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[1] An Extended Kalman Filter (EKF) for the assimilation of remotely sensed near-
surface soil moisture into the Interactions between Surface, Biosphere, and Atmosphere
(ISBA) model is described. ISBA is the land surface scheme in Météo-France’s Aire
Limitée Adaptation Dynamique développement InterNational (ALADIN) Numerical
Weather Prediction (NWP) model, and this work is directed toward providing
initial conditions for NWP. The EKF is used to assimilate near-surface soil moisture
observations retrieved from C-band Advanced Microwave Scanning Radiometer
(AMSR-E) brightness temperatures into ISBA. The EKF can translate near-surface soil
moisture observations into useful increments to the root-zone soil moisture. If the
observation and model soil moisture errors are equal, the Kalman gain for the root-zone
soil moisture is typically 20–30%, resulting in a mean net monthly increment for July
2006 of 0.025 m3 m�3 over ALADIN’s European domain. To test the benefit of evolving
the background error, the EKF is compared to a Simplified EKF (SEKF), in which the
background errors at the time of the analysis are constant. While the Kalman gains for the
EKF and SEKF are derived from different model processes, they produce similar soil
moisture analyses. Despite this similarity, the EKF is recommended for future work where
the extra computational expense can be afforded. The method used to rescale the near-
surface soil moisture data to the model climatology has a greater influence on the analysis
than the error covariance evolution approach, highlighting the importance of developing
appropriate methods for rescaling remotely sensed near-surface soil moisture data.

Citation: Draper, C. S., J.-F. Mahfouf, and J. P. Walker (2009), An EKF assimilation of AMSR-E soil moisture into the ISBA land
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1. Introduction

[2] Soil moisture can have a strong influence onNumerical
Weather Prediction (NWP) forecasts, both at short [Baker et
al., 2001; Drusch and Viterbo, 2007] and medium range
[Zhang and Frederiksen, 2003; Fischer et al., 2007]. Cur-
rently, soil moisture is initialized in most operational NWP
models based on errors in short-range forecasts of low-level
humidity and temperature [e.g., Giard and Bazile, 2000;
Hess, 2001; Bélair et al., 2003]. While these schemes can
in general produce reasonable boundary layer forecasts
[Drusch and Viterbo, 2007], they assume a causative rela-
tionship between low-level atmospheric forecast errors and
local soil moisture errors. As a result, soil moisture is often
adjusted to compensate for errors elsewhere in the model,
resulting in soil moisture fields that are frequently unrealistic
[Seuffert et al., 2004; Draper and Mills, 2008]. The accu-
mulation of model errors in surface variables also makes it
difficult to diagnose the source of these errors. Additionally,

these schemes cannot be sensibly applied to situations where
the local soil moisture–atmospheric boundary layer feed-
back is weak; for example, during periods of strong advec-
tion, or weak radiative forcing. The effectiveness of a soil
analysis based on screen-level variables is also limited by the
availability of screen-level observations, which are particu-
larly sparse across much of the Southern Hemisphere. A
particularly promising approach to addressing some of the
above mentioned shortcomings is the possibility of assimi-
lating remotely sensed near-surface soil moisture into NWP
models [e.g., Seuffert et al., 2004; Balsamo et al., 2007;
Scipal et al., 2008]. This approach is explored here, using
an Extended Kalman Filter (EKF) to assimilate remotely
sensed near-surface soil moisture into Météo-France’s Aire
Limitée Adaptation Dynamique développement InterNational
(ALADIN) NWP model.
[3] Recent interest in the assimilation of remotely sensed

near-surface soil moisture is anticipating the planned launch
of the European Space Agency’s Soil Moisture and Ocean
Salinity (SMOS [Kerr et al., 2001]) mission. SMOS is the
first purpose designed soil moisture remote sensing mission,
and will be followed by NASA’s Soil Moisture Active
Passive (SMAP [Entekhabi et al., 2004]) mission. However,
while SMOS and SMAP are expected to enhance the
accuracy and utility of remotely sensed soil moisture data,
currently orbiting microwave sensors can already provide
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useful soil moisture observations. For this study, near-surface
soil moisture has been retrieved from passive microwave
brightness temperatures observed by the Advanced Micro-
wave Scanning Radiometer –Earth Observing System
(AMSR-E). While it is difficult to quantitatively verify
remotely sensed soil moisture due to the scarcity of soil
moisture data at the appropriate scales [Reichle et al., 2004],
some encouraging comparisons have been made between
soil moisture derived from AMSR-E and that from other
sources. At the local scale, AMSR-E derived soil moisture
has a good temporal association to in situ soil moisture data
[Wagner et al., 2007; Rüdiger et al., 2009; Draper et al.,
2009], and to model data [Rüdiger et al., 2009]. At the
continental scale, it shows a clear response to precipitation
[McCabe et al., 2005; Draper et al., 2009], and using a
novel evaluation technique, Crow and Zhan [2007] showed
that the assimilation of AMSR-E derived soil moisture into
a simple water balance model added value to that model.
[4] In addition to recent advances in the remote sensing

of soil moisture, there has also been focused development of
suitable assimilation strategies for near-surface soil moisture
observations. Early studies based on synthetic data showed
that observation increments of near-surface soil moisture, or
similarly microwave brightness temperature, can be propa-
gated into the deeper soil layers [Reichle et al., 2001;
Walker and Houser, 2001]. Studies of single column models
run over heavily instrumented field sites confirmed that such
an assimilation can improve the model deep soil moisture
[Seuffert et al., 2004; Muñoz Sabater et al., 2007]. Using
remotely sensed data at the continental scale, Drusch [2007]
used a simple nudging scheme to assimilate Tropical Rainfall
Measuring Mission Microwave Imager derived near-surface
soil moisture into the ECMWF Integrated Forecast System
model over the southern United States, and Scipal et al.
[2008] used the same method to assimilate European Remote
Sensing scatterometer derived soil moisture globally. Both
demonstrated that the nudging scheme improved the root-
zone soil moisture (compared to ground data), and both
recommended the development of a more sophisticated
assimilation scheme. Using NASA’s global Catchment Land
Model (CLM), Ni-Meister et al. [2006] showed that an
Ensemble Kalman Filter (EnKF) assimilation of near-surface
soil moisture derived from Scanning Multichannel Micro-
wave Radiometer (SMMR) generated improvements in the
CLM soil moisture over Eurasia. Also using an EnKF with
the CLM, Reichle et al. [2007] demonstrated modest
improvements in the model root-zone soil moisture com-
pared to ground data by assimilating near-surface soil mois-
ture from SMMR and AMSR-E.
[5] A significant hurdle to the assimilation of near-surface

soil moisture in NWP models has been the expense of the
additional model integrations required by advanced assim-
ilation methods. However, this expense can be reduced by
assimilating the data into an off-line version of the land
surface model. Using a simplified 2D-Variational assimila-
tion approach, Balsamo et al. [2007] showed that the
information content of different observation types (including
screen-level variables and microwave brightness temperature)
is similar for assimilation into either an off-line or atmo-
spherically coupled land surface model. In the same exper-
imental setup as used here,Mahfouf et al. [2009] developed a
surface analysis for ALADIN, based on assimilating screen-

