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A B S T R A C T   

The dynamics of Leaf Area Index (LAI) from space is key to identify crop types and their phenology over large 
areas, and to characterize spatial variations within growers’ fields. However, for years remote-sensing applica-
tions have been constrained by a trade-off between the spatial and temporal resolutions. This study resolves this 
limitation. Over the past decade, the number of companies and organizations developing CubeSat constellations 
has increased. These new satellites make it possible to acquire large image collections at high spatial and tem-
poral resolutions at a relatively low cost. However, the images obtained from CubeSat constellations frequently 
suffer from inconsistency in the data calibration between the different satellites within the constellation. To 
overcome these inconsistencies, a new method to fuse a time series of images sourced from two different satellite 
constellations is proposed, combining the advantages of both (i.e., the temporal, spatial and spectral resolution). 
This new technique was applied to fuse PlanetScope images with Sentinel-2 images, to create spectrally- 
consistent daily images of wheat LAI at a 3 m resolution. The daily 3 m LAI estimations were compared with 
57 in-situ wheat LAI measurements taken in Australia and Israel. This approach was demonstrated to successfully 
estimate Green LAI (LAI before the major on-set of leaf senescence) with an R2 of 0.94 and 86% relative accuracy 
(RMSE of 1.37) throughout the growing season without using any ground calibration. However, both the 
Sentinel-2 based estimates and the fused Green LAI were underestimated at high LAI values (LAI > 3). To account 
for this, regression models were developed, improving the relative accuracy of the Green LAI estimations by up to 
a further 47% (RMSE of 0.35–0.63) in comparison with field measured LAI. The new time series fusion method is 
an effective tool for continuous daily monitoring of crops at high-resolution over large scales, which opens up a 
range of new precision agriculture applications. These high spatio-temporal resolution time-series are valuable 
for monitoring crop growth and health, and can improve the effectiveness of farming practices and enhance yield 
forecasts at the field and sub-field scales.   

1. Introduction 

Improving the spatial and temporal estimation of Leaf Area Index 
(LAI) and monitoring of the crop developmental stage using remotely 
sensed imagery can inform service providers and growers to facilitate 
management decisions, formulate policies, and ultimately improve 
profitability (Pasqualotto et al., 2019; Sun et al., 2019). LAI also plays an 
important role in crop monitoring and can be used in crop growth 
models to better predict yield (Bøgh et al., 2004; Clevers, 1991; Lobell 

et al., 2015). One of the common applications for LAI is to provide yield 
estimations (e.g. Azzari et al., 2017; Ines et al., 2013; Lobell et al., 2015; 
Sun et al., 2017; Waldner et al., 2019). 

LAI is defined as the ratio of one-sided leaf area per unit ground area 
(Watson, 1947) and knowing the LAI of a crop has a wide range of ap-
plications. However, monitoring crop LAI by extensive in-situ sampling 
over large areas is expensive, time consuming and consequently 
impractical (Houborg and McCabe, 2018c). Therefore, for decades sci-
entists around the world have attempted to estimate LAI from space (e.g. 
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Chen et al., 2002; Gitelson et al., 2003; Nguy-Robertson et al., 2014; 
Pollock and Kanemasu, 1979; Viña et al., 2011; Wiegand et al., 1979). 
However, the trade-off between the spatial and temporal resolution 
typically restricted the use of high spatial and temporal time-series of 
images for agricultural applications (Waldner et al., 2019). 

As crop canopy reflectance is affected by the LAI, as well as by the 
chlorophyll distribution, canopy structure and the background soil 
(Gitelson et al., 2005), methods which rely on optical remote sensing to 
convert surface reflectance data into LAI estimations were developed 
(Delegido et al., 2015). These methods are commonly classified into two 
groups (Delegido et al., 2015; Fang et al., 2019; Kimm et al., 2020; 
Pasqualotto et al., 2019): (i) physically-based retrieval methods, which 
are based on radiative transfer models (RTM), when the LAI is estimated 
based on the inversion of these models (e.g. Houborg and McCabe, 
2018c), and (ii) an empirical approach using either linear or nonlinear 
regressions with vegetation indices (VIs) as independent variables (e.g. 
Herrmann et al., 2011; Nguy-Robertson et al., 2014). These two groups 
of methods have both advantages and disadvantages. The physically- 
based retrieval methods are more generally applicable, but they are 
often limited by the nature of canopy structure and thus suffer from the 
ill-posed problem that may end in an unstable solution and require an a 
priori knowledge of targeted canopies (Bsaibes et al., 2009; Delegido 
et al., 2015). The empirical methods are commonly based on pre-trained 
relationships between field measured LAI and VIs; they are simple and 
do not require intensive computation. However, these empirical re-
lationships could only be useful in regions that are similar to those used 
for calibration (Bsaibes et al., 2009; Kimm et al., 2020) and are less 
reliably applied for multiple vegetation types (Pasqualotto et al., 2019). 

The majority of these methods have been developed for retrieving 
LAI from green vegetation only (Delegido et al., 2015), which is often 
called the Green Leaf Area Index (Green LAI or LAI-green). The Green 
LAI represents the leaves which are photosynthetically active (Daughtry 
et al., 1992). In contrast to the brown or senescing LAI (Delegido et al., 
2015), remotely sensed Green LAI is more useful for agro-ecosystem 
monitoring (Pasqualotto et al., 2019), assessment of water logging 
damage in agriculture (Liu et al., 2018), estimating vegetation 
phenology (Verger et al., 2016), monitoring of deforestation (Valder-
rama-Landeros et al., 2016), crop modelling (El Hajj et al., 2016) and 
yield prediction (Lobell et al., 2015). 

Previous studies showed that LAI can be estimated using spaceborne 
sensors such as AVHRR (Franch et al., 2017), MODIS (Huang et al., 
2015), Landsat (Gao et al., 2012), WorldView-2 (Psomiadis et al., 2017) 
and Sentinel-2 (S2) (Djamai et al., 2019; Pasqualotto et al., 2019; Ver-
relst et al., 2015). Each of these sensors has their pros and cons, which 
mainly arise from their spatial, temporal and spectral resolutions or 
costs. Over the last decade, the number of companies developing 
CubeSats has increased. These new satellites, such as Planet Labs’ 
PlanetScope (PS) CubeSat, can be the size of a milk carton, are relatively 
inexpensive to build and launch to a low earth orbit, thereby making it 
possible to acquire large image collections at high spatial and temporal 
resolutions at a relatively low cost. However, one of the major chal-
lenges working with time series CubeSat imagery is the fact that unlike 
large and expensive satellites such as S2 or Landsat, the images obtained 
from CubeSat constellations, such as Planet’s PS, frequently suffer from 
radiometric inconsistencies in the data collected by the different satel-
lites within the constellation, due to inter-calibration challenges and 
their low signal-to-noise ratio (Houborg and McCabe, 2016, 2018b; 
Leach et al., 2019; Sadeh et al., 2019). 

