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Abstract: Airborne remote sensing provides a viable option for high resolution mapping of near-
surface soil moisture that allows larger areas to be covered in greater spatial and temporal detail than 
has hereto been possible from traditional ground based techniques.  However, the current retrieval 
algorithms require information on near-surface soil temperature and vegetation water content in order 
to estimate the soil moisture from well calibrated horizontally polarised passive microwave data.  This 
paper presents a methodology for retrieving this ancillary data, through relationships with other remote 
sensing data.  Near-surface soil temperature is estimated from land cover specific relationships with 
thermal infrared data, and vegetation water content is estimated from land cover specific relationships 
with near- and shortwave-infrared data.  The methodology is tested with data from the National 
Airborne Field Experiment (NAFE) conducted in the Goulburn River catchment in New South Wales 
Australia, during November 2005.  This intensive month-long field campaign involved daily airborne 
flights with a Polarimetric L-band Multibeam Radiometer (PLMR) and thermal imager flown onboard a 
small environmental aircraft at altitudes ranging from 150m to 3000m AGL, yielding passive 
microwave data at resolutions from 62.5m across entire farms to 1km across entire regions.  This 
study presents a preliminary analysis of the PLMR derived soil moisture product at 250m resolution 
across a 2000ha farm.  This is the first airborne remote sensing study to both provide such high 
resolution soil moisture data and to take this multi-sensor approach to soil moisture retrieval. The 
remotely sensed soil moisture data is compared against ground near-surface soil moisture 
measurements taken at resolutions ranging from 250m to 500m across the same farm on the same 
days.  These preliminary results indicate a good agreement of the retrieved and measured soil 
moisture spatial distribution, with an overall absolute retrieval error of around 6% v/v.  
 
Keywords: Passive microwave, high resolution, soil moisture, remote sensing, airborne 
 
 
1. INTRODUCTION 
 
A new airborne system for environmental 
sensing has provided the capacity to 
economically map near-surface soil moisture at 
resolutions as high as 50m across large areas. 
Near-surface soil moisture at medium to high 
resolution is important information for 
agricultural management such as irrigation 
planning and crop productivity forecasting.  
Using remote sensing systems, crucial 
limitations of traditional in-situ soil moisture 
measurements are overcome by providing 
better spatial information.  This paper presents 
some first results from such a soil moisture 
mapping system, and is demonstrated using 
ground and airborne data collected during the 
National Airborne Field Experiment (NAFE’05), 
conducted in New South Wales, Australia in 
November 2005.  The airborne component of 
the campaign made use of a small 
environmental aircraft equipped with passive 
microwave, infrared and visible sensors to map 

the study area.  Ground measurements 
included near-surface soil moisture, as well as 
ancillary data such as vegetation water content, 
land cover information and soil temperature.  
This study has mapped the top 5cm soil 
moisture at 250m resolution using this new 
airborne system, and evaluated the results with 
ground measurements across a 2000ha farm. 
 
Brightness temperature measurements by the 
airborne Polarametric L-band Multibeam 
Radiometer (PLMR), together with ancillary 
information on soil temperature and vegetation 
water content, represent the input required for 
soil moisture retrieval.  A significant part of this 
paper deals with establishing a methodology for 
estimating the soil temperature and vegetation 
water content information required.  Ground-
based thermal infrared radiometers were used 
to develop relationships between skin and top 
5cm soil temperature, which are subsequently 
used to map the spatial variation in soil 
temperature from aircraft thermal imager 
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observations.  Likewise, relationships for 
estimating vegetation water content have been 
developed from ground measurements of 
vegetation water content, and visible, near-
infrared (NIR) and short-wave infrared (SWIR) 
reflectance’s.  The Moderate Resolution 
Imaging Spectro-radiometer (MODIS) on Aqua 
was subsequently used to map spatial variation 
in vegetation water content, using vegetation 
type dependent relationships with a remotely 
sensed vegetation index. 
 
Using this approach, maps of soil moisture, 
together with soil temperature and vegetation 
water content, have been produced.  The 
retrieved soil moisture is compared to the 
ground measurements for coherence in both 
spatial and temporal variability.  A very good 
agreement was found between the retrieved 
and measured soil moisture, particularly 
considering the preliminary nature of this study, 
with no systematic over- or under-estimation.  
Therefore the results are encouraging towards 
further use of this airborne system for soil 
moisture mapping studies. 
 