level temperature and humidity into an off-line version of its
land surface scheme, the Interactions between Surface,
Biosphere, and Atmosphere (ISBA) model. Mahfouf et al.
[2009] used a Simplified EKF (SEKF), in which a static
background error was assumed at the time of each analysis,
and the observation operator was a 6-h ISBA integration. In
an experiment over July 2006, they showed that the dynamic
Kalman gain terms for the SEKF were similar to the analyt-
ically derived coefficients used in the operational Optimal
Interpolation (OI) scheme [Giard and Bazile, 2000]. As well
as confirming the viability of the SEKF, this demonstrates
that the off-line system captures the necessary surface–
screen-level interactions for the assimilation of screen-level
observations, since the OI coefficients were derived using the
full atmospheric model [Bouttier et al., 1993].
[6] This work extends that of Mahfouf et al. [2009] to

assimilate remotely sensed near-surface soil moisture derived
from AMSR-E observations into ISBA, and is a preliminary
step before the combined assimilation of remotely sensed
near-surface soil moisture and screen-level observations. The
screen-level data assimilated by Mahfouf et al. [2009] were
reliably available for each analysis cycle, and the use of a
static background error was based on the assumption that the
increase in the background error during each forecast step
was balanced by the reduction from the previous analysis.
This assumption is less valid in this study, since the remotely
sensed data used here are not available with the same
regularity, motivating the development of a full EKF. Addi-
tionally, the dynamic error covariances will be of greater
importance for the future combined assimilation of screen-
level observations and near-surface soil moisture, which are
available at different frequencies [Rüdiger et al., 2007]. The
aim of this study is to determine whether an off-line assim-
ilation of remotely sensed near-surface soil moisture is a
viable method for analyzing root-zone soil moisture in ISBA,
and to understand how the near-surface soil moisture incre-
ments are translated into deeper-layer increments by the
Kalman filter. Additionally, the benefit of using dynamic
background error covariances is tested by comparing the
SEKF and EKF assimilation of near-surface soil moisture.

2. Methodology

2.1. ISBA Land Surface Scheme

[7] ISBA [Noilhan and Mahfouf, 1996] is the land
surface scheme used in the ALADIN NWP model. The
moisture and energy dynamics in ISBA are modeled using
a force-restore method [Deardorff, 1977], with eight prog-
nostic variables: surface temperature, mean (deep layer)
surface temperature, surface water content (liquid/frozen),
total (deep layer) water content (liquid/frozen), vegetation
intercepted water content, and snow water content. There is
free drainage from the lower boundary, and each grid is
divided into a vegetated and bare soil fraction, with evapo-
ration calculated separately from each (although there is a
single heat budget). For moisture, the near-surface water
reservoir (w1) is defined as the depth from which moisture
can be extracted by bare soil evaporation (�10 mm), and the
total water reservoir (w2) is defined as the depth from which
moisture can be extracted through bare-soil evaporation or
transpiration (0.1 to 10 m, depending on the local soil type
and climate). Both soil layers are forced by precipitation and
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evaporation, and transpiration is applied to w2, with the
atmospheric forcing acting more slowly on w2. The model
restore term adjusts w1 toward an equilibrium between
capillary and gravity forces, while w2 is restored toward field
capacity by gravitational drainage. For ALADIN, the soil
moisture and temperature states are currently analyzed from
screen-level observations of humidity and temperature,
using the OI technique of Giard and Bazile [2000].
[8] The EKF assimilation uses an off-line version of ISBA

within the Surface Externalized (SURFEX) environment.
In SURFEX the atmospheric forcing is applied at the first
atmospheric model layer (17 m); this is higher than most
off-line land surface models, to enable off-line assimilation
of screen-level observations. For this experiment ISBA has
been run in an environment that resembles the operational
ALADIN model as closely as possible. One month of hourly
forcing fields (precipitation, temperature, specific humidity,
pressure, wind components, and short- and long-wave
radiation) has been generated from ALADIN, and inter-
polated onto the ISBA time step (300 s). Eventually the
surface analysis from SURFEX will be semicoupled to the
NWP model, so that ALADIN is updated with the soil
moisture analyses, and the SURFEX forcing supplied from
the updated atmospheric forecast. However, for this initial
investigation static forcing has been used, neglecting feed-
back between the soil moisture updates and the atmospheric
forecasts. For further details of SURFEX, and how it would
be coupled to the NWP for a land surface assimilation, refer
to Mahfouf et al. [2009].

2.2. Soil Moisture From AMSR-E

[9] Near-surface soil moisture retrieved from AMSR-E
brightness temperatures has been provided by the Vrije
Universiteit Amsterdam (VUA) in collaboration with
NASA-GSFC [Owe et al., 2007]. C-band AMSR-E data is
used here, since Njoku et al. [2005] showed that C-band
Radio Frequency Interference (RFI) is not widespread across
Europe (with the exception of isolated pockets over some
urban areas). The descending AMSR-E data (approximate
overpass time: 0130 LST) is used, since the nighttime soil
moisture retrievals are more accurate [Owe et al., 2001;
Draper et al., 2009]. The resolution of C-band AMSR-E
data is 45� 75 km [Njoku et al., 2003], however the swath is
oversampled at approximately every 5 km, and (level 2 and 3)
C-band data is typically reported on a 0.25� grid, which is
thought to approximate the scale of the information in the
signal. The ALADIN France model has an irregular
(stretched) grid, which covers most of Europe with resolution
�9.5 km. Rather than disaggregating the 0.25� AMSR-E
data, the level 1 swath data have been regridded onto the
ALADIN grid using a nearest neighbor approach.
[10] AMSR-E provides global cover in less than two days

[Njoku et al., 2003], with coverage decreasing toward the
equator. For July 2006 the daily coverage over Europe is
reduced from nearly 100% at 58�N, to 70% at 33�N.
AMSR-E soil moisture data must be screened to remove
data contaminated by RFI or open water, or where dense
vegetation or frozen ground cover conceals the near-surface
microwave signal. RFI contamination has been identified
based on the RFI index of Li et al. [2004], which is
provided by VUA with the soil moisture data. The only
region shown as having significant RFI is Italy, and roughly

50% of the data over the Italian peninsula has been removed
(in contrast to Njoku et al. [2005], who found limited C-
band RFI over Europe, and X-band RFI over Italy in
2003, also using the index of Li et al. [2004]). Frozen
ground cover is identified and removed during the moisture
retrieval, although this is not expected to be significant in
July. For vegetation, the VUA-NASA retrieval algorithm
partitions the passive microwave signal into soil moisture
and vegetation optical depth [Owe et al., 2001]. The
vegetation optical depth is linearly proportional to the
vegetation water content, and the sensitivity of the micro-
wave brightness temperature to soil moisture decreases with
increasing vegetation optical depth [e.g., de Jeu et al., 2008].
Owe et al. [2001] show that the soil moisture sensitivity is
quite low for optical depths above about 0.75, and a mean
monthly optical depth threshold of 0.8 has been adopted to
screen out densely vegetated regions, following de Jeu et al
[2008].

