiB. The total sensitivity index, which measures the
sum of all the effects related to a parameter [Qin et al., 2009], is calculated, and we select those parameters
sensitive to the model-estimated brightness temperatures at the scan time of a microwave radiometer as
the calibrated parameters (the list of selected parameters in this study can be found in section 4). The
details of this technique can be found in Sawada and Koike [2014b].

2.4. Parameter Optimization

The parameter optimization module of the CLVDAS (Pass1 in Figure 1) searches the optimized parameters by
minimizing the cost function:

COST ¼
Xt¼T

t¼0

h
T6:9Vb;est � T6:9Vb;obs

� �2
þ T6:9Hb;est � T6:9Hb;obs

� �2
þ T10:7Vb;est � T10:7Vb;obs

� �2
þ T10:7Hb;est � T10:7H

b;obs

� �2
þ T18:7Vb;est � T18:7Vb;obs

� �2
þ T18:7Hb;est � T18:7Hb;obs

� �2i
;

(17)

where the subscript obs denotes the observed value and est denotes the model’s estimated value. We
assimilate the observed brightness temperatures (Tb) of the vertical (V) and horizontal (H) polarization at
6.9, 10.7, and 18.7 GHz frequencies, using the summation of square errors during a calibration period
(T, 1 year in this study). This cost function differs slightly from that of Sawada and Koike [2014b], which
assimilated brightness temperatures at only 6.9 and 18.7 GHz. Here we used three different frequencies
because it makes the system more stable, especially when we adjust the model state directly (see
section 2.5), although the computational costs do increase.

As discussed in Sawada and Koike [2014b], we identify the initial guess of the targeted parameters by
referring to the map of global soil texture and land use type in each grid to confirm the physical
consistency among the parameter values. Then, we add the uncertainty to this initial guess as the upper
and lower bounds of the optimized parameters considering a reasonable range. The CLVDAS finds the
optimal parameters that minimize the cost function [equation (17)] by using the shuffled complex
evolution method (SCE-UA) [Duan et al., 1992].

2.5. Data Assimilation: Genetic Particle Filter

We chose the particle filtering (PF) approach to sequentially adjust the model state in the CLVDAS (Pass2 in
Figure 1). In comparison with the Kalman Filter (KF), including the Ensemble Kalman Filter, the advantage of
PF is that the posterior distribution of the state vector can be represented by Monte Carlo samples and
the Gaussian assumption is eliminated [Qin et al., 2009]. In addition, PF is more robust than KF against
model nonlinearity. Although the disadvantage of PF is its high computational cost, it is feasible to apply
PF to an LDAS whose numerical models (one-dimensional LSMs) do not greatly consume computational
resources.

The theoretical background, algorithm, and application of GPF can be found in Mechri et al. [2014], Rémy
et al. [2012], Kwok and Zhou [2005], and Uosaki et al. [2004]. The procedure of GPF can be divided into
three steps: selection, resample, and mutation. We define the model vectors at time t as xt,i(i=1, 2,........,N),
where i denotes the subscript of the Monte Carlo samples (hereafter called “particles”) and N is the total
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number of particles. In the CLVDAS, each model vector has a value of soil moisture in each surface and
root-zone layer, and the LAI, such that

xt;i ¼

θ1
θ2
θ3
:

:

:

:

θrn
LAI

2
666666666666666664

3
777777777777777775

; (18)

where θn is the n-th soil moisture layer and rn (=20 in this study) is the total number of soil layers from the top
of the soil to the bottom of the root zone.

The total number of particles needs to be selected carefully to avoid filter collapse [Mechri et al., 2014; Rémy et al.,
2012]. In this paper, we set N to 512. The sensitivity of the total number of particles to the results is discussed in
Appendix A. Selection, resample, and mutation are processed according to the value of the potential functions,
G(xt,i), which designs the likelihood function in filtering problems (see section 2.5.4 about the potential function).
2.5.1. Genetic Selection Algorithm
The genetic selection algorithm selects those particles closer to the observations at the end of the assimilation
window. We calculate the probability of the selections (“survival rate”, PS(xt,i)) for each particle and select
particles according to their survival rate. In CLVDAS, the survival rates are defined as follows [Rémy et al., 2012]:

Ps xt;i
� 	 ¼ G xt;i

� 	
max
x∈A

G xt;j
� 	 ; (19)

where A is the set that includes the state vectors of all particles before the selection and S is the set that
includes the state vectors of only the selected particles.
2.5.2. Resampling Particles
Resampling is applied to generate new particles so as to replace rejected particles. We resample the particles
by copying the surviving particles based on the weight of each particle:

wt;i ¼
G xt;i
� 	X

x∈S

G xt;j
� 	 ; (20)

where wt,i represents the weights. Please note that we calculate weights only for the selected particles andX
x∈S

wt;i ¼ 1. Having calculated the weights of the selected particles, they are resampled through an

importance resampling algorithm using multinomial draws until we recover the original number of particles.
2.5.3. Mutation Process
To maintain the diversity of the particles, we add the fluctuation to the particles after the resampling process.
For each vector component of a particle, the mutation process can be shown as follows:

xkt;i;mutated ¼ xkt;i þ Bkμ; (21)

where xkt;i;mutated is the k-th vector component of particle i after the mutation process and μ is a random
variable from a uniform distribution from �1 to 1. μ has a different number for the different vector
components such that the magnitudes of perturbations are not correlated in the vertical. As Kumar et al.
[2009] indicated, the correlation between soil moistures in vertical varies in the different regional climates
and soil types. With no a priori information about this correlation, the assumption that the magnitudes of
perturbations are not correlated in the vertical is reasonable. Please note that the strength of the surface
and subsurface soil moisture coupling in the LSM has already affected the results of the data assimilation
through the resampling process. The strength of the coupling is therefore not prescribed in this mutation
process. Bk has a different value for each vector component of the particles. In this work, for surface soil
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moisture and LAI, we set both B1 and Brn + 1 to 0.0125. For root-zone soil moisture, we calculate this factor
using the following equation:

Bk ¼ B1exp �f zð Þ k ¼ 2; 3; :::::; rnð Þ; (22)

where f is the decay factor, which is the same as the value of equation (6). The fluctuation of the mutation
process decreases exponentially as the soil depth increases. This prevents unrealistic soil moisture profiles
being generated by the LSM. We utilize the saturated hydraulic conductivity, which decreases
exponentially with the decay factor, as a good proxy of the magnitude of soil moisture’s change by the
mutation process.
2.5.4. Design of the Potential Function
The potential function, G(xt,i), should design the likelihood function. Here we construct this function as in
the following:

G xt;i
� 	 ¼ exp �COSTGPF xt:ið Þð Þ (23)

COSTGPF xt;i
� 	 ¼ 1

Nobs

X
t∈twindow

X
p¼V;H

X
f¼6:9GHz;10:7GHz;18:7GHz

Tp;f
b;est � Tp;fb;obs

� �2
σ þ Tp;fb;est � Tp;f

b;obs

� �2� �; (24)

where Nobs is the total number of satellite scans in the assimilation window, twindow is the temporal length
of the assimilation window, superscripts p and f indicate the polarization and frequency, respectively, and σ is
a parameter that is set to 100 in this paper. We chose the Geman-McClure type estimator [Geman and
McClure, 1987] for the potential function (see Figure S1 in the supporting information for the shape of this
function). In this function with σ = 100, all biases which are over 30[K] nearly equally contribute to the
potential function so that this estimator is relatively robust to outliers and suitable for stable
implementation of GPF. Brightness temperatures at the same frequencies are used in Pass2 as in Pass1. In
this paper, we set the duration of each assimilation window to 5 days. Although it could be set shorter, this
assimilation window was selected to evaluate the vegetation growth rate of the particles. Because we can
obtain several satellite observations in one assimilation window, we can evaluate every particle using
multiple observations (the cost function is computed as the sum of the differences between all observed
and the corresponding simulated brightness temperatures within the 5-day window), and the state vectors
are adjusted every 5 days. Therefore, this implementation of the GPF works as a “smoother.”

3. Data
3.1. In Situ Observation

We tested the CLVDAS at the Yanco Flux Tower site located in New South Wales, Australia. This site was used
for validation of the soil moisture observed by AMSR2 onboard the Global Change Observation Mission-
Water (GCOM-W) satellite. Observations of Yanco area were also used for retrieval of soil parameter of the
LSM [Bandara et al., 2013, 2014], downscaling satellite-observed soil moisture data [Piles et al., 2011], and
simulation of Soil Moisture Active Passive (SMAP) data stream [Wu et al., 2015]. We used the
meteorological forcings (surface pressure, precipitation, surface air temperature, relative humidity,
incoming shortwave radiation, incoming long-wave radiation, and wind speed) observed at this site to
drive the CLVDAS.