The lack of suitable combinations of both high spatial and temporal 
resolution time series from well calibrated satellite images (Waldner 
et al., 2019) motivated a few attempts to fuse CubeSat imagery with 
these other types of imagery into high spatio-temporal LAI datasets. For 
example, Houborg and McCabe (2018b) created Landsat-consistent LAI 
of an irrigated alfalfa field in Saudi Arabia by fusing PS, Landsat and 
MODIS images coupled with in-situ measurements, to spatially and 
temporally enhance Landsat-based LAI to the PlanetScope resolution. Li 

et al., (2019) generated red-edge bands at 3 m spatial resolution by 
fusing S2 and PS images, by using the weight-and-unmixing algorithm as 
well as the SUPer-REsolution for multi-spectral Multi-resolution Esti-
mation (Wu-SupReME) approach. However, their fusion method was 
tested with only a few individual images acquired on selected dates, and 
their relationship between in-situ wheat LAI measurements and the VIs 
from fused images only applies to Jiangsu Province, China, where it was 
established. Kimm et al., (2020) used the Moderate Resolution Imaging 
Spectroradiometer (MODIS)-Landsat STAIR (SaTellite dAta IntegRation) 
fusion product (Luo et al., 2018) and fused it with PS data to produce 
daily LAI estimation of corn and soybean in the U.S. Corn Belt. The 
STAIR method uses an adaptive-average correction that takes into ac-
count different land cover types through an automatic segmentation of 
the image (Luo et al., 2018). 

Motivated by the inconsistency issues of the data acquired by the 
different satellites within the constellation, this study: 1) proposed a 
new method to fuse time series of images sourced from two different 
satellites to overcome the inconsistencies between the different sensors 
within the CubeSat constellation, and combines the advantages of both 
data sources in terms of their temporal, spatial and spectral resolutions. 
In contrast to some other fusion methods (e.g. Gao et al., 2006; Li et al., 
2019), which can take only one or two pairs of images as input at a time, 
this new method can process a time series from an unlimited number of 
images; 2) applied this new technique to fuse PS images (with a spatial 
resolution of ~3 m, and a daily revisit time) and S2 images (resolution of 
10 m and five-day revisit time) to create daily, S2-consistent surface 
reflectance blue, green, red (visible) and near-infrared (NIR) and crop 
Green LAI at a 3 m resolution; 3) tested the approach for improved 
wheat LAI estimation over wheat fields in Australia and Israel, so as to 
provide an assessment over different soil types, farm management, cli-
mates and crop varieties. The guideline for the development of the 
method was that the method should be simple, so it could be easily be 
replicated and applied elsewhere. Therefore, the reliable and well- 
studied Sentinel-2 LAI product was selected, which offer a global 
coverage of LAI estimates in a relatively high spatial resolution. Recently 
developed methods for LAI estimation tend to use sophisticated 
computing techniques such as machine learning, but they typically 
involve the use of ground-based training data specific to the study area. 
This paper contends that a practical and robust method for LAI esti-
mation should be simple, effective, repeatable and universal. Therefore, 
the Sentinel-2 LAI product was selected as the reference, having global 
coverage of LAI estimates at relatively high spatial resolution. By con-
verting the fused VIs into Sentinel-2-like LAI estimates (as described in 
Section 2.4), the need of having ground LAI data is unnecessary. The 
resulting daily 3 m LAI estimations were compared with in-situ wheat 
LAI measurements made using ground-based methods. This new time 
series fusion method facilitates continuous daily high-resolution moni-
toring of crops over large scales. 

2. Methods 

2.1. Field trials and in-situ LAI measurements 

2.1.1. Cora Lynn trial 
Winter-wheat variety RGT Accroc was grown in a 76 × 74 m field 80 

km South-East of Melbourne, Victoria, Australia, at Cora Lynn (38.1336̊
S, 145.6324̊ W, average annual rainfall of 857 mm (Australian Bureau of 
Meteorology, 2020)). The crop was sown in the silty loam at a 5 cm 
depth on Aug 7, 2018, with 100 kg ha-1 MAP (mono-ammonium 
phosphate) applied at sowing. The crop was grown under rainfed con-
ditions, with only one irrigation (Nov 16, 2018) of 50 m3 ha− 1 with a 
linear shift irrigator, to avoid plant death. Four sets of above-ground 
plant parts were collected from the four sides of the field (at least 2 m 
from the edge) 16 times during the growing season, in a 0.5 × 0.5 m 
sampling area. For one or two of those four sets, leaf blades, stems and 
sheaths, and heads were portioned to measure their dry biomass and 
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calculate the proportion of leaf material (i.e., dry weight of the blades 
divided by the total above-ground biomass). A subset of approximately 
100 blades from the sampled leaves were then scanned using a Canon 
imageRUNNER ADVANCE C3330 scanner (Canon Inc) and weighed, 
after oven dry at 60 ◦C for at least 48 h, to measure the specific leaf area. 
LAI was calculated by multiplying specific leaf area, the proportion of 
leaf in the subsample and the average biomass of four samples, and by 
dividing by the sampling area. 

2.1.2. Birchip fields 
Five rainfed spring-wheat fields were studied in a farm located near 

Birchip, Victoria, Australia (Apr-Nov 2018; 35.982̊ S, 142.916̊ W), 
representing an average Victorian farm in the Australian wheat belt. The 
Birchip farm, which, is 6,400 ha in size (average field size is 116 ha), was 
chosen for this study as it represents a typical Australian rainfed crop 
farm. This site is located on fine sandy clay loam texture soil and re-
ceives an average annual rainfall of 374 mm (Australian Bureau of 
Meteorology, 2020). The LAI measurements were conducted on the 17th 
and 18th of September 2018 using a LAI-2000 Plant Canopy Analyzer 
(LI-COR). Ten 20 m × 20 m plots located in five wheat fields were 
selected (two in each field). All plots were located at least 20 m away 
from the edges of the field and were representative of the crops’ con-
ditions in their area. Field data were acquired following the measure-
ment guidelines suggested by the instrument manual (LI-COR, 1992). In 
total, 240 individual LAI measurements were sampled for the ten plots, 
with each plot containing 24 LAI measurements. 

2.1.3. Saad and Yavne fields 
LAI was measured over six rainfed spring-wheat fields, located in two 

commercial farms near Saad (four fields of ~ 39 ha in total; Feb-Apr 
2018; 31.477̊ N, 34.538̊ W) and Yavne (two fields of ~ 13 ha in total; 
Jan-Apr 2019; 31.809̊ S, 34.716̊ W) in Israel. The Saad fields are located 
over a clay soil and receive an average annual rainfall of 415 mm (Israel 
Meteorological Service, 2020). The Yavne fields are located over a sandy 
loam soil and receive an average annual rainfall of 515 mm (Israel 
Meteorological Service, 2020). LAI in these two sites was measured 
using the SunScan Canopy Analysis System (SS1-COM-R4 Complete 
System with Radio Link developed by Delta-T Company, Cambridge, 
United Kingdom). The four fields in Saad were close to each other with 
different sowing dates and irrigation regimes: Kitain cv sown on 20/11/ 
2017 and grown under both rainfed (1) and with some irrigation (2); 
Amit cv was sown on 29/11/2017 and grown under rainfed conditions 
(3), and durum wheat cultivar C9 was sown on 19/11/2017 and grown 
under rainfed conditions. The two fields in Yavne were adjacent and 
sown on 16/11/2018. The measurements performed six times for the 
Saad farm fields and seven times for the Yavne farm fields during the 
growing season. Each LAI value used for the analyses was the average of 
LAI measured at 2 to 4 points, separated to each other by a distance of 
~50 m. At each point, around 30 field measurements were taken every 
~20 cm from each other, regardless of whether plants were present or 
not. 