2.3. Extended Kalman Filter

[11] The state forecast and update equations for the EKF
are:

xbt ¼Mt� xat�
� �

ð1Þ

xat ¼ xbt þKt y
o
tþ6 �H xbt

� �� �
ð2Þ

where

Kt ¼ B
f
t H

T
t HtB

f
t H

T
t þ R

� ��1
ð3Þ

xt indicates the model state at the time of the analysis, t, and
the superscripts a and b indicate the analysis and back-
ground, respectively. yt+6

o is the observation vector (6 h after
the analysis time).Mt� is the nonlinear state forecast model
(ISBA) from the time of the previous analysis, t�, K is the
Kalman gain, and B and R are the covariance matrices of
the background and observation errors. H is the nonlinear
observation operator, and H is its linearization. Here, the
state variable consists of the superficial soil moisture (w1)
and the total soil moisture (w2), and the observation operator
is a 6-h integration of ISBA from time t. The AMSR-E near-
surface soil moisture observations are assumed to occur at the
end of the assimilation window, at 0000 UTC, and the
quantity observed by AMSR-E is taken to be equivalent to
the model w1 (both represent the soil moisture in approxi-
mately the uppermost 10 mm of soil). The model update is
made 6 h before the observation time (in contrast toMahfouf
et al. [2009] who add the increment at the observation time).
[12] The linearization of H is obtained by finite differ-

ences, using a first-order Taylor expansion about x. For
each analysis cycle, this requires an additional (perturbed)
6-h model integration for each element of the state vector.
For the ith observation, and the jth element of the control
vector:

Hij;t ¼
H xt þ dxj;t
� �

i
� H xtð Þi

dxj
ð4Þ
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[13] The background error covariance matrix undergoes
an analogous forecast and analysis cycle:

B
f
t ¼ Mt�B

a
t�M

T
t� þQ ð5Þ

Ba
t ¼ I�KtHtð ÞB f

t ð6Þ

[14] In the forecast step (equation (5)), the previous
analysis, Ba

t�
, is forecast forward in time by the tangent

linear of the state forecast model, M, and the forecast error
covariance matrix, Q, is added to account for errors in the
model forecast, giving the background error matrix fore-
cast, Bt

f. The model state analysis decreases the model
error, and B is reduced by an analysis step (equation (6)).
The linearization of M is obtained by the same finite
difference method used for H. The linearization of M is
made affordable by the assumption that there is no
horizontal correlation in the model errors. The 24-h model
Jacobian is estimated as the product of four 6-h Jacobians
(Mt!t+24 = PMt+18!t+24Mt+12!t+18Mt+6!t+12Mt!t+6), to
reduce the potential for nonlinearities.
[15] An alternative, and more common EKF formulation

for the assimilation of near-surface soil moisture retrievals is
to make the update at the time of the observations, and use
H = (1 0) rather than including the model inH [e.g., Walker
and Houser, 2001; Reichle et al., 2002; Muñoz Sabater et
al., 2007]. This form of the EKF is analytically the same as
that used here, except for the timing of the addition of Q
(see Appendix A). While the H = (1 0) method avoids the
additional integrations required here to linearize H, it is
dependent on the observed variable being included in the
state vector. If the assimilation of remotely sensed soil
moisture proves useful, it is intended that it be combined
with the assimilation of screen-level observations. The
screen-level observations cannot be sensibly included in the
update vector, since they are not prognostic within SURFEX:
they are diagnosed by interpolating the humidity and tem-
perature between the ISBA surface and the (prescribed)
value at the first atmospheric model layer. For consistency
withMahfouf et al. [2009] and future studies, the EKF form as
initially described (ISBA included in H) is used here.
[16] The error correlations for the AMSR-E and ALADIN

soil moisture have been set based on the assumption that the
standard deviation of the observed and modeled soil mois-
ture errors are equal. The variance of the difference between
the (rescaled) AMSR-E and ALADIN near-surface soil
moisture (w1) is 0.0061, which gives an error standard
deviation of 0.055 m3 m�3 for each, assuming that the
observation and model error are independent and unbiased.
This agrees closely with the error estimates that have been
made for AMSR-E (see, for example, Table 1 of de Jeu et al
[2008]), and the observation error standard deviation has
been set at this value. Only the diagonal entries of the model
error matrices (B and Q) have been prescribed (i.e., error
cross correlations have not been applied), and following
Mahfouf et al. [2009] the model soil moisture errors are
assumed to be proportional to the soil moisture range (the
difference between the volumetric field capacity (wfc) and the
wilting point (wwilt), calculated as a function of soil type, as
given by Noilhan and Mahfouf [1996]). For B, the initial

model error standard deviations for bothw1 andw2 have been
set to 0.6 � (wfc � wwilt), which converts to a mean
volumetric error standard deviation of 0.052m3m�3, slightly
lower than that used for the observation error. The magni-
tude of the diagonal elements of Q were selected to
minimize long-term tendencies in B, on the assumption
that B should not dramatically increase or decrease over
time. Using this method values of 0.3 � (wfc � wwilt) and
0.2 � (wfc � wwilt) were chosen for the w1 and w2 error
standard deviations, respectively. The EKF assimilation is
compared to a SEKF assimilation of soil moisture, which
neglects the evolution of the background error (equations (5)
and (6)), and assumes that B is constant at the start of each
analysis cycle (some dependence on the conditions of the
day is introduced through the use of the model in H). For
the SEKF analysis, the same R was used, and B was set at
the same initial value as was used for the EKF.

3. Results

3.1. Scaling the Observations to the Model Climatology

[17] Since the soil moisture quantity observed by remote
sensors differs from that defined in models, soil moisture
data must be rescaled before assimilation, so as to be
consistent with the model climatology [Reichle et al.,
2004]. Here, the AMSR-E data are rescaled by matching
its Cumulative Distribution Function (CDF [Reichle and
Koster, 2004; Drusch et al., 2005]) to that of the superficial
soil moisture forecast by ALADIN for 0000 UTC each day
(this is the 6-h forecast from 1800 UTC, which provides the
first guess for the operational soil moisture analysis). Ideally,
a long data set is used to sample the model and observation
climatology and the CDF matching is performed on as
localized a scale as possible, however for this study only
1 year of ALADIN soil moisture fields are available. Reichle
and Koster [2004] demonstrated that the CDF matching
operator can be estimated from 1 year of data by using spatial
averaging to compensate for the reduced temporal sample
size, and the CDF-matching operator has been estimated here
using a one-degree window around each grid cell.
[18] CDF matching is based on the assumption that