In addition, we also used observations of ground soil moisture for validation of the CLVDAS. At this site, there
are soil moisture probes at five depths (3, 10, 15, 45, and 75 cm); however, there were relatively low soil
moisture contents at three depths (3, 10, and 45 cm) and very high soil moisture contents at two depths
(15 and 75 cm) throughout almost the entire computational period. Without considering the strong
vertical heterogeneity of soil characteristics, we cannot simulate these observed soil moistures. Therefore,
only the data from the shallow depths (3 and 10 cm) were used for the validation process, while the results
at the deeper depths are provided in the supporting information (Figure S2). In addition, the optimized
parameter of equation (10) (see section 4 and Table 1) implies that more than 50% and 90% of root
biomass is located in the top 10 and 30 cm soil depth, respectively (see also Figure S3). Although the top
100 cm is often considered the root zone, the deeper portion of this layer (i.e., 30–100 cm) does not
strongly affect vegetation-soil moisture coupling in this instance. Because subsurface soil moisture is
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estimated by using data assimilation technology and vegetation-soil moisture coupling, only the depths
where most of the root biomass is located are considered in the results.

3.2. Global Data Sets

We used the International Satellite Land Surface Climatology Project 2 soil data [Global Soil Data Task Group,
2000] to derive the soil texture. Initial guesses of the van Genuchten’s water retention curve parameters
[α and n; see equations (1)–(5)] were obtained from the Food and Agriculture Organization global data set
[Food and Agricultural Organization, 2003].

The observed brightness temperatures were from the AMSR2 L3 product, whose native resolution is
0.1° × 0.1°. We used only night-scene data to reduce the effects of surface temperature bias on the
optimization scheme. We also used retrieved soil water content from the AMSR2 L3 product [Kachi et al.,
2013] to compare the CLVDAS-estimated soil moisture with a soil moisture product from a single satellite.
For the observed LAI, we used the MODIS MCD15A3 4-daily LAI product [Huang et al., 2008] to evaluate
the skill of the CLVDAS in simulating vegetation dynamics. Please note that satellite LAI products may
have some biases and there are large differences between products [e.g., Fang et al., 2013].

4. Experiment Design

We calculated the sensitivities of the parameters (Ks, f, θs,n,Vmax,dleaf, γmax,Ψwilt, B) to the brightness
temperatures at every descending observation time of AMSR2. Please note that the “candidates” of
optimized parameters listed above are slightly different from those in Sawada and Koike [2014b]. According
to the values of the sensitivity indices (not shown), we found the parameters f, γmax,Ψwilt to be much less
sensitive. Therefore, we calibrated Ks, θs,n,Vmax,dleaf, B as the unknown parameters of EcoHydro-SiB. We also
included the correlation length in the RTM as a calibration parameter [Sawada and Koike, 2014b]. We
implemented parameter optimization for these targeted parameters. Our calibrated parameters and other
important parameters are listed in Table 1. In this paper, the results of the parameter optimization are not
discussed in depth; please refer to Sawada and Koike [2014b] for additional details.

The GPF was run with the optimized parameters from 1 January 2013 to the end of 2013 (called the GPF
simulation). We set the window to 5 days such that the particles were resampled every 5 days according to
the values of their likelihood functions. In this paper, we used every particle that survived in the selection
step of GPF (see section 2.5) to evaluate their probabilistic characteristics.

To evaluate the GPF capability, we additionally implemented a “pseudo-hindcast” experiment. In this
numerical experiment, we first ran the CLVDAS with GPF during the specified duration, and then we ran

Table 1. List of Important Parameters

Type Symbol Description Value Source

Hydrological Ks Saturated hydraulic conductivity 4.32 × 10�6 Calibrated
f Vertical decay factor of saturated hydraulic conductivity 1.53 Wang et al. [2009c]
θs Saturation water content (porosity) 0.356 Calibrated
α Parameter in van Genuchten’s water retention curve 0.0237 FAO [2003]
n Parameter in van Genuchten’s water retention curve 1.61 Calibrated

Ecological Vmax Maximum rubisco capacity of top leaf 8.63 × 10�5 Calibrated
dleaf Normal turnover rate of leaves [h�1] 8.26 × 10�5 Calibrated
γmax Maximum water-related stress loss [h�1] 0.00083 Ivanov et al. [2008]
Ψwilt The soil matric potentials at wilting point [Mpa] �4.0 Ivanov et al. [2008]
B Empirical parameter of root biomass fraction function 0.926 Calibrated

Radiative transfer l Correlation length 1.79 Calibrated
δ RMS height 0.51 Sawada and Koike [2014b]
b′ Vegetation parameter independent to wavelength 1.32 Sawada et al. (submitted)
x Vegetation parameter that shows the dependen

ce of wavelength
�1.11 Sawada et al. (submitted)