2.2. Imagery 

2.2.1. Sentinel-2 (surface reflectance and LAI) 
The European Space Agency (ESA) Copernicus Sentinel-2 (S2) in-

cludes a constellation of two polar-orbiting satellites positioned in the 
same sun-synchronous orbit, but phased at 180◦ to each other. S2 carries 
an optical sensor payload that samples 13 spectral bands: four bands at 
10 m, six bands at 20 m and three bands at 60 m spatial resolution. It 
provides a revisit frequency of 5 days (at the Equator) with a 290 km 
swath width (Drusch et al., 2012; SUHET, 2015). S2 images can be freely 
downloaded at the Copernicus Open Access Hub website (https://scih 
ub.copernicus.eu/dhus/#/home). In this study, clear-sky images 
downloaded via ESA’s application programming interface (API), using 
the field’s polygon to determine the region of interest (ROI) to be 

downloaded. S2 Level-2A Bottom Of Atmosphere (BOA) products were 
only available (and used) for Israel during the study period. For 
Australia, we thus used the Sen2Cor module (Louis et al., 2016) within 
ESA’s Sentinel Application Platform (SNAP) software (version 7.0) to 
convert the Level-1C product (Top Of Atmosphere (TOA) reflectance) 
images from TOA to BOA, in order to minimize the influence of the at-
mospheric conditions present at the time of acquisition. Next, S2-based 
LAI data (from Israel and Australia) were generated using the Biophys-
ical Processor module embedded in SNAP, which computes biophysical 
products from S2 BOA reflectance. This processor uses the top-of-canopy 
reflectance data to estimate a number of biophysical variables including 
LAI (Weiss and Baret, 2016). 

2.2.2. PlanetScope 
PlanetScope (PS) is a CubeSat 3U form factor (10 cm × 10 cm × 30 

cm) satellite constellation operated by Planet Labs, Inc. The PlanetScope 
constellation consists of about 120 satellites, with the capability to 
image all of the Earth’s land surface on a daily basis. The PlanetScope 
satellites have four spectral bands; Blue (455–515 nm), Green (500–590 
nm), Red (590–670 nm) and NIR (780–860 nm). These have a Ground 
Sampling Distance (GSD) of 3–4 m at nadir and a positional accuracy of 
<10 m RMSE (Planet Team, 2018). This study used the Planet Surface 
Reflectance Product provided at a spatial resolution of ~3 m. These 
images are atmospherically corrected to BOA reflectance, which pro-
vides more consistency across time and location localized atmospheric 
conditions while minimizing uncertainty in the spectral response (Planet 
Team, 2020). Despite the fact that both PS and S2 provide imagery in the 
visible and NIR regions, their bandwidths and spectral response are very 
different as shown in Fig. 1. For each analysed field, cloud-free Planet-
Scope images were downloaded using Planet’s API, according to the 
field’s domain. 

2.3. Data fusion of reflectance 

In order to fuse images acquired by the PS CubeSats constellation and 
S2, we have developed a simple fusion method (Fig. 2). The data fusion 
process required four inputs: (1) High spatio-temporal resolution images 
(e.g. PS); (2) lower spatial resolution, but with higher spectral resolution 
images (e.g. S2); (3) an index or product produced by input number 2 (e. 
g. LAI); and 4) the ROI (i.e., a polygon of field’s domain). The outputs of 
this fusion method are daily fused surface reflectance images and daily 
images of the desired index or product, in the original pixel size of the 
high spatial resolution input. In this study, we tested our fusion method 
to produce S2-like visible-NIR bands and LAI images at the spatial and 
temporal resolution of PS (i.e., daily images in 3 m). 

First, PS, S2 (bands 2, 3, 4 & 8) and S2-based LAI images were 
extracted by the field’s domain. Then, each type of consecutive pair of 
images acquired at two different dates are linearly interpolated to create 
a daily time-series of images. This results in three separate time-series, 
(1) PS BOA (3 m), (2) S2 BOA (10 m), and (3) S2 LAI (10 m) made 
from both real as well as synthetic (interpolated) images. Next, the S2- 
based datasets (2 + 3) were resampled (using cubic interpolation) 
from 10 m to 3 m pixel size. Then, same-day PS and the resized S2 im-
ages are separated into their individual bands (Blue, Green, Red and 
NIR), and fused by averaging the pixel values between each pair of 
bands as follow: 

Fused Bandi = (PlanetScopeBOABandi +Sentinel2BOABandi)/2 (1)  

where Bandi correspond to each of RGB visible and the NIR bands 
(Fig. 1). After the fusion, the bands are recombined to form an RGB-NIR 
image. This stage yields in daily 3 m fused surface reflectance images. 

2.4. Fused LAI in 3 m 

The new dataset is then used to calculate 13 selected vegetation 
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indices shown in the literature to have a high correlation with LAI: SR, 
EVI2, NDVI, GCVI, MTVI2, MSAVI, WDRVI, Green-WDRVI, OSAVI, GSR, 
GNDVI, RDVI and TVI (Table 1). Finally, the vegetation indices from the 
fused image (daily, 3 m) are converted to LAI using a linear regression 
between the different vegetation indices to the resized LAI time-series 
(daily, 3 m) from S2. A four-day moving window (t0, t− 1, t− 2, &t− 3) 
with same day (t0) pairs of S2-LAI and a fused vegetation index image, 
was used to calculate the average slopes and intercepts between all four 
pairs (i.e., S2-LAI and one of the fused-based vegetation indices at the 
time). In this process, the slope and intercept of LAI and VI for all pixels 

from the field was calculated for each day and each studied vegetation 
index, and then averaged across the four days of the moving-window. 
Hence for each vegetation index, the correction of each image is done 

using a different slope and intercept, calculated for each four-day win-
dow, thus operating as a moving average. This was done in order to 
minimise the signal inconsistency created by the PS sensors (daily 
measurements), which causes variability in the vegetation indices. The 
algorithm was designed to use the last four days so it can work in 
operational near real-time mode, as the future images are still not 
available. However, when processing an existing time series of images, 
the algorithm can be easily be modified to include the next images in the 
time series (e.g., t− 2,t− 1,t0,t1,t2,). The following equation is then used to 
correct and generate the daily high spatio-temporal LAI dataset:   

This method (Fig. 2) enables daily 3 m LAI images to be generated at 

Fig. 1. The spectral response of Sentinel-2 and PlanetScope in the Blue, Green, Red and Infrared bands.  