the differences between the model and observations are
stationary, however for ALADIN and AMSR-E this is not the
case. For example, Figure 1 shows a time series of the
AMSR-E data before and after the CDF matching at a
location in northern France. While both the AMSR-E and
ALADIN time series have a similar range of short-term
(up to several days) variability with amplitude between 0.1
and 0.2 m3 m�3, the seasonal cycle in the AMSR-E data has a
greater magnitude (>0.2 m3 m�3) than that in the ALADIN
data (�0.1 m3 m�3). To compensate for the variance gener-
ated by the enhanced seasonal cycle in the AMSR-E data,
the CDF matching has overly dampened the short-term
variability, resulting in a lessened response to rain events in
the CDF-matched time series. Additionally, at the seasonal to
monthly scale there are biases in the CDF-matched time
series (e.g., around day 100 in Figure 1).
[19] To avoid these problems, the CDF matching has

been repeated using seasonally bias-corrected AMSR-E
data, generated by subtracting the observation-model dif-
ference in the 31-day moving average. The resulting time
series in Figure 1 has retained an appropriate response to
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precipitation, and the monthly biases are reduced. For this
experiment (July 2006) the mean monthly bias is reduced
from �0.014 m3 m�3 in the initial CDF-matched data to
0.001 m3 m�3 in the seasonally corrected and CDF-matched
data, compared to 0.14m3m�3 in the original data. If a longer
data set were available the difference in the seasonal cycles
could be removed based on the climatological seasonal
cycles, which would retain any seasonal bias anomalies in
the observations. With just 1 year of data seasonal bias
anomalies cannot be detected (regardless of the method used
to rescale), and the approach used here is necessarily conser-
vative, assuming that the ISBA 2006 seasonal cycle was
correct.
[20] The mean monthly RMSD between the CDF-matched

(and seasonally corrected) AMSR-E data and the ALADIN
w1 is 0.007 m3 m�3. Figure 2 shows that the RMSD is
relatively large (>0.09 m3 m�3) over most of the Italian
peninsula, where much of the data was removed due to RFI,
suggesting that the remaining data is of poor quality (all data
were rejected at locations with less than 100 observations
over 2006, and the poor match is unlikely to be due to
reduced data coverage). The RMSD is also relatively high
in many locations adjacent to regions screened for dense
vegetation, most likely due to increased error in the AMSR-E
data due to vegetation interference. Additionally, the higher
RMSD over the Alps and the Pyrenees could be due to
inaccuracies in the model and/or the data, since both have
known problems in regions of steep terrain [Rüdiger et al.,
2009].

3.2. Tangent-Linear Approximation

[21] The magnitude of the perturbations used to estimate
M was chosen by examining the difference between the
Jacobians estimated using positive and negative perturba-
tions for a range of magnitudes, following Walker and
Houser [2001] and Balsamo et al. [2004]. On the basis of
this method, a perturbation of 10�4 � (wfc � wwilt) was
selected for estimating M, and also H (the linearization of
H is not discussed here, since linearity over 24 h strongly
suggests linearity over 6 h). The difference between the
Jacobians estimated with the positive and negative pertur-

bations gives a measure of the nonlinearity of M for
perturbations of that size. Scatterplots of the Jacobian
terms estimated with positive and negative perturbations
of magnitude 10�4 � (wfc � wwilt) for the analysis cycle
on 1 July 2006 show virtually all of the points aligned
along the one-to-one line (not shown), consistent with M
being well approximated by M within the range of the
applied perturbation. This is confirmed by the statistics in
Table 1, which show little difference between the mean,
standard deviation, and extreme values for the Jacobians
estimated with the positive and negative perturbations. The
extreme sensitivity causing the very large maximum values
in Table 1 for perturbedw1 is quite rare, and less than 0.2% of
the grid cells have a @w2(t + 24)/@w1(t) or @w1(t + 24)/@w1(t)
greater than 10. Mahfouf et al. [2009] used the same pertur-
bation size to estimate the Jacobians for ISBA over 6 h,
yet the occurrence of nonlinearities as observed by Mahfouf
et al. [2009] does not occur here, since the (dissipative) land-
surface component of the model is less prone to the non-
linearities that can occur in the atmosphere.
[22] The above analysis indicates thatM is well approx-

imated byM within the range of the very small perturbations

Figure 1. Time series of near-surface soil moisture (m3 m�3) for a grid cell in France (47.30 E/0.06 N)
over 2006, from ALADIN (gray, solid), the original AMSR-E data (gray, dashed), and the seasonally
corrected (black, solid) and nonseasonally corrected (black, dotted) CDF-matched AMSR-E data.

Figure 2. Root-mean-square difference (m3 m�3) between
the CDF-matched AMSR-E near-surface soil moisture and
ALADIN w1 over 2006. White indicates that no AMSR-E
soil moisture data are available.
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that were applied, however this does not guarantee that M
approximatesM well when applied to the errors in B, since
these errors are typically much larger than the applied
perturbations. To test the potential error generated when M
is used to propagate B, the model Jacobians estimated using
perturbations with magnitude similar to the expected model
error (10�1 � (wfc � wwilt) � O(10�2)) have been compared
to the above estimates. Table 1 shows that the mean Jacobian
estimates for this larger perturbation are very similar to
those based on the smaller perturbations, although the distri-
bution of values about the mean is different, with differences
in their extreme values and variances. The difference between
the Jacobians estimated with the smaller and larger per-
turbation is greater than 0.1 for 4% (@w1(t + 24)/@w1(t)),
0% (@w2(t + 24)/@w1(t)), 23% (@w1(t + 24)/@w2(t)), and
10% (@w2(t + 24)/@w2(t)) of the grid cells, indicating that
the larger perturbation is outside the model’s linear regime
in more instances (for the positive and negative perturba-
tions considered above the difference was greater than 0.1
for less than 1% of the grids for all of the Jacobian terms).
However, the Jacobian estimates compare favorably over
the majority of grid cells, indicating thatM estimated with
perturbations of 10�4 � (wfc � wwilt) leads to an acceptable
approximation of nonlinear M for propagating B forward
24 h.

3.3. ISBA Jacobians

[23] The ISBA Jacobians reflect the force-restore dynam-
ics of the model. The superficial soil layer responds rapidly
to atmospheric forcing, so that a perturbation applied to w1 is
gradually reduced over 24 h. As a result the mean @w1/@w1 is
reduced from 0.80 over 6 h to 0.25 over 24 h (with the
Jacobians estimated from 1800 UTC on 1 July 2006). In
addition to its short timescale, w1 represents a very small
physical reservoir, and cannot influence w2 strongly, so that
@w2/@w1 is insignificant (mean < 0.01 over 6 or 24 h). In
contrast tow1, the atmospheric forcing is appliedmore slowly
to the total soil moisture, and w2 has a timescale of 10 days.
Over a comparatively short 24-h period a w2 perturbation
is largely retained (mean @w2(t + 24)/@w2(t): 0.95). The
influence of w2 on w1 increases over time, and the mean
@w1(t + 6)/@w2(t) is 0.20, increasing to 0.60 for @w1(t +
24)/@w2(t). Since w1 does not have a strong or persistent
influence on the other surface variables, its accurate