%sanda Percentage of sand content 54.6 Global Soil Data Task Group [2000]
%claya Percentage of clay content 22.7 Global Soil Data Task Group [2000]

aNote that soil texture parameters are used to calculate hydrological parameters through the pseudotransfer functions following Yang et al. [2009].
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every particle without any assimilation and adjustment [open loop (OL)]. We prepared four sets of this
experiment according to the times of “release” of the particle: OL35day, OL100day, OL165day, and
OL225day. For example, in the OL35day experiment, we ran the GPF simulation for the first 35 days
followed by using the LSM (EcoHydro-SiB) without any data assimilation but using the initial conditions
prepared by GPF for the rest of the computational period. Please note that any full forecasts were not
implemented because the CLVDAS needs observed meteorological forcing data. In this “pseudo-hindcast”
experiment, we extracted and evaluated the impact of initial conditions on land surface to the skill of
simulating land surface conditions. We discuss the effect and importance of the initial conditions of
root-zone soil moisture and LAI to forecasting ecohydrological conditions of the land surface in the
following section.

Several metrics to evaluate our nonparameteric data assimilation approach were used. First, Jensen-Shannon
divergence (JSD) was used. JSD is calculated based on the Kullback-Leibler divergence (KLD) [Cover and
Thomas, 1991; Chou et al., 2011]:

DKL p; qð Þ ¼
X
i

p ið Þlog p ið Þ
q ið Þ (25)

whereDKL(p,q) is the KLD between two probabilistic distribution functions (PDFs), p and q. If two PDFs are equal
for all i, DKL(p,q) = 0. A small value for DKL(p,q) indicates that p and q are close to each other, and therefore, the
KLD is appropriate as a benchmark to evaluate the closeness of two PDFs [Chou et al., 2011]. However, the KLD
cannot be considered as a distance since this indicator is not symmetric (DKL(p,q)≠DKL(q,p)). JSD can remedy
this defect by formulating the following:

DJS p; qð Þ ¼ 1
2

DKL p; rð Þ þ DKL q; rð Þð Þ (26)

where DJS(p, q) is JSD between PDF p and q, r ¼ 1
2 pþ qð Þ . If p= q, DJS(p, q) = 0. In this study, JSD was

calculated from the PDFs from simulated particles and observations. We assumed that the PDFs of
observed soil moistures and LAI are normal distributions whose mean is the in situ and satellite-
observed value. Standard deviation of observed soil moistures and LAI are chosen as 0.02 and 0.1,
respectively (the choice of standard deviation does not considerably change our conclusions). In addition
to the comparison of JSD, Pearson’s correlation coefficient (R) was also calculated by comparing the
median of the particles and observations. Bias and root mean square error (RMSE) were calculated both
for median and for all particles:

bias medianð Þ ¼ 1
Nt

X
t

ymedian;t � ot
� �

(27)

bias allparticlesð Þ ¼ 1
Nt

X
t

1
Ni

X
i

yi;t � ot
� � !

(28)

RMSE medianð Þ ¼ 1
Nt

X
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ymedian;t � ot
� �2r

(29)

RMSE allparticlesð Þ ¼ 1
Nt

X
t

1
Ni

X
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yi;t � ot
� �2r !

(30)

where ymedian,t is the median value calculated from simulated particles at time t, yi,t is the simulated value
from particle i at time t, ot is the observed value at time t, Nt is the number of time steps, and Ni is the
number of survived particles.

In addition to the experiments described above, the GPF simulation with prescribed LAI from MODIS was
carried out. In this experiment, called noDVM, the DVM in EcoHydro-SiB was switched off, and our
simulated LAI was replaced with MODIS LAI retrievals. In the CLVDAS, there are two pathways to improve
our root-zone soil moisture estimation by using data assimilation: surface-subsurface soil moisture
coupling and subsurface soil moisture-vegetation dynamics coupling. The purpose of noDVM simulation is
to isolate the surface-subsurface soil moisture pathway. The results of the noDVM simulation can be found
in Appendix B. The summary of the experimental design can be found in Table 2.
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5. Results and Discussion

First, we compare the GPF simulation with the OL35day simulation to demonstrate how the CLVDAS works
and improves the skill of a land surface model. Figure 2 shows that the GPF brings no additional
improvement to the simulation of surface soil moisture compared with the OL35day simulation. This is
because the parameter-calibrated EcoHydro-SiB is already able to simulate surface soil moisture very
accurately in the open loop scenario, without any adjustments. In addition, the climate memory of surface
soil moisture in dry regions is short, such that adjustments of the initial conditions do not have a
significant effect. Although we underestimate surface soil moisture in the wet season (June–September),
we succeed in simulating it more accurately than the AMSR2 L3 soil water product which may not
perfectly represent the point-scale soil moisture ground observations.