Fig. 2. The data fusion workflow of PlanetScope (with a spatial resolution of ~3 m) and Sentinel-2 (10 m) imagery into daily surface reflectance images, vegetation 
indices and LAI maps with a 3 m resolution. 

Corrected image = Fused vegetation index*four-day window slopes average+ four-day window intercepts average (2)   
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the same quality as the S2 LAI product. 
The remotely sensed LAI estimates were validated against the in-situ 

measurements. As the LAI was measured using different approaches over 
different study areas, the accuracy of the remotely sensed Green LAI was 
evaluated using a 23 × 23 square metre plot and a 65 × 65 square metre 
plot for the Birchip and Cora Lynn sites respectively. The fields in Israel 
were compared at the field level as each LAI measurement point was 
about 50 m apart from each other, and around 30 field measurements 
were taken at each of these points. The fields near Saad (four fields of 
~39 ha in total) and Yavne (two fields of ~13 ha in total) are much 
smaller than the Australian commercial fields analysed in this study (the 
average field size is 116 ha) and the development of the crops in these 
fields has been far more homogeneous. 

2.5. Adjustment of remotely-sensed Green LAI 

The Green LAI (representing a canopy mostly photosynthetically 

active) are difficult to measure from space when leaves shade each 
other. To account for this, the Green LAI estimations were tested for 
improvement by adjusting the generic S2-LAI product estimations, to 
better estimates wheat Green LAI. This was done by ’fine-tuning’ the 
results received in the previous stage, using second-order polynomial 
regressions (Table 4), which was found to best represent the correlation 
between the in-situ and remotely estimated Green LAI for a considered 
vegetation index. The performance of this correction approach was 
tested using an independent dataset of Green LAI for two ~30 ha, 
rainfed-wheat fields located near Yanco, NSW, Australia (Apr-Nov 2019; 
34.716̊ S, 146.088̊ W). In this site, located more than 350 km from the 
nearest field used for training (i.e., further than the distance between 
Paris and London), the LAI was measured weekly using LI-COR LAI-2200 
sensor during one month around the peak LAI (Oct 2019). The LAI 
measurements were taken at least 10 m away from the edges of the field 
and were representative of the crops’ conditions in their area. Owing to 
the high spatial variability of the vegetation development in these two 
fields, the validation between the in-situ and the remotely sensed LAI 
performed on the crops located around the actual location of the LAI 
measurements (using a 0.3 and 0.4 ha plots). The results of the corrected 
Green LAI were compared with the in-situ Green LAI measurements and 
the non-corrected estimations, in order to validate the proposed 
correction method to better estimate wheat Green LAI from space. 

3. Results 

3.1. Fused surface reflectance accuracy 

The implementation of the new fusion method to generate time series 
of images resulted in a new dataset, which maintained both the high 
spatial and temporal resolution of PS and the spectral quality of S2 
(Figs. 3 and 4). Fig. 3 illustrates how a 10 m image from S2 fails to 
provide information about objects smaller than 10 m such as buildings, 
trees, and roads. By contrast, the fused image enabled easy identification 
of objects that could not be recognized in the S2 image while preserving 
the S2 reflectance information as shown in Fig. 4. 

The correlation between the BOA surface reflectance of S2, PS and 
the fused images was compared and evaluated at the pixel level, while 
excluding 15 m from the fields’ edges to avoid having mixed pixels with 
the surrounding objects. The mean and median R2 across all bands for 
the studied PS and S2 images were only 0.6 and 0.7, respectively 
(Table 2). The highest correlations were found in the NIR wavelength 
(0.75 and 0.81 mean and median, respectively), while the lowest cor-
relation was found in the blue wavelength (0.46 and 0.53 mean and 
median, respectively). The fused images were found to be highly 
correlated with the S2 images in all four bands (0.88 and 0.94 mean and 
median, respectively), being slightly higher than the correlation found 
between the fused images and PS images (0.84 and 0.9 mean and me-
dian, respectively). Sometimes when small objects such as scattered 
trees were located within the field, the analysis showed scattered pixels 
with lower correlation (Fig. 4). This is often because the lower resolution 
of S2 tends to represent these objects as mixed pixels, while they can be 
clearly identified in the fused image. 

3.2. Fused vegetation indices 

The ability of the fused images to produce daily vegetation indices 
(VIs) time-series in values similar to S2-based time-series was tested and 
compared to both VIs derived from S2 and PS. Overall, it was found that 
PS-based VIs tended to have lower values than S2-based VIs except in the 
early stages of the growing season (e.g., on low VIs values) where PS- 
based VIs were slightly higher (e.g., Fig. 5). Furthermore, a time-series 
of VIs generated based on PS images were noisier than the one gener-
ated based on S2 images or fused images (e.g., Fig. 5). 

After fusing the S2 and PS images and calculating the VIs, daily 3 m 
LAI maps were generated (Fig. 6). These maps were compared to S2- 

Table 1 
Definition of the multispectral vegetation indices investigated in this study.  

Vegetation 
index 

Equation Reference 

Simple Ratio 
(SR) 

NIR
Red  

Jordan 
(1969) 

Enhanced 
Vegetation 
Index 2 (EVI2) 

2.5(NIR − Red)
(NIR + 2.4Red + 1)

Jiang et al. 
(2008); Nguy- 
Robertson 
et al. (2012) 

Green 
Chlorophyll 
Vegetation 
Index (GCVI) 

(NIR − Green) − 1  Gitelson et al. 
(2003); 
Gitelson et al. 
(2005) 

Normalized 
Difference 
Vegetation 
Index (NDVI) 

NIR − Red
NIR + Red  

Rouse et al. 
(1974) 

Modified 
Triangular 
Vegetation 
Index 2 
(MTVI2) 

1.5[1.2(NIR − Green) − 2.5(Red − Green)]
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2NIR + 1)2
− (6NIR − 5

̅̅̅̅̅̅̅̅̅̅
Red)

√
− 0.5

√
Haboudane 
et al. (2004) 

Modified Soil- 
Adjusted 
Vegetation 
Index 
(MSAVI) 

0.5
[
2NIR+1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2NIR + 1)2
− 8(NIR − Red)

√ ] Haboudane 
et al. (2004); 
Qi et al. 
(1994) 

Wide Dynamic 
Range 
Vegetation 
Index 
(WDRVI) 

α∙NIR − Red
α∙NIR + Red

+
1 − α
1 + α  

Gitelson 
(2004); Nguy- 
Robertson 
et al. (2014) 

Green Wide 
Dynamic 
Range 
Vegetation 
Index (Green- 
WDRVI) 

α∙NIR − Green
α∙NIR + Green

+
1 − α
1 + α  

Nguy- 
Robertson 
et al. (2014); 
Peng and 
Gitelson 
(2011) 

Optimized Soil- 
Adjusted 
Vegetation 
Index (OSAVI) 

NIR − Red
NIR + Red + 0.16  

Rondeaux 
et al. (1996) 

Green Simple 
Ratio (GSR) 

NIR
Green  

Sripada et al. 
(2006) 

Green NDVI 
(GNDVI) 

NIR − Green
NIR + Green  

Gitelson and 
Merzlyak 
(1994) 

Renormalized 
Difference 
Vegetation 
Index (RDVI) 

NIR − Red
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
NIR + Red

√
Roujean and 
Breon (1995) 

Transformed 
Vegetative 
Index (TVI) 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
NIR − Red
NIR + Red

+ 0.5
√ Rouse et al. 