2. SOIL MOISTURE 
 
The theory behind microwave remote sensing 
of soil moisture is based on the large contrast 
between the dielectric properties of liquid water 
and dry soil.  In this study, soil moisture is 
retrieved using the brightness temperature (Tb) 
equation of Ulaby et al. (1986), which treats the 
surface as a two-layer incoherent medium by 
 

( ) ( )( ) ( )1 1 1 1b veg veg veg veg soilT e T e Tγ γ α γ⎡ ⎤= + − − + +⎣ ⎦

     (1) 
 
where e is the surface emissivity calculated by 
the Fresnel equations as a function of the 
dielectric constant and sensor look angle, 
adjusted for surface roughness (Choudbury et 
al., 1979), γveg is the transmissivity of the 
vegetation layer, which is dependant on the 
vegetation opacity, α is the single scattering 
albedo which can be assumed as zero for L-
band (Jackson and Schmugge, 1991), Tveg is 
the vegetation skin temperature and Tsoil is the 
effective soil temperature.  In this study, Tveg is 
assumed to be equivalent to Tsoil, which is 
interpreted as the temperature of the top 5cm of 
soil, and estimated from thermal infrared 
observation of the ground surface.  
 
3. SOIL TEMPERATURE 
 
A relationship between near-surface soil 
temperature (Tsoil) and thermal infrared 

observations (TTIR) was developed from ground 
data collected during the NAFE’05 campaign.  
Ground TTIR data were collected by four tower 
mounted TIR radiometers at sites with different 
vegetation cover (bare soil, native grasses, 
lucerne and wheat).  Additionally, duplicate soil 
temperature sensors were installed at three 
different depths (1, 2.5 and 4cm) for each site, 
which provided Tsoil.  This relationship was 
subsequently applied to thermal infrared data 
collected by the aircraft, in order to obtain soil 
temperature estimates across the study area at 
the same time as passive microwave 
observations. 
 
The top 5cm soil temperature was estimated as 
a weighted average of the measured 
temperature data, based on the thickness of the 
layer represented by the data.  Subsequently it 
was found that the 2.5cm measurement was a 
good approximation to the top 5cm soil 
temperature, and was used to represent Tsoil in 
this analysis. 
 
While the relationship between Tsoil and TTIR is 
influenced by soil type, vegetation coverage 
and soil moisture, the primary influencing factor 
was found to be the time of day.  Consequently, 
a single linear empirical relationship was 
developed for the campaign period (Figure 1), 
with slope and offset depending on the aircraft 
observing time 

Tsoil = slope(t) x TTIR + offset(t). (2) 

This relationship has been applied to the 
infrared temperature detected by the airborne 
thermal imager to obtain maps of soil 
temperature for the entire study area (see 
Figure 3). Table 1 contains the coefficients 
associated with the plots in Figure 1. 
 
In order to achieve a 4% v/v accuracy in soil 
moisture retrieval (the goal for the future SMOS 
mission), soil temperature must be estimated 
with an error lower then 4 Kelvin (very dry soil) 
and 7 Kelvin (very wet soil).  Analysis of the 
regression equations proposed here for soil 
temperature estimation suggests an error in 
derived soil temperature of less than 3K, which 
is well below the required accuracy. 
 

Table 1. Slope and offset coefficients used by 
equation (2) to estimate soil temperature from 
TIR data as a function of time. 
Time Slope Offset 
7am 0.496 10.22 
10am 0.372 13.22 
1pm 0.452 14.12 
4pm 0.636 10.13 



30th Hydrology and Water Resources Symposium 
4 - 7 December 2006 

Launceston, TAS 

4. VEGETATION EFFECT 
 
The vegetation layer absorbs and scatters the 
microwave radiation emitted by the ground 
surface, as well as being a source of microwave 
radiation itself.  The vegetation effect is 
therefore an important factor to be considered 
in passive microwave soil moisture retrieval, 
and is usually quantified through a parameter 
called vegetation optical depth or vegetation 
opacity, τ. The transmissivity of the vegetation 
layer depends on the vegetation opacity, 
according to 
 

[ ]exp secvegγ τ ϑ= − . (3) 
 

The value of τ depends on the vegetation type, 
the vegetation water content (VWC) and the 
wavelength of the radiation.  The model used in 
this study is from a previously developed 
relationship between τ and VWC of the form  
τ = b*VWC (Jackson and Schmugge, 1991), 
where b is an experimentally derived parameter 
dependent on the vegetation type and the 
wavelength. Estimates of VWC and 
observations of vegetation type are therefore 

required in order to apply this model to the soil 
moisture retrieval algorithm.  This was achieved 
by building relationships between ground 
measured VWC and reflectance’s in the visible, 
NIR (near-infrared) and SWIR (short-wave 
infrared) bands, and subsequently upscaling 
the VWC to the whole study area using satellite 
imagery acquired using the same bands. 
 