Figure 2. Time series of hourly near surface soil moisture [m3/m3] from (a) OL35day [genetic particle filtering (GPF) simula-
tion was run for the first 35 days followed by using the EcoHydro-SiB without any data assimilation but using the initial
conditions prepared by GPF for the rest of the computational period] and (b) genetic particle filtering (GPF) simulations.
Each particle of the model-estimated 0 to 5 cm soil moistures from the open loop and GPF simulations is shown by the gray
and blue lines, respectively. Green and black dashed lines are ensemble medians and quartiles, respectively. The red line is
the in situ observed 3 cm soil moisture. Black dots are surface soil moisture observations from the AMSR2 L3 product.
Hourly rainfall [mm/h] is also depicted as blue bars from the top.

Table 2. Summary of Experiment Settings

Name Description

GPF Brightness temperatures are assimilated on the whole computational period
OL35day Brightness temperatures are assimilated for the first 35 days
OL100day Brightness temperatures are assimilated for the first 100 days
OL165day Brightness temperatures are assimilated for the first 165 days
OL225day Brightness temperatures are assimilated for the first 225 days
noDVM Same as GPF but with prescribed LAI
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In contrast to soil moisture, we improve LAI estimation by using GPF. Figure 3 shows the LAI time series of the
OL35day and GPF simulations. Although both simulations reproduce the seasonal cycle of vegetation growth
and senescence, the OL35day simulation failed to estimate the absolute value of LAI. The GPF simulation
succeeded in eliminating the particles that have small biomass amounts generated by the OL35day
simulation and reproduced adequately the satellite-observed LAI phenology.

Figure 4 shows the distribution of LAI simulated by every particle at the end of the mature vegetation season
(1 October). Figure 4a indicates that we cannot determine the biomass amount from the particles in the
OL35day simulation, whereas the GPF simulation succeeds in conditioning particles for the estimation of
LAI (Figure 4b).

Improvements in subsurface soil moisture estimation contribute to better estimations of LAI. Figures 5 and 6
show the time series of soil moisture at depths of 5–10 and 10–15 cm, respectively. Since dryer soil has lower
hydraulic conductivity and wetter soil has higher hydraulic conductivity, the wetter particles respond more
quickly to rainfall. The gray lines in Figures 5a and 6a show the bifurcation of root-zone soil moisture,
especially from May to October. However, in the GPF simulation, the number of particles indicating low
soil moisture content (<10%) decreases rapidly at the beginning of August (Figures 5b and 6b). This is
because these particles cannot reproduce the vegetation growth in this period, and thus, they are
eliminated by the selection and resampling process of the GPF. The model-simulated root-zone soil
moisture in the GPF simulation agrees well with in situ observations. Although we cannot observe directly
the root-zone soil moisture from AMSR2, it can be inversely estimated from the vegetation signal of
AMSR2 brightness temperatures through modeled soil moisture-vegetation dynamics coupling. However,
please note that the CLVDAS can affect the skill of simulating soil moisture only in the layers where a large

Figure 3. Time series of LAI [m2/m2] from (a) OL35day and (b) genetic particle filtering (GPF) simulations. Each particle of
the model-estimated LAI from the open loop and GPF simulations is shown by the gray and blue lines, respectively. Green
and black dashed lines are ensemble medians and quartiles, respectively. Red dots are MODIS satellite-observed LAI. Hourly
rainfall [mm/h] is also depicted as blue bars from the top.
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amount of root biomass is located as discussed in section 3.1 (see also Figure S2) since subsurface soil
moisture-vegetation coupling is used for the improvement of subsurface soil moisture simulations. In
Appendix B, we further discuss the impact of subsurface soil moisture-vegetation coupling to the
estimation of root-zone soil moisture in GPF.

Figure 7 shows that the bifurcation between small soil moisture particles and large soil moisture particles
lasts until the end of the mature vegetation period in the OL35day simulation, whereas it disappears in the
GPF simulation. This causes the bifurcation of small LAI (≈0.5) particles and moderate LAI (≈1.0) particles in

Figure 5. Time series of hourly 5 to 10 cm soil moisture [m3/m3] from (a) OL35day and (b) genetic particle filtering (GPF) simu-
lations. Each particle of the model-estimated 5 to 10 cm soil moistures from the open loop and GPF simulations is shown by
the gray and blue lines, respectively. Green and black dashed lines are ensemble medians and quartiles, respectively. The red
line is the in situ observed 10 cm soil moisture. Hourly rainfall [mm/h] is also depicted as blue bars from the top.