(1974) Haas 
et al. (1975) 

*α in WDRVI and Green-WDRVI = 0.1 following Nguy-Robertson et al. (2014). 
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based LAI maps at the pixel level and at the field level (Fig. 7). Next, 
remotely-sensed LAI estimations from both S2 and fused images were 
compared with in-situ LAI measurements conducted in the field (Fig. 7). 

3.3. LAI estimations 

Overall, 57 in-situ LAI measurements conducted across 12 wheat 
fields, half located in Australia and the other half in Israel, were avail-
able to evaluate the accuracy of the remotely-sensed LAI estimations. S2- 
based LAI was found to have an RMSE of 1.60 (R2 = 0.84), while the 
RMSE for fused-based LAI estimations ranged from 1.73 to 1.78 
depending on the VI considered (R2 = 0.82–0.84; Table 3). In general, 
both S2 and fused-based LAI estimations tended to underestimate the in- 
situ LAI values, especially in LAI values larger than 3 (Fig. 8). In com-
parison with the in-situ measurements, S2-based LAI estimations 
generally had slightly better accuracy compared to VI-based LAI esti-
mations. As optical remote sensing is mainly estimating the Green LAI 
(Haboudane et al., 2004), the results have been separated into two 
groups, the in-situ measurements conducted when the crops were at the 

Green LAI stage (Table 3B) and the measurements that were performed 
during the senescing stage (Table 3C). The peak of the fusion-based LAI 
was used as the threshold to define these two groups. When analysing 
the Green LAI separately, the accuracy of the remotely sensed LAI esti-
mations was found to be much higher (Table 3). Overall, remotely- 
sensed LAI estimations during the Green LAI phase were found to 
have an RMSE of 1.08 (R2 = 0.95) for the S2-based LAI, and an RMSE of 
1.37–1.4 (R2 = 0.92–0.94) for the fused-based LAI estimated from the 
different VIs (Table 3B). S2-based LAI median error for the Green LAI 
was only − 0.38 and the fused-based LAI from best performing VI, i.e., 
RDVI, had a median error of − 0.73 (Table 3B). 

Hence, estimating Green LAI using the new method, or with S2-based 
LAI estimations, was highly correlated to in-situ measurement when the 
crops were still mostly photosynthetically active. However, un-
derestimations of high LAI values (>3) was observed in all studied fields 
(Fig. 8), probably due to increasing overlap of leaves with higher LAI. 
One of the main disadvantages of using normalized difference VIs (e.g., 
NDVI) to remotely estimate LAI is the fact that they tend to saturate 
asymptotically under conditions of medium-to-high aboveground 

Fig. 3. An example of the Sentinel-2 and PlanetScope fusion outcome (in natural color composite image) for the Cora Lynn experimental field area. Both source 
images were acquired on the 29/9/18 and are in BOA reflectance values. (A) The original Sentinel-2 image (10 m), (B) the original PlanetScope image (3 m), and (C) 
the fused image (3 m). 

Fig. 4. An example of the correlation between a same day pair of an original S2 image and a fused image (image date 23/7/18) for the field near Birchip, Victoria, 
Australia. Each scatterplot represents the comparison of a different spectral band, where band 1, 2, 3 and 4 represents the Blue, Green, Red and NIR wavelengths, 
respectively and the pixels values are in surface reflectance (BOA). The blue line in the figures is the trend line. The dotted line is the 1:1 line. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Comparison of the median and mean correlation (R2) that was found between S2, PS and the fused images of all the images analysed across all sites (2,463 images in 
each dataset), for each band and all four bands together.  

Datasets Blue (band 1) Green (band 2) Red (band 3) NIR (band 4) All bands  
Median Mean Median Mean Median Mean Median Mean Median Mean 

PS - S2 0.53 0.46 0.71 0.58 0.75 0.6 0.81 0.75 0.7 0.6 
Fused - PS 0.86 0.79 0.9 0.82 0.91 0.84 0.94 0.91 0.9 0.84 
Fused - S2 0.9 0.81 0.95 0.88 0.96 0.88 0.96 0.93 0.94 0.88  
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biomass density (Gitelson, 2004). To minimise these underestimations, a 
correction equation was sought for the different VI-based fused dataset 
and the S2-based LAI. Polynomial order two regression was found as the 
most suitable to fit the fused-based Green LAI estimates against in-situ 
LAI measurements (Fig. 8 and Table 4), with an R2 of 0.95 (RMSE of 
0.62) for the S2-based LAI, and an R2 ranging between 0.92 and 0.94 
depending on the VI considered (RMSE of 0.67–0.78). Overall, the SR, 
MTVI2 and RDVI indices showed the best fits. 

3.4. Adjustment of S2 LAI to estimate Green LAI in wheat 

The equations presented in Table 4 were used to correct, for the 
different fusion-based LAI and S2-based LAI, the underestimation of the 
remotely sensed Green LAI estimations (as illustrated in Fig. 9). The 
performance of the proposed correction method was tested using an 
independent LAI dataset that was collected in two wheat fields located 

near Yanco, NSW, Australia. The performance of this method was 
evaluated for estimating Green LAI with and without the proposed 
correction. 

The results of the Green LAI correction analysis showed that the 
estimations of the fused-based LAI were improved by up to 47% 
compared with non-corrected Green LAI estimations (Table 5). The 
RMSE between the in-situ LAI and the fused-based LAI before the 
correction ranged between 0.53 and 0.87 (among the different indices), 
while the correction achieved higher accuracy with RMSE ranging be-
tween 0.35 and 0.63, as shown in Table 5. Even though the proposed 
correction aimed to adjust the Green LAI phase of the wheat, the results 
show that this method also adjusts LAI estimations at the senescing 
phase. In the conditions tested, the best pre-correction performing 
indices were for MSAVI, MTVI2 and GNDVI (all < 0.6 RMSE) and the 
best post-correction performing indices were for GNDVI, Green WDRVI, 
GDVI, GSR, TVI, OSAVI and NDVI (all < 0.45 RMSE). Overall, the RMSE 
of Green LAI estimations improved by more than 25% for 10 out of the 
13 indices analysed. As for the S2-LAI estimations, in these fields, the S2- 
LAI underperformed the fused-based LAI estimations having an RMSE of 
1.38 (R2 = 0.41). This stems from the fact that the in-situ LAI was 
measured along the edges of these fields. Therefore, the 10 m spatial 
resolution of S2 suffered from mixed pixels, representing not only the 
wheat LAI but also the road around the fields, while the 3 m fused LAI 
images overcame this limitation. 