analysis is less important than that of w2. While w1 could
then be excluded from the control variable, (to reduce the
number of linearization required), this would result in an
underestimation of the model w1 error, since a large
component of this is due to short-lived errors (i.e., the
element q11 of the Q matrix).
[24] The background error matrix used in each analysis

is largely derived from the previous w2 error correlations
and the applied (static) Q, since the w1 errors are short-
lived and do not influence w2. The important terms in the
24-h linear tangent model are then @w1(t + 24)/@w2(t)
and @w2(t + 24)/@w2(t), both of which are shown in Figure 3
for a 24-h period. The Soil Wetness Index (SWI; SWI =
(w2 � wwilt)/(wfc � wwilt)), a measure of soil water
availability in the root zone, is provided in Figure 4 for
comparison. Over the full diurnal cycle the ISBA moisture
dynamics, and hence Jacobians, are dominated by the force
component (precipitation and evapotranspiration) of its
force-restore scheme. The addition of moisture from precip-
itation reduces the sensitivity of w1 to w2, and the reduced
@w1(t + 24)/@w2(t) across much of southeast Europe and in
smaller regions in northern Spain and along the Pyrenees
was caused by rain (these locations have been excluded from
the statistics given below). In the absence of precipitation,
the 24-h Jacobians are most strongly influenced by evapo-
transpiration, specifically its sensitivity to w2. Under dry
conditions the parameterization of transpiration depends

Table 1. Statistics of 24-h Jacobian Terms From 1800 UTC on

1 July 2006a

Mean SD Minimum Maximum

@w1(t + 24)/@w1(t) +ve 0.25 1.9 �0.11 189
�ve 0.26 1.9 �0.11 189
lrg 0.30 1.9 �0.10 67

@w2(t + 24)/@w1(t) +ve �0.0024 0.0045 �0.15 0.0050
�ve �0.0024 0.0045 �0.15 0.0045
lrg �0.0025 0.0055 �0.19 0.0

@w1(t + 24)/@w2(t) +ve 0.60 0.96 �2.4 120
�ve 0.60 0.97 �0.37 120
lrg 0.60 0.53 �0.15 23

@w2(t + 24)/@w2(t) +ve 0.95 0.054 0.21 1.0
�ve 0.95 0.053 0.42 1.0
lrg 0.96 0.044 0.00 1.0

aEstimated using a perturbation size of +10�4 � (wfc � wwilt) (positive),
�10�4 � (wfc � wwilt) (negative), and +10�1 � (wfc � wwilt) (large). Units
are in (%/%).

Figure 3. Jacobian terms for the forward model (M):
(a) @w1(t + 24)/@w2(t) and (b) @w2(t + 24)/@w2(t) from
1800 UTC on 1 July to 1800 UTC on 2 July 2006. Note
that @w1(t + 24)/@w1(t) and @w2(t + 24)/@w1(t) are not
shown, as w1 has little memory over 24 h.
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strongly on w2, with the dependence increasing as w2

approaches wwilt. In these moisture limited conditions a
small increase in w2 generates a relatively large increase in
transpiration, reducing w2, and hence @w2(t + 24)/@w2(t).
In turn, this leads to an increase in @w1(t + 24)/@w2(t) when
the enhanced transpiration reduces the surface temperature,
which reduces the depletion of w1 by bare-ground evapora-
tion, giving a relative increase in w1. This mechanism has
been confirmed by testing the impact on the model forecasts
of switching off aspects of the model physics. It is also
evidenced in Figure 3. Most obviously, where w2 is below
the wilting point, transpiration ceases and w2 perturbations
are not communicated to w1. As a result, the regions of
negative SWI in Figure 4 in North Africa, and also in Spain
and France, correspond to @w2(t + 24)/@w2(t) close to 1 (for
negative SWI, the mean @w2(t + 24)/@w2(t) is 1, compared to
0.96 across the whole domain), and reduced @w1(t + 24)/
@w2(t) (to a mean of 0.31, compared to 0.64 for the whole
domain). For the rest of the domainwhere the SWI is positive,
the Jacobians are most sensitive to moisture availability
where there is sufficient vegetation present to generate
substantial transpiration. Where the fractional vegetation
cover in ISBA is greater than 0.5, @w2(t + 24)/@w2(t) is
reduced (mean: 0.92) and @w1(t + 24)/@w2(t) is increased
(mean: 0.79) where the SWI is below 0.25 (compared to
means of 0.96 and 0.68, respectively for all grids with
positive SWI and fractional vegetation greater than 0.5). In
contrast, where the fractional vegetation cover is less than
0.5, there is no obvious difference in the @w2(t + 24)/@w2(t)
across all grids and across grids with SWI less than 0.25
(mean 0.96 for both), while @w1(t + 24)/@w2(t) is slightly
reduced in the drier locations (mean 0.56, compared to 0.59
for all sparsely vegetated cells). The role of vegetation can
be seen in Figure 3. Over France and the UK, where the
vegetation fraction is greater than 0.75, @w1(t + 24)/@w2(t)
is generally elevated (>0.8) where the SWI in Figure 4 is
low (<0.25), yet in sparsely vegetated Spain (vegetation
fraction < 0.5), where the SWI is similarly low there is no
such relationship.
[25] The 6-h model Jacobians used in the observation

operator are plotted in Figure 5. While the 24-h Jacobian
terms reflect ISBA’s force component, for the descending
pass AMSR-E data used here the 6-h Jacobians are esti-
mated during the night, when the forcing is weak (excepting

regions of rain). In the absence of strong forcing, ISBA
restores w1 toward w2 to achieve a balance between capillary
rise and gravitational drainage. This introduces a weak
nighttime sensitivity of w1 to w2 resulting in a mean
@w1(t + 6)/@w2(t) of 0.20 (as already noted, this is much
lower than the corresponding value over 24 h). There is also
less spatial variability in the 6-h nighttime Jacobians (for
@w1/@w2 the variance over 6 h is 0.007, compared to 0.1 over
24 h). Owing to the absence of strong forcing and the slow
timescale of the model restore term, @w1(t + 6)/@w1(t) is
reasonably high, with a mean of 0.80. Comparison of
Figures 4 and 5 suggests a tendency for decreased @w1(t + 6)/
@w2(t) where the SWI is lower (@w1(t + 6)/@w1(t) is also
slightly increased in these regions, although this is not
evident at the plotted scale), suggesting that capillary rise
increases nonlinearly with increasing surface water availabil-
ity. There is an additional influence from the soil type in
ISBA (not shown), with lower clay content giving more rapid
flow through the soil, corresponding to increased @w1(t + 6)/
@w2(t) and decreased @w1(t + 6)/@w1(t).

3.4. Kalman Gain

[26] Figure 6 shows the Kalman gain for w2 (k2) for the
EKF and the SEKF on 2 July. The EKF k2 is between 0.2
and 0.4 across most of Europe, with a mean of 0.27. The
SEKF gain is smaller, due to the slightly larger background
errors used in this experiment, and is generally less than 0.2,
with a mean of 0.12. The spatial patterns for the two gain
terms differ, since they are determined by different processes.
For the SEKF, the (static) B is evolved 6 h byH, and there is

Figure 4. Surface wetness index at 1800 UTC on 2 July
2006 from the EKF analysis.