Figure 4. Histogram of particles of model-estimated LAI [m2/m2] from (a) OL35day and (b) genetic particle filtering (GPF)
simulations at 00:00 (local time) on 1 October 2013. The red dashed line is the MODIS satellite-observed LAI at that time.
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Figure 4a. Larger LAI (≈1.6) particles are brought by other bifurcation in the deeper layer (not shown). We
succeed to effectively condition particles and simulate root-zone soil moisture and LAI simultaneously in
the GPF simulation (Figures 3b, 4b, 5b, 6b, and 7b).

Table 3 shows JSD, R, bias, and RMSE calculated from the data during the entire computational period (see
also section 4 for the explanation of each metric). In JSD, GPF outperforms OL35day for LAI and soil
moistures of three layers. However, the differences of JSD between GPF and OL35day are very small. This

Figure 7. Histogram of particles of the model-estimated 5 to 10 cm soil moisture [m3/m3] from (a) OL35day and (b) genetic
particle filtering (GPF) simulations at 00:00 (local time) on 1 October 2013. The red dashed line is the in situ observed 10-cm
soil moisture at that time.

Figure 6. Time series of hourly 10 to 15 cm soil moisture [m3/m3] from (a) OL35day and (b) genetic particle filtering (GPF)
simulations. Each particle of the model-estimated 10 to 15 cm soil moistures from the open loop and GPF simulations is
shown by the gray and blue lines, respectively. Green and black dashed lines are ensemble medians and quartiles, respec-
tively. The red line is the in situ observed 10 cm soil moisture. Hourly rainfall [mm/h] is also depicted as blue bars from the top.
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is because observations are often located outside of the simulated PDF and this systematic error reduces the
sensitivity of JSD. Table 3 also shows that although OL35day provides a large ensemble spread, the median of
the particles can be a good estimator for both LAI and soil moistures (see also green and black dashed lines of
Figures 3, 5, and 6). It indicates that the unknown parameters of our LSM have already been calibrated very
well in Pass1. In 10–15 cm soil layer, soil moisture simulation is not improved by GPF in terms of R, bias, and
RMSE duemainly to the large ensemble spread of GPF simulation in the outside of the growing seasons. Since
the particles were released right after the beginning of simulation, the spread of particles in the beginning of
the growing seasons is relatively small in OL35day. Because CLVDAS improves the skill of simulating
subsurface soil moisture by using soil moisture-vegetation dynamics coupling, no improvements can be
seen outside of the growing seasons. Therefore, we cannot find a significant improvement of the
subsurface soil moisture simulation skill by GPF from the metrics, which is calculated for the entire
computational period.

Figures 8–10 summarize the results of the other “pseudo-hindcasts,” i.e., the OL100day, OL165day, and
OL225day simulations. We evaluate how accurately each simulation reproduces soil moisture and LAI at

Table 3. CLVDAS Scoresa

GPF OL35day OL100day OL165day OL225day

LAI [m2/m2] JSD 0.67 0.69 0.71 0.70 0.72
R (median) 0.91 0.92 0.88 0.92 0.91

Bias (median) �0.13 �0.16 �0.26 �0.16 �0.14
RMSE (median) 0.20 0.22 0.36 0.23 0.21
Bias (all particles) �0.13 �0.13 �0.2 �0.16 �0.15
RMSE (all particles) 0.16 0.22 0.24 0.19 0.17

Soil moisture 0–5 cm [m3/m3] JSD 1.43 1.48 1.42 1.41 1.46
R (median) 0.93 0.93 0.92 0.95 0.93

Bias (median) �0.043 �0.041 �0.040 �0.038 �0.042
RMSE (median) 0.055 0.054 0.053 0.047 0.054
Bias (all particles) �0.043 �0.041 �0.039 �0.039 �0.042
RMSE (all particles) 0.045 0.043 0.042 0.041 0.045

Soil moisture 5–10 cm [m3/m3] JSD 0.78 0.93 0.94 0.75 0.88
R (median) 0.85 0.91 0.045 0.92 0.85

Bias (median) �0.021 �0.028 �0.056 �0.013 �0.020
RMSE (median) 0.040 0.041 0.088 0.029 0.040
Bias (all particles) �0.026 �0.043 �0.050 �0.019 �0.025
RMSE (all particles) 0.036 0.048 0.056 0.030 0.036

Soil moisture 10–15 cm [m3/m3] JSD 0.94 1.00 1.00 1.04 1.02
R (median) 0.42 0.66 0.25 �0.55 0.41

Bias (median) �0.047 �0.039 �0.055 �0.067 �0.046
RMSE (median) 0.076 0.066 0.085 0.098 0.075
Bias (all particles) �0.045 �0.039 �0.051 �0.057 �0.046
RMSE (all particles) 0.050 0.043 0.056 0.061 0.051

aJSD: Jensen-Shannon divergence; RMSE: root mean square error; R: Pearson’s correlation coefficient. Simulated soil
moistures in 5–10 and 10–15 cm are both evaluated by in situ observation at 10 cm depth.