4. Discussion 

Monitoring crop performance is essential to guarantee a high quality 
and profitable yield; however, it has always been a challenge, especially 
with the large fields that are common to modern agriculture. The large 
cultivated areas and the frequent monitoring requirement (Waldner 
et al., 2019), makes remote sensing a valuable tool for farmers and 
agronomists to achieve maximum yield (Raun et al., 2002). 

4.1. The advantages of the proposed fusion approach 

CubeSats, such as Planet’s PS, are relatively cheap to build and can 
offer high spatio-temporal imagery at lower costs than traditional sat-
ellites. However, CubeSat constellations tend to suffer from cross-sensor 
inconsistencies in radiometric quality and dissimilarity of their spectral 
responses among satellites in the constellation, contributing to the noise 
observed in time-series data acquired from these sensors (Houborg and 
McCabe, 2016, 2018a). Such inconsistencies limit the accuracy of sur-
face reflectance-based applications such as estimation of vegetation 

Fig. 5. Six-month time series of Sentinel-2 (black dashed line), PlanetScope (dot line) and the fused images (red line) NDVI calculated from atmospherically cor-
rected bottom of atmosphere (BOA) reflectances. The data represent the daily mean NDVI for a 131-ha wheat field located near Birchip, Victoria, Australia. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Comparison between (A) S2-based LAI map (10 m) and (B) S2-PS 
fusion-based LAI (3 m) map (image date – 7/8/18) of an 88-ha wheat field 
near Birchip, Victoria, Australia. 
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indices (Fig. 5), hindering the use of CubeSat satellites to monitor 
changes on the Earth surface (Sadeh et al., 2019) and for land surface 
characterization (Houborg and McCabe, 2018a). Fusion of CubeSat 
imagery with a consistent and reliable dataset, such as S2, can overcome 
this limitation and eliminate the noise that exists in CubeSat data 
(Houborg and McCabe, 2018a; Kimm et al., 2020). PS bands have 
different bandwidths and spectral responses from S2 (Fig. 1). While S2 
RGB-NIR bands have a clear spectral separation between the bands, PS’s 
RGB bands overlap each other. Such overlaps can cause contamination 
of the signals acquired by each band, with radiation belonging to 
neighbouring bands, limiting the accuracy of different applications such 
as VI calculations and classification. 

The fusion approach proposed in this study helps to resolve the 
challenges posed by PS spectral responses, producing time-series of 
images that preserve both the high spatial and temporal resolution of PS 
and the spectral quality of S2 (as shown in Figs. 3 and 4). In practical 
terms this means that S2-consistent, surface reflectance RGB-NIR images 
and crop Green LAI could be generated at a 3 m resolution on a daily 
basis. 

The fusion method proposed here can process a time series from an 
unlimited number of images to generate a time series of images that 
covers the whole growing season. This make the method robust and 
flexible, and the user can theoretically fuse images acquired by a number 
of sensors. The fleet of Earth observing satellites is increasing every year, 
offering unprecedented imagery in a range of spectral resolutions ac-
quired across various bands. However, some previous image fusion 
methods are limited to a maximum of three input bands of a lower 
resolution at a time (Gašparović and Jogun, 2018). This method is not 
limited by the number of bands to be fused, so long as the higher spatial- 
resolution bands covers the spectral range of the lower resolution bands. 
In order to reduce sampling gaps between images sourced from one 
dataset such as S2, the method can also use Landsat images for example, 
to increase the temporal resolution of these coarse images. In the same 
way, if a new CubeSat constellation that can provide data complimen-
tary to PS becomes operational, it can be integrated as an additional high 
spatio-temporal imagery in the fusion process. 

The potential of spaceborne remote sensing to provide relevant 

information by monitoring crop performance has long been recognized. 
However, despite the technological and methodological progress over 
the past decades, remotely sensed data are still not as broadly and 
operationally used by farmers as they should be. This could be because 
of the cost of images with both high temporal (<5 days) and spatial 
resolutions (<5 m) (e.g. DigitalGlobe’s WorldView-2 and 3), which limit 
the profitability of the farm. Or it could be that agronomists and farmers 
do not have the knowledge and skills required to process and analyse the 
satellite data. This study has addressed the issue of availability for 
affordable high spatio-temporal data for crop monitoring at a field and 
sub-field scale. In addition, such new datasets can be used for precision 
agriculture applications, which until now couldn’t be implemented 
owing to the temporal or spatial limitation of the existing publicly 
available sources of satellite data. 

Near real-time estimation of Green LAI can provide farmers with the 
tool to monitor the crop health and growth status, which may support 
farm management actions such as irrigation and fertilization (Pasqua-
lotto et al., 2019). However, waiting for a cloud free image from the 
publicly available satellite imagery (e.g. S2 and Landsat), often results in 
an image that is too late to act in the field or will result in an incorrect 
interpretation (Khan et al., 2018). For example, the peak of the crop LAI, 
which has been found to be as an important parameter to provide early 
estimates of grain yield (Waldner et al., 2019), can be easily missed by 
the 16 and 5 day revisit times of Landsat (Jin et al., 2017) and S2 
(Clevers et al., 2017), respectively. Consequently, methods developed 
for yield estimation based on the peak of VIs (e.g. Franch et al., 2015) or 
LAI (e.g. Lobell et al., 2015) are not able to provide accurate yield es-
timates, or to target small farm holders fields. The proposed method 
allows time-series gaps due to clouds to be filled and improves the 
probability of identifying the peak LAI. However, it still faces some 
limitations in near real-time monitoring on cloudy days. 

4.2. Estimating wheat Green LAI 

Similar to previous studies (e.g. Dhakar et al., 2019; Djamai and 
Fernandes, 2018; Djamai et al., 2019; Pasqualotto et al., 2019), this 
study found S2 LAI products (created using the Biophysical Processor 

Fig. 7. Comparison of the changes in LAI estimated over the growing season through in-situ point measurements (black dots, were the error bars represent the 
measurements standard deviation), S2 images (blue line) and the fused method (red line) of the 2018 Cora Lynn wheat trial. In this example, the fused-based 
Renormalized Difference Vegetation Index (RDVI) was used to calculate LAI using a linear regression modal. RMSE is presented (i) between the S2-based LAI to 
the fused-based LAI estimations at the pixel (Pixel level RMSE’) and the field levels (median daily error at the pixel level; ‘Field level RMSE’), (ii) between the S2-LAI 
and in-situ LAI measurements (‘S2 – In-situ RMSE’), (iii) between the Fused images-LAI and in-situ LAI measurements (‘Fused – In-situ RMSE’), (iv) between the S2-LAI 
and the Green LAI in-situ measurements only (‘S2 – In-situ Green LAI RMSE’), and between the Fused images-LAI and the Green LAI in-situ measurements only (‘Fused 
– In-situ Green LAI RMSE’). In this example, in-situ LAI measurement performed on the 29/10/18 were unusually high, and in any case, much higher than the 
estimated remotely-sensed LAI. This could be partly due to measurement error (the error bar was also big) combined with the known underestimation of S2-LAI for 
high LAI values. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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within ESA’s SNAP software (Weiss and Baret, 2016)) are capable of 
estimating wheat Green LAI (R2 = 0.95 and 1.08 RMSE). However, the 
S2-LAI product was found to be less suitable for estimating wheat 
senescence-LAI (R2 = 0.83 and 1.9 RMSE). One of the strengths of this 
new method for estimating LAI is the fact that it combines both methods, 
i.e., the physically-based retrieval method (e.g. RTM) and the empirical 
approach (e.g. using VIs), to convert surface reflectance data into LAI 
estimates. First, the method uses the RTM-based S2-LAI product as a 
benchmark and then uses the fused VI image pixel values within the 
defined region of interest, as an automatic “field-based” calibration to 
convert the fused VIs into S2-like LAI estimates, through a series of 
linear regression models. These regressions, which are automatically 
generated for each day in the time-series, are uniquely fitted to the area 
of interest (e.g. the analysed field). This approach enables the method to 
be more robust and valid across different soil types, crop types and va-
rieties, farm managements and environmental conditions. 