Figure 5. Jacobian terms for the observation operator (H):
(a) @w1(t + 6)/@w1(t) and (b) @w1(t + 6)/@w2(t), from 1800
to 2400 UTC on 2 July 2006.
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a qualitative correspondence in Figure 6b (SEKF gain) and
Figure 5 (H), with the gain being reduced where @w1(t + 6)/
@w2(t) is lower (e.g., northern France and North Africa). In
contrast, the EKF gain is determined by a combination of the
Jacobian terms over 6 h (H) and 24 h (M), and it shows a
combination of features from both. Even after a single
assimilation cycle, the 24-h M has introduced much more
fine-scale spatial heterogeneity into the EKF gain than is
present in the SEKF gain.

3.5. Soil Moisture Analyses

[27] The time series in Figure 7 shows the soil moisture
states for the EKF and the SEKF at four locations with
contrasting conditions, together with an open-loop simulation,
in which the model surface is allowed to evolve without
data assimilation. The grid cells in Slovakia and France are
in vegetated regions where transpiration links w2 to w1

(@w1(t + 24)/@w2(t) � 0.6 in Figure 3 for both). In both
cases the observations are consistently higher than the model
forecast w1, and the assimilation improves the fit between
the model w1 and the observations by adding moisture to w2.
The EKF and SEKF produce similar results, except for a few
isolated large increments generated by the EKF in Slovakia.
The observation increments in Slovakia are unusually large,
particularly in the first part of the month where the observa-
tions (if correct) suggest a precipitation event not present in
the model forcing. As a result, a large volume of water is
added in Slovakia, and the difference between thew2 SWI for
the analyses and the open loop approaches 0.5 at times. The
large observation increment on day 18 in France does not

Figure 6. Kalman gain (m3 m�3/m3 m�3) for w2 at
1800 UTC on 2 July 2006 for the (a) EKF and (b) SEKF.

Figure 7. Time evolution of (left) w1 (m3 m�3) and (right) w2 (as SWI) through July 2006, from the
open loop (black), EKF (red), and SEKF (blue). Observations of w1 are indicated as diamonds.
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translate into an analysis increment as it is screened out by
the observation quality control, which discards data more
than 0.1 m3 m�3 away from the model w1.
[28] The grid cells in Spain and Algeria both have sparse

vegetation cover, and with limited transpiration the depen-
dence of w1 on w2 is weaker, particularly in Algeria, where
w2 is below the wilting point, and @w1(t + 24)/@w2(t) in
Figure 3 is �0.05 (compared to �0.2 in Spain). In Spain
the observations are generally lower than the model w1,
and the analysis consistently decreases w2. In the first half
of the month, despite the SWI having been decreased by 0.5,
neither analysis generates substantial changes in w1, and the
analysis continues to deplete w2 until a very large net
increment is evolved. It is only after the w2 SWI has been
decreased by nearly one that the analysis generates a slight
reduction in w1 (which does give a better fit to the data). A
similar situation occurs in Algeria where the observations
are consistently above the model, and the analysis makes a
series of positive increments to w2, which do not affect w1

until a large net change is accumulated. By the end of the
month w2 is approaching a SWI of 0, and w1 shows an
enhanced diurnal cycle, with greater nighttime increases. In
both of these cases, since there is little transpiration to expose
w1 to the w2 increments (compare the ratio of the net change
inw2 andw1 to that from the previous examples), the analysis
continues to make monotonic corrections to w2 until a large
(and likely erroneous) net increment has been imposed onw2.
Initially, the SEKF and EKF increments are similar in
magnitude, however as the month progresses the EKF incre-
ments become larger. This is due to an inflation of the
background error where transpiration is limited. Recall from
Figure 3 that @w2(t + 24)/@w2(t) approaches one in regions
with little transpiration. As a result the b22 element of B is
not decreased during the forecast step (equation (5)), and
B gradually increases with each addition of Q (which is
generally greater than the analysis reduction). While the Q
used here does not generate a discernible trend in B across
the remainder of the domain, b22 in north Africa and Spain
is almost doubled within two weeks.
[29] Figure 8 shows the net soil moisture increments added

by the EKF and the SEKF over July 2006. Even though the

Kalman gain terms for each depend on different aspects of
the model physics, the resultant analyses are similar. For
both the EKF and the SEKF moisture has been added across
most of the domain, except for areas in southern Spain and
central North Africa (as well as some smaller isolated in
northern and eastern Europe). The mean monthly net incre-
ment is 0.025 m3 m�3 for the EKF and 0.018 m3 m�3 for the
SEKF. The EKF has a greater spread of increments, with
more extreme values (both positive and negative), resulting
in a larger standard deviation of the net monthly increment
(0.037 m3 m�3) than for the SEKF (0.023 m3 m�3). Some
of the very large (>0.1 m3 m�3) increments for the EKF
surrounding the Alps correspond to the high RMSD
between the CDF-matched AMSR-E and ALADIN soil
moisture in Figure 2, where there are known errors in both
the model and observations (section 3.1). The increments
are also large over Italy, where the coverage of AMSR-E
data is limited by RFI, and the quality of the remaining
data is questionable. In general, the analysis increments are
relatively large compared to the dynamics of w2, being
approximately the same magnitude as the mean range of w2

throughout July 2006 (0.02 m3 m�3). In terms of the net
volume of water added to the surface, the EKF added a
monthly mean volume of 55 mm, while a mean of 41 mm
was added by the SEKF (with a total range of approxi-
mately ±200 mm for both). This represents a substantial
component of the monthly water balance, and is similar to
the mean monthly volume added by precipitation (50 mm).
Similarly large increments were obtained by Mahfouf et al.
[2009] for the assimilation of screen-level observations.
The large volume of water being added (or removed) is partly
due to the two-layer structure of ISBA, since increments to
w2 must be applied across the total soil depth, leading to
large net increments, as discussed by Mahfouf et al. [2009].
[30] Owing to the strong seasonal cycle in the AMSR-E–

ALADIN bias, it was necessary to bias-correct the seasonal
cycle in the AMSR-E data before performing the CDF
matching (section 3.1). To highlight the central role of data
quality to the analysis, the EKF assimilation has been
repeated with the original CDF-matched (no seasonal bias
correction) AMSR-E data. In this case, the resultant analyses

Figure 8. The net monthly w2 increments (m3 m�3) over July 2006, from the (a) EKF and (b) SEKF for
assimilation of the seasonal-bias corrected AMSR-E data, and (c) EFK assimilation of the nonseasonal-bias
corrected AMSR-E data.
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differed substantially from the results obtained with the
seasonally bias-corrected data. The mean absolute differ-
ence between the net monthly increments produced by
assimilating the AMSR-E data with and without seasonal
bias correction was 0.039 m3 m�3, compared to a mean
difference between the EKF and SEKF assimilation (for the
seasonally bias-corrected data) of 0.014 m3 m�3. Figure 8c
shows the net monthly soil moisture increments for the
assimilation of the nonseasonally bias-corrected data. In
this case the quality control (removal of all data greater than
0.01 m3 m�3 from the model w1) was not applied as this
resulted in most data being removed. Figure 8c is quite
different from the previous two panels, and has net positive
increments in northern Europe and net negative increments
elsewhere, consistent with the strong negative bias over
July 2006 in the nonseasonally bias corrected AMSR-E data.
[31] The current operational analysis also includes analysis

of the soil temperature. While it is beyond the scope of this
paper, an additional experiment was carried out with soil
temperature included in the control variable. This experiment
showed that total (deep layer) soil temperature analysis
increments can also be obtained from near-surface soil
moisture observations, and also that the inclusion of tem-
perature has a slight effect on the soil moisture analysis, but
does not alter the main findings presented here.