Figure 8. Time series of LAI [m2/m2] from (a) OL100day, (b) OL165day, and (c) OL225day simulations. Each particle of the model-estimated LAI from the open loop
and genetic particle filtering (GPF) is shown by the gray and blue lines, respectively. Green and black dashed lines are ensemble medians and quartiles, respectively.
The red dots are the MODIS satellite-observed LAI. Hourly rainfall [mm/h] is also depicted as blue bars from the top.
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the end of mature vegetation period, based on information from only an LSM and the AMSR2 brightness
temperatures, as performed above for the GPF and OL35day simulations. The OL100day, OL165day, and
OL225day simulations were designed to provide approximately 6, 4, and 2month lead times for
forecasting the land surface condition on 1 October 2013, respectively. Because we used the same
observed meteorological forcings for each offline simulation, the difference between the pseudo-hindcasts
is caused only by the initial conditions of soil moisture and LAI.

Figure 8 shows that as the forecast lead time is reduced, the spread of LAI between each open loop particle
(gray lines) gradually decreases. We cannot improve the skill if we stop assimilating outside of the vegetation
growth season (OL100day; Figures 8a and 10a). Comparing the results of the OL35day simulation with those
of OL100day, it was shown that data assimilation outside of the growing season brings no improvements to
the estimation of land surface conditions in the growing seasons. Even though we shorten the forecasted
lead time, no additional improvements can be expected by assimilating brightness temperatures outside
of the growing seasons. However, when we release the particle in the growing seasons, an improvement is
seen in the LAI estimation (OL165day and OL225day; Figures 8b, 8c, 10b, and 10c).

Figure 9. Time series of hourly 5 to 10 cm soil moisture [m3/m3]: (a) OL100day, (b) OL165day, and (c) OL225day simulations. Each particle of the model-estimated 5
to 10 cm soil moistures from the open loop and genetic particle filtering (GPF) is shown by the gray and blue lines, respectively. Green and black dashed lines are
ensemble medians and quartiles, respectively. Red line is the in situ observed 10 cm soil moisture. Hourly rainfall [mm/h] is also depicted as blue bars from the top.

Figure 10. Histogram of particles of the model-estimated LAI [m2/m2] from (a) OL100day, (b) OL165day, and (c) OL225day simulations (gray bar) with genetic particle
filtering (GPF) simulation (blue bar: same as Figure 4b) at 00:00 (local time) on 1 October 2013. The red dashed line is the MODIS satellite-observed LAI at that time. The
histogram of particles of the model-estimated 5 to 10 cm soil moisture [m3/m3] from (d) OL100day, (e) OL165day, and (f) OL225day simulations (gray bar) with GPF
simulation (blue bar: same as Figure 7b) at 00:00 (local time) on 1 October 2013. The red dashed line is the in situ observed 10 cm soil moisture at that time.
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As discussed above, the improvement of the LAI simulation by GPF is strongly related to interactions between
the root-zone soil moisture and vegetation dynamics. As we decrease the forecasted lead time, we can improve
the estimation of root-zone soil moisture (Figure 9), which brings the significant improvement of LAI simulation
skill. The shape of the histogram of the distribution of root-zone soil moisture of each particle at the end of the
mature vegetation period gradually approaches that of the GPF simulation, as we decrease the forecasted lead
time (Figures 10d–10f). Table 3 shows that in LAI and root-zone soil moisture, OL225day outperforms OL100day
in terms of all metrics but JSD (the reason why JSD is less sensitive has been discussed above).

The initial conditions of subsurface soil moisture significantly affect the long-term simulation of biomass
amount in water-controlled ecosystems, such that we should obtain the initial conditions of both root-
zone soil moisture and LAI simultaneously. Because the initial condition of root-zone soil moisture can be
successfully estimated by assimilating microwave observations, the CLVDAS can contribute to forecast LAI
in up to 3months.

6. Conclusions

In this study, we proposed a LDAS that can simulate surface soil moisture, subsurface soil moisture, and
vegetation dynamics by assimilating passive microwave signals. Assimilating the AMSR2 brightness
temperatures considerably improved the skill of an ecohydrological model in simulating both soil
moisture and vegetation dynamics. To our knowledge, this is the first LDAS with a dynamic vegetation
scheme that addresses the interactions of vegetation and subsurface soil moisture. Multi-frequency
observations of AMSR series satellites, which are sensitive to both soil moisture and vegetation, make
this development possible. In addition, the temporal fineness of low frequency microwave observations
contributes to multi-target (i.e., soil moisture and vegetation dynamics) data assimilation, whose
timescales are different.