In this study, 13 different VIs were tested (Table 1), having been 
indicated in the literature to be highly correlated with LAI, and evalu-
ated their performance to estimate LAI in the new fusion method. It was 
found that overall this new method is not sensitive to a specific VI, with 
the fused Green LAI estimates from the various indices ranging from 
RMSE 1.37–1.4 (R2 = 0.92–0.94). The MTVI2, SR and the RDVI were 
found to be the best preforming VIs in this study. However, all of these 
VI fuse-based estimates slightly underperformed the accuracy of S2 
Green LAI estimations (Table 4) while also providing daily estimates at 
3 m resolution. 

The S2-LAI product has a few limitations. As noted by previous 
studies, similar to other remotely sensed LAI estimation (e.g. Djamai 
et al., 2019; Houborg et al., 2016), S2-based Green LAI estimates also 
tend to underestimate high Green LAI values (LAI > ~3) (Dhakar et al., 
et al., 2019; Djamai et al., 2019; Herrmann et al., 2011; Pasqualotto 
et al., 2019; Verrelst et al., 2015). These underestimations are probably 
produced by the asymptotically saturation of the surface reflectance 
data caused by the high biomass density (Gitelson, 2004). These un-
derestimations become even more significant from LAI = 6 and higher 
(as shown in Fig. 8), which causes the uncertainties in estimating high 
LAI values (LAI > 6) using SNAP’s Biophysical Processor, as reported by 
Weiss and Baret (2016). The analysis of the new fused LAI time series 
showed similar underestimations as the S2-LAI, which is not surprising 
considering the fact that the fused-LAI was created using S2-LAI data. 

Similar to other LAI products such as MODIS LAI (Myneni and Park, 
2015) or Visible Infrared Imaging Radiometer Suite (VIIRS) LAI prod-
ucts (Knyazikhin and Myneni, 2018), the S2-LAI product uses a generic 
method to estimate LAI for any type of vegetation (Weiss and Baret, 
2016). Therefore, in order to have a better match for a specific crop type, 
a correction should be applied to calibrate the data (Weiss and Baret, 
2016). This study has developed regression models (Table 4) to adjust 
both the S2-based LAI and the fused-LAI estimates to provide more ac-
curate wheat LAI estimates. The performance of the proposed correc-
tion, which was tested using an independent wheat LAI dataset 
measured in NSW, Australia, showed a clear improvement in the accu-
racy of the method to estimate wheat Green LAI. In 10 out of the 13 

Table 3 
Performance of remotely-sensed LAI estimations for both S2-based and the fused-based LAI compared to the in-situ LAI measurements. The best performing index from 
the VIs-based fusion is coloured in red. Indices of the S2-based LAI estimations are coloured in green when they performed better than the fused data. Table A presents 
the results for all of the LAI measurements conducted in the field (n = 57), table B refers only to in-situ measurements conducted when the crops were at the Green LAI 
stage (n = 25) and table C presents the results only for LAI measurements conducted in the field during the senescing stage of the crops (n = 32). Overall, the best 
accuracy was achieved during the Green LAI stage (table B).  
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indices tested, the RMSE of Green LAI estimates improved by more than 
25%, while four improved by more than 39% (Green WDRVI improved 
in 47%) in comparison with non-corrected Green LAI estimations 
(Table 5), with RMSE ranging between 0.35 and 0.63. The S2-LAI data 
was also tested, however the comparison between the pre-correction and 
the post-correction Green LAI estimates showed that S2-LAI under-
performed the fused-based LAI estimates with 1.38 RMSE (R2 = 0.41). 
The reason that the S2-LAI data was not able to reproduce the accuracy 
achieved by the fused data to estimate the Green LAI is due to the fact 
that the in-situ LAI in these fields was measured along the fields’ 
boundaries, and therefore, the S2 data suffered from mixed pixels that 

lowered the Green LAI estimates. The mixed pixel effect has long been 
recognised as a main drawback to monitor crop performance and 
characterization from space, especially when using low and medium 
spatial resolution data such as the imagery acquired by MODIS and 
Landsat (Gao et al., 2012, 2006; Jain et al., 2016; Khan et al., 2018; Li 
et al., 2019). While LAI information driven from low to medium reso-
lution satellite images may be lost for certain surface types that appear 
only at smaller spatial scales (Gao et al., 2012), the 3 m fused LAI data 
presented in this study overcome these limitations. 

Despite the fact that the proposed correction aimed to adjust the 
Green LAI phase of the wheat, the results shows that the accuracy of the 

Fig. 8. Example of in-situ vs. remotely sensed 
Green LAI: (A) Sentinel-2 based LAI (B) 
Enhanced Vegetation Index 2 (EVI2), (C) 
Green Chlorophyll Vegetation Index (GCVI), 
(D) Normalized Difference Vegetation Index 
(NDVI), (E) Modified Soil-Adjusted Vegeta-
tion Index (MSAVI), (F) Modified Triangular 
Vegetation Index 2 (MTVI2), (G) Simple 
Ratio (SR), (H) Renormalized Difference 
Vegetation Index (RDVI). In all plots, solid 
line is best-fit function, dashed line is the 
one-to-one line. Statistics relative to these 
fits are presented in Table 4.   
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LAI estimations of the senescing phase has also improved after applying 
the correction. Future study should attempt to develop an adjustment 
method that will target the crop’s senescing phase only. As demon-
strated in Fig. 6, the new high-resolution dataset was able to better 

describe the spatial patterns of the crops and to identify vegetation with 
less active growth within the sub-field scale. Moreover, the new high 
spatio-temporal LAI estimates can be potentially used to monitor crops 
grown on small holder (<2 ha) farms in developing countries (Jain et al., 
2016). Nevertheless, it is expected that the regression models proposed 
here to correct S2 Green LAI estimations will exceed those of the non- 
corrected wheat Green LAI estimates, when overcoming the mixed 
pixel effect. However, this should be further tested in future studies. 