3.6. Comparison to SIM Water Balance

[32] While the focus here is on the mechanics of the
assimilation, the resultant analyses have been reality
checked by comparison to simulations from SAFRAN-
ISBA-MODCOU (SIM [Habets et al., 2008]). SIM is a
three-layer version of ISBA forced with high-quality data
[Quintana-Seguı́ et al., 2008] over France. The soil moisture
from SIM compares favorably to other estimates of soil
moisture [Rüdiger et al., 2009], and it can be regarded as
the best available estimate of the true surface state over
France. As outlined byMahfouf et al. [2009], the total change
in column soil moisture over a time period gives an integra-
tion of the surface-moisture inputs (precipitation), outputs
(evapotranspiration, runoff), and soil moisture increments

(where an assimilation is performed). Figure 9 shows the
change in the total-column soil moisture over July 2006 from
SIM (Figure 9a), the open loop (Figure 9b), and the EKF
(Figure 9c) (the SEKF is not included, since its results are
very similar to the EKF). The open loop is forced with the
same ALADIN forecasts used in the EKF experiment, and
the difference between the change in soil moisture from SIM
and from the open-loop simulation will be predominantly due
to errors in these forecasts. It is hoped that the assimilation
can correct for some of the forcing errors, bringing the total
change in soil moisture closer to that from SIM.
[33] In comparison to SIM (Figure 9a), the open loop

(Figure 9b) has a tendency toward excessive drying and
insufficient wetting, resulting in a mean monthly change in
soil moisture for the open loop of �20 mm, compared to
�11 mm for SIM. The open loop has generated incorrect
drying (in spatial extent and magnitude) along the English
Channel coast and in central France, with a region of
insufficient moistening in between, associated with a low
bias in the ALADIN precipitation forcing. Also, the open
loop did not moisten the regions along the Atlantic Coast and
south of the Alps indicated by SIM. The EKF (Figure 9c) has
added moisture across most of France, increasing the mean
monthly increment to �7 mm (overshooting the SIM mean).
The EKF shows a general improvement in the correspon-
dence to SIM. It has corrected the band of insufficient
moistening in the north, as well as the lack of moistening
along the Atlantic coast and in the southeast. However, in the
east it has degraded the open loop by adding moisture where
drying was correctly identified in the open loop.

4. Discussion

[34] This experiment has demonstrated that the total soil
moisture in ISBA can be analyzed using an EKF from
remotely sensed near-surface soil moisture observations, in
this case from AMSR-E. Assuming that the background and
observation errors are (approximately) equal, the EKF Kal-
man gain over July 2006 was typically around 20–30%,
giving a mean net monthly increment of 0.025 m3 m�3

Figure 9. Change in total soil moisture storage (mm) from 1 to 31 July 2006, from (a) SIM, (b) open
loop, and (c) the EKF.
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(equivalent to 55 mm of water added to the soil column).
While the EKF increments are large compared to the model
dynamics and water balance, they are similar in magnitude
to the increments generated by Météo-France’s operational
OI scheme over the same period [Mahfouf et al., 2009].
Comparison of the monthly water balance generated by the
EKF analysis to that from SIM over France showed a general
improvement compared to an open loop, although some areas
were degraded. The EKF requires the linearization of the
forecast model in order to propagate background errors
through time. The inaccuracy introduced by the linearization
has been estimated by comparing the model Jacobians
(calculated using a perturbation small enough that the
model is approximately linear) to the Jacobians generated
by applying a perturbation of the approximate size of the
expected background errors. This test indicated that the
linearization provides a good approximation of the model
Jacobians for use in the EKF in most instances.
[35] Since w1 does not directly influence w2 in ISBA,

the analysis of w2 from w1 observations must utilize the
sensitivity of w1 to changes in w2. The effectiveness of the
assimilation is then limited by the strength of @w1(t + 24)/
@w2(t). Over the diurnal cycle @w1(t + 24)/@w2(t) is domi-
nated by daytime radiative forcing and the influence of
w2 on w1 is principally determined by the transpiration
physics (enhanced w2 causes enhanced transpiration, causing
decreased superficial soil temperature, giving decreased bare
soil evaporation, and a relative increase in w1). The greatest
sensitivity, and hence most effective analysis of w2, occurs
where transpiration is most sensitive to w2: in reasonably
vegetated regions when w2 is close to, but above, wwilt.
Conversely, where w2 is less than wwilt, or is very high (so
that transpiration is not moisture limited), or where there is
little vegetation, w2 does not substantially influence w1, and
so cannot be effectively analyzed from w1 observations.
[36] A major motivation for using remotely sensed near-

surface soil moisture in NWP is the expectation that it will
provide a more direct observation of total soil moisture than
screen-level observations do, since the latter rely on the
model flux parameterizations to link the surface state to the
screen-level atmosphere. However it has been shown here
that for ISBA the link between the near-surface soil moisture
observations and the deeper soil moisture is still provided by
transpiration. This result is derived from the model physics,
and it is expected that many other models, such as multilayer
models with more substantial surface layers andmore explicit
drainage, will provide a more direct relationship between the
near-surface and deeper soil moisture.
[37] During the nighttime, when the surface forcing is

weak, the sensitivity of w1 to w2 in ISBA is determined by
the model restore term, representing the balance between
capillary rise and gravitational drainage. Since the descend-
ing AMSR-E data used here are observed at night, the gain
terms are influenced by the nighttime dynamics through the
observation operator (this also occurs for the alternate EKF
formulation discussed in Appendix A, due to a diurnal cycle
in B). While a nighttime assimilation has the theoretical
advantage of utilizing a more direct physical link between
w2 and w1, it leads to problems where the nighttime model
Jacobians differ from those across the full diurnal cycle. For
example, due to the absence of transpiring vegetation in
Spain and Algeria in Figure 7, w1 is only very weakly

influenced by w2 over the full diurnal cycle, however, there
is a short-lived stronger sensitivity at night, which generates
w2 analysis increments from the w1 observations. These w2

increments do not influence the w1 forecast for the next day
(this suggests that the w1 observation increments were not
caused by w2 errors), and since the w1 observation incre-
ments are mostly monotonic, a large and likely erroneous
net w2 increment is generated over time. For the EKF this
situation was exacerbated in this study by the inflation of B
in these areas, and the (simplistic) error correlations used
here will be refined in the future.
[38] It was assumed here that the background error

standard deviations for w1 and w2 were both equal to the
observation error standard deviation. However, in reality
b22 will be lower than b11, since w1 has more rapid
dynamics and is more susceptible to forcing errors. Muñoz
Sabater et al. [2007] compared soil moisture from ISBA
forced with observations to in situ data from 2001 to 2004,
and obtained a RMS error of 0.07 v/v for w1 and 0.03 for w2