As the initial conditions of subsurface soil moisture strongly affect skill in simulating vegetation dynamics, it is
necessary to correctly and simultaneously obtain the initial conditions of soil moisture and vegetation
dynamics. Although it is difficult to infer subsurface soil moisture from a data assimilation process for
surface soil moisture in dry areas [e.g., Kumar et al., 2009], CLVDAS estimates root-zone soil moisture
successfully in the growing season because of the modeled water-vegetation interaction process. The
pseudo-hindcast experiments show that we can obtain an ensemble initial condition to correctly estimate
soil moisture and LAI when the satellite observations are assimilated in the growing season, although data
assimilation outside of the growing season brings no improvements to the estimation of land surface
conditions in the growing seasons. The CLVDAS is a promising tool for the seasonal forecasting of
ecohydrological conditions of the land surface.

Future work will focus on assimilating data from other satellite sensors [e.g., MODIS, GRACE, Soil Moisture and
Ocean Salinity, and Soil Moisture Active Passive (SMAP)] and evaluating how these data contribute to
improving further the skill of simulating the ecohydrological conditions of the land surface.

Appendix A: Sensitivity of the Number of Ensemble Members

To quantify the sensitivity of the number of ensemble members in our CLVDAS implementation, we
calculated the PDFs of 5–10 cm soil moisture and LAI by using 32, 64, 128 and 256 ensemble members in
addition to the implementation with 512 ensemble members. Then, the PDFs of each implementation are
compared with that of the implementation with 512 ensemble members by calculating JSD (see also
section 4).

Figure A1 shows the relationship between JSD and the number of ensemble members. Please note that in
the case of 512 ensemble members, JSD= 0, because we compared the same PDFs. As the number of
ensemble members is decreased, the shapes of PDF for both 5–10 cm soil moisture and LAI deviate from
those of 512 ensemble members. However, this analysis indicates that our choice of 512 ensemble
members is conservative. Considering the computational cost of continental or global application, the
implementation with the smaller number of ensembles members (i.e., 128 or 256 ensembles) is feasible,
although it should be noted that the sensitivity of the number of particles may not be same in the
different regions and climates.
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Appendix B: Experiment
Without DVM in CLVDAS

As discussed in section 4, the GPF
simulation without DVM (noDVM simu-
lation) was additionally carried out. In
this numerical experiment, we used
prescribed MODIS LAI directly and
vegetation dynamics was not calcu-
lated inside of the CLVDAS. By analyz-
ing the subsurface soil moisture in
this experiment, the contribution of
surface and subsurface soil moisture
coupling to the skill of the CLVDAS in
simulating root-zone soil moisture
can be isolated.

Figure B1a shows that the bifurcation
of 5–10 cm soil moisture can be
resolved by using only surface-
subsurface soil moisture coupling.
The noDVM simulation can eliminate
particles which indicate lower soil
moisture as the GPF simulation can,
although the original GPF simulation

Figure B1. (a) Time series of hourly 5 to 10 cm soil moisture [m3/m3] and (b) time series of hourly 10–15 cm soil moisture in
noDVM simulation. Each particle of the model-estimated soil moistures is shown by blue lines. Green and black dashed
lines are ensemble medians and quartiles, respectively. The red line is the in situ observed 10 cm soil moisture. Hourly
rainfall [mm/h] is also depicted as blue bars from the top.

Figure A1. Relationship between Jensen-Shannon divergence (JSD) and
the number of ensembles of GPF for 5–10 cm soil moisture (blue) and
LAI (green). JSDs of GPF simulations with 32, 64, 128, 256, and 512
ensembles are calculated against GPF simulation with 512 ensembles.
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eliminates these particles much faster than noDVM simulation does (please compare Figure 5b with
Figure B1a).

However, the effect of surface and subsurface soil moisture coupling decreases as the depth increases. Figure
B1b shows we cannot completely eliminate lower soil moisture particles of a 10–15 cm soil layer in noDVM
simulation. By comparing Figure 6b with Figure B1b, we can see that subsurface soil moisture-vegetation
dynamics coupling significantly affects the soil moisture estimation of this layer in the CLVDAS.

The noDVM simulation clearly shows that the CLVDAS has two different pathways to improve root-zone soil
moisture: surface-subsurface soil moisture coupling and subsurface soil moisture-vegetation dynamics
coupling. The CLVDAS effectively and simultaneously use these two pathways in order to simulate soil
moisture and vegetation dynamics.
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