4.3. Limitations and prospects 

Even with the promising results presented here, there are some 
limitations that should be noted. The fused daily 3 m LAI data was 
evaluated across two countries in four different geographic locations, 
over 12 wheat fields with diverse farm management practices, soil types, 
climates and varieties. However, the correction method presented in this 
study to adjust the S2 and fused Green LAI was tested in one geo-location 
only. Therefore, future studies should explore the performance of the 
proposed correction over a larger number of fields and environments. 

While some previous studies have suggested that red-edge based VIs 
may help to mitigate the saturation problem encountered when esti-
mating high LAI values using traditional VIs based on visible reflectance, 
such as NDVI (Dong et al., 2019; Nguy-Robertson et al., 2012). Nguy- 
Robertson et al., (2014) have shown that this is not universally true. 

Table 4 
Best-fit functions of the relationships between Green LAI and VI’s obtained using 
a cross-validation procedure for wheat, when x = VI, y = Green LAI, and the 
RMSE is the root mean squared error of the Green LAI estimation. Fits were 
performed for data of all the studied trials and are presented in Fig. 8.  

VI Equation R2 RMSE 

Sentinel-2 LAI y = 0.0482x2 + 0.9161x + 0.0026 0.95 0.62 
SR y = 0.0658x2 + 0.9179x + 0.0614 0.94 0.67 
MTVI2 y = 0.0784x2 + 0.8443x + 0.0823 0.94 0.68 
RDVI y = 0.0475x2 + 1.0382x − 0.0452 0.94 0.70 
WDRVI y = 0.0502x2 + 1.0139x + 0.0005 0.93 0.74 
MSAVI y = 0.0493x2 + 1.006x + 0.0085 0.93 0.74 
TVI y = 0.0464x2 + 1.0279x − 0.0131 0.93 0.75 
OSAVI y = 0.0492x2 + 1.0102x + 0.0052 0.93 0.75 
NDVI y = 0.0492x2 + 1.0102x + 0.0051 0.93 0.75 
EVI2 y = 0.0489x2 + 1.015x + 0.0012 0.93 0.75 
GSR y = 0.0171x2 + 1.196x − 0.0743 0.93 0.77 
GCVI y = 0.0171x2 + 1.1961x − 0.074 0.93 0.77 
Green WDRVI y = 0.0164x2 + 1.1967x − 0.0726 0.92 0.78 
GNDVI y = 0.0183x2 + 1.1786x − 0.0599 0.92 0.78  

Fig. 9. Change over time in LAI for pre- (A) and post- (B) corrected LAI values in a wheat field in Saad in 2018. See caption of Fig. 7 for details of the legend. (The 
field which presented in this figure was not used as part of the independent LAI dataset, it is used here as it illustrates best the adjustment concept). 
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Moreover, current PlanetScope imagery does not provide red-edge data 
and so was not applied in this study. 

Even though it is one of the cheapest commercial high-resolution 
image products currently available in the market, Planet’s PS images 
are not free like S2. Farmers and others, who may want to use such high 
spatio-temporal LAI and VIs data, should consider the cost effectiveness 
of this data. It is expected that high-performing farmers will find it very 
beneficial while individual farmers in developing countries may find the 
costs too high. As more CubeSat constellations come on line in coming 
years, prices of their imagery will likely be reduced. 

The uncertainty of the PlanetScope data in terms of its geo-location 
accuracy has been reported as less than 10 m RMSE (Planet Team, 
2018). This uncertainty may affect the utility of the PlanetScope data 
when carrying out detailed time-series analyses (Houborg and McCabe, 
2018b). Implementing a co-registration practice to reduce the cross- 
scene co-registration error, similar to the co-registration technique 
proposed by Houborg and McCabe (2018b), is likely to increase the 
spatial correlation between consecutive scenes. 

This study used a simple linear interpolation to fill data gaps between 
the cloud free images for both PS and S2 images to create evenly spaced 
time series. Despite the simplicity of this approach, previous studies 
showed that linear interpolation is an effective way to interpolate be-
tween periods with valid data to assign values to the periods of missing 
satellite observations with considerable accuracy (Maynard et al., 2016; 
Pan et al., 2015; Sakamoto et al., 2010; Zhu et al., 2011). Importantly, 
this study implemented a fusion method to monitor field crops, which 
commonly do not change over a single day. This method can therefore 
be used for other disciplines that also have a slow temporal evolution, 
such as forestry, land cover classification (Gašparović et al., 2018), 
geomorphological and environmental studies, or to monitor urban 
development over time. Nevertheless, the utility of its implementation 
for monitoring rapidly changing environments or phenomena such as 
flash floods or fires, should be further investigated and evaluated 
compared to change detection techniques (e.g. Sadeh et al., 2019). 

As a prospect for future improvements and research directions, it is 
suggested that future studies should test the proposed fusion method 
over other crops types, explore the possibility of adding more sensors in 
the fusion process (e.g. Landsat) and examine the suitability of this 
fusion method to fuse other sensor data (other than S2 and PS). Although 
this study attempted to generate high resolution LAI, this method can 
potentially be useful to produce high spatio-temporal time series of 
Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), 
Fraction of vegetation cover (FCOVER), Chlorophyll content in the leaf 
(Cab) and Canopy Water Content (CWC). Furthermore, future studies 
should explore the suitability of the proposed fusion method for 
improving the spatial and temporal data obtained from sensors operated 
in the shortwave infrared (SWIR) and the thermal wavelengths, such as 
those on-board Landsat and S2. 

5. Conclusion 

With the increasing number of CubeSat constellations expected to 
become operational in the coming years, a new era of Earth observing 
satellite-based applications has begun. This paper presents the first study 
to fuse time series imagery sourced from Sentinel-2 (S2) and Planets’ 
PlanetScope (PS) CubeSat constellation. The fusion method proposed in 
this study enabled S2-consistent, cloud free, surface reflectance RGB- 
NIR images and crop Green LAI to be generated at a 3 m resolution. 
Overall, the results from the study demonstrated that the new fused 
time-series data combined the spatial, temporal and spectral advantages 
of both sensors, allowing wheat Green LAI to be monitored on a daily 
basis with an RMSE of 1.37 and R2 of 0.94 in wheat. 

Furthermore, this study proposed a correction method to compensate 
the underestimations in high LAI values (greater than 3) between the 
remotely sensed LAI estimations and the in-situ measurements. With the 
implementation of the correction method, the accuracy of the Green LAI 
estimations improved by up to 47% (RMSE = 0.35–0.63). 

Although tested to fuse S2 and PS data for LAI estimations, this new 
time series fusion method can be used to fuse other sources of imagery 
with different spectral, spatial and temporal resolutions. Furthermore, it 
may be used to estimate indices or parameters other than LAI. The 
proposed method is not limited to a specific number of bands, wave-
lengths or images, and can integrate numerous sources of imagery. This 
new time series fusion method can be used for continuous daily high- 
resolution monitoring of crops over large scales, and can potentially 
be used for a range of new precision agriculture applications. Such time- 
series are critical for crop health and growth status monitoring, and will 
improve the effectiveness of farming practices such as water manage-
ment and fertilization, as well as improve yield forecasts. 
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