(the contrast in the errors would likely be enhanced by the
use of NWP forcing). The use of a smaller background error
for w2 would reduce some of the excessive model increments
obtained in this study. Additionally,Q was chosen here in an
attempt to generate stationary B (within the assumed struc-
ture ofQ, proportional to (wfc�wwilt)), however such a value
could not be found across the entire European domain. With
the chosen Q, the background error grew rapidly in dry
and sparsely vegetated regions, including much of North
Africa and Spain (resulting in large increments after several
weeks in Figure 7). This suggests that Q should be lower
in these regions. Intuitively, this is sensible: since there is
little transpiration, w2 does not vary greatly, and excepting
a precipitation forcing error, the additive forecast error (Q)
should be low compared to locations with substantial
transpiration.

5. Conclusion

[39] This work is the first continental scale study to
assimilate remotely sensed near-surface soil moisture into
the ISBA model, and it is also the first study to contrast the
assimilation of remotely sensed soil moisture using dynamic
and static model error covariances. It is demonstrated that
useful increments to the total soil layer in ISBA can be
generated from near-surface soil moisture observations, in
this case derived from AMSR-E. The spatially averaged net
monthly increment for the EKF over ALADIN’s European
domain was 0.025m3m�3, using approximately equal model
and observation soil moisture errors. The assimilation was
performed over July 2006, using both an EKF and a SEKF
(in which the background error at the time of each analysis
was assumed constant). While the Kalman gain terms for
the SEKF and the EKF are determined by different physical
processes, their resultant soil moisture analyses are similar
(recall that horizontal error correlations were neglected in this
study). Since performing the analysis in an off-line environ-
ment makes it computationally feasible, the EKF is suggested
for future work with ISBA, although this study suggests that
the SEKF provides an acceptable approximation (which is
cheaper to compute and easier to implement). The difference
between the two may well increase over a longer time period,
particularly since the one-month period used in this experi-
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ment is only three times the 10-day timescale of w2, and
subsequently b22. The model itself is used as the obser-
vation operator, which in combination with the increased
height of the atmospheric forcing in SURFEX enables the
assimilation of screen-level observations, as demonstrated by
Mahfouf et al. [2009]. The next stage of this work will be to
investigate whether the EKF assimilation of remotely
sensed soil moisture can be usefully combined with that
of screen-level observations.
[40] While the focus here is on the design of the assimila-

tion, the analyses are ultimately limited by the quality of the
ingested data. In this experiment it was necessary to remove
the seasonal bias between the AMSR-E and ALADIN soil
moisture before using CDF-matching to rescale the AMSR-E
data to the model’s climatology. The profound difference in
the soil analyses generated by including and excluding this
seasonal correction was far greater than the difference be-
tween the EKF and the SEKF. This highlights the importance
of the observation rescaling technique to soil moisture data
assimilation. The relatively short period of available data
(1 year), combined with the nonstationarity of the model-
observation bias presented particular difficulties in rescaling
the observations in this study. The issue of obtaining suffi-
cient data to sample the model-observation climatology for
rescaling presents a serious challenge for land-surface assim-
ilation, particularly within NWP modeling, where frequent
model changes are made, but also for the broader land surface
community when using data form the early years of satellite
missions.

Appendix A: Forecast Model as the Observation
Operator

[41] The classic formulation for the EKF assimilation of
near-surface soil moisture is to make the model update at
the observation time, and use an observation operator of
H = (1 0) (for the state vector, x = (w1 w2)

T, used
here). To allow for the eventual assimilation of both near-
surface soil moisture and screen-level atmospheric obser-
vations, a 6-h model forecast of the observation equivalent
has been used for the observation operator in this study,
with the analysis made 6 h before the observation time. It
is shown below that for the assimilation of near-surface
soil moisture this approach differs from the classic EKF
only in the timing of the addition of Q.
[42] For an observation at t = 24, the classic observation

operator is written Ĥ(x24b ) = (1 0) (x24
b ), while the present

version is H(x18b ) = (1 0) M18!24(x18
b ). In both cases the

result is the forecast w1 at t = 24, w1,24. Q is neglected for
the time being, and B is expressed as a function of its
value at time 0. This gives equations (A1) and (A2) for the
classic and current EKF, respectively:

xa24 � xb24 ¼M0!24B0M
T
0!24Ĥ

T

� ĤM0!24B0M
T
0!24Ĥ

T þ R
� ��1

yo24 � w1;24

� � ðA1Þ

xa18 � xb18 ¼ M0!18B0M
T
0!18H

T

� HM0!18B0M
T
0!18H

T þ R
� ��1

yo24 � w1;24

� � ðA2Þ

Applying M18!24 to equation (A2) carries it forward 6 h,
giving:

M18!24 xa18 � xb18
� �

’ xa24 � xb24

¼M0!24B0M
T
0!18H

T HM0!18B0M
T
0!18H

T þ R
� ��1

yo24 � w1;24

� �

ðA3Þ

Substituting H = ĤM18!24 into equation (A3) produces
equation (A1), hence the two forms of the EKF are
equivalent if Q is neglected.
[43] If Q is included, equations (A1) and (A3) become,

respectively:

xa24 � xb24 ¼ M0!24B0M
T
0!24Ĥ

T þQĤ
T

� �

� ĤM0!24B0M
T
0!24Ĥ

T þ ĤQĤ
T þ R

� ��1

� yo24 � w1;24

� �
ðA4Þ

and

xa24 � xb24 ¼ M0!24B0M
T
0!18H

T þM18!24QHT
� �

� HM0!18B0M
T
0!18H

T þHQHT þ R
� ��1

yo24 � w1;24

� �

¼ M0!24B0M
T
0!24Ĥ

T þM18!24QMT
18!24Ĥ

T
� �

� ĤM0!24B0M
T
0!24Ĥ

T þ ĤM18!24QMT
18!24Ĥ

T þ R
� ��1

� yo24 � w1;24

� �

ðA5Þ

[44] The difference between equations (A4) and (A5) is in
the timing of the addition of Q. In the latter Q is added to B
at t = 18, and B is evolved forward 6 h before the Kalman
gain is calculated. This result has been confirmed by
comparing the analyses generated by the two methods
(using the same Q s, R, and initial B). The differences are
limited to the magnitude of the analysis increments, with the
increments being larger (yet showing the same spatial
pattern) when the model is used as the observation operator.
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