4.1 Vegetation Indices 
 
A vegetation index that can provide estimates 
of VWC is typically a ratio between the 
difference and the sum of radiances in two 
different bands: a reference wavelength where 
the water absorption coefficient is low and a 
measurement wavelength where water 
absorption is moderate or high and the 
penetration into the canopy is maximised.  The 
most common vegetation index is the 
Normalised Difference Vegetation Index 
(NDVI), based on the NIR and red bands.  
However, several studies have indicated that 
NDVI has a reduced sensitivity to changes in 
VWC in the case of dense vegetation coverage.  
In order to capture the wide range of canopy 
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Figure 1. Examples of the linear regression between soil temperature and thermal infrared 

measurements at four different hours of the day.  The relationships are based on data collected for 
four different land cover types. 
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conditions present at the Goulburn study area, 
an additional index was investigated, the 
Normalized Difference Water Index (NDWI), 
based on the water absorption dominated 
SWIR bands which are more sensitive to VWC 
changes (Jackson et al., 2004) 
 

NIR SWIRNDWI
NIR SWIR

−
=

+
. (4) 

In order to develop relationships between 
MODIS-based vegetation indices and VWC, 
and to assess the performance of these 
relationships, ground VWC data collected 
during NAFE’05 and MODIS daily reflectance 
(bands 1-7, 500m resolution) were used.  The 
VWC data was obtained by weighing vegetation 
samples before and after drying for seven days 
in an oven at 40°C, physically defined as the 
mass of water per ground unit area (kg/m²). 
Both the NDWI indices used by Jackson et al. 
(2004), NDWI1640 (using SWIR 1640nm) and  
NDWI2130 (SWIR 2130nm), have been 
evaluated from daily MODIS 500m reflectance 
data in bands 6 and 7, to find a relationship 
between VWC and a vegetation index that is 
representative of a wide range of canopy 
conditions (Figure 2). It was found that 
NDWI1640 gave the best relationship for 
estimating crop (wheat and barley) VWC 
(R²=0.79, RMSE=0.39kg/m²)  
 

VWC=13.2x(NDWI1640)2 + 1.62xNDWI1640, (5) 
 
while NDWI2130 gave the best relationship for 
estimating native vegetation (R²=0.90, 
RMSE=0.02kg/m²) 
 

VWC=0.78xNDWI2130 +0.01. (6) 
 
4.2 Land Cover 
 
To estimate VWC across the study area, a map 
of the land cover was required to distinguish 
between areas of crop and native vegetation.  A 
supervised land cover classification was 
performed on a Landsat image using 
information about vegetation type collected 
during the field campaign, in order to derive this 
map.  The resulting classes include urban, crop 
and native vegetation. 
 
4.3 VWC Estimates 
 
Using daily MODIS reflectance data and the 
land cover classification, VWC was estimated at 
500m spatial resolution across the study area 
for cloud-free days, applying the relationships 
given in equations (5) and (6) for crop and 
native grass respectively (see Figure 3). 
 

5. SOIL MOISTURE ESTIMATION 
 
While the NAFE’05 data set includes flights 
across an entire 40km x 40km area at 1km, and 
a total of 8 farms at 62.5m, 250m, 500m, and 
1km resolutions, only results for the Midlothian 
farm at 250m and 500m spatial resolution are 
presented here.  The algorithm developed 
processes input data in the form of grids, where 
each grid cell corresponds to the value of the 
input variable for a location in space. These 
grids correspond to raster representations of 
the variable spatial distribution.  
 
As the three input data came from different 
sensors, pre-processing was necessary to 
provide the data on a consistent grid 
specification. Therefore the brightness 
temperature, vegetation water content and soil 
temperature data were georeferenced in the 
same coordinate system (Universal Transverse 
Mercator, UTM) and interpolated to the same 
spatial resolution and grid orientation. 
 
Two regular grids (250m and 500m) covering 
the Midlothian farm were created as reference 
grids for all the input data, corresponding with 
two of the PLMR brightness temperature 
resolutions. Soil temperature data were 
aggregated to the appropriate resolution, and 
500m VWC data applied directly at 500m and 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Vegetation water content as function 

of MODIS derived NDWI.  The symbols 
represent individual ground data while the 

continuous lines are the fitted relationships. 
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nested 250m resolutions.  Soil moisture 
retrieval was then estimated from equation (1); 
see Figure 3. 
 
The soil moisture retrieval performance was 
evaluated by making comparison with the 
ground data collected during the NAFE’05 
campaign.  This ground data includes soil 
moisture measurements across parts of the 
Midlothian farm on the four dates that aircraft 
data were processed and continuous 
measurement of rainfall and soil moisture at a 
permanent recording station on the same farm 
(Figure 4). 
 
6. RESULTS  
 
The absolute error was calculated in each pixel 
containing both ground observations and 
retrieved soil moisture.  Ground sampling was 
performed at the Midlothian farm once a week 
during the month-long field campaign.  Mean 
absolute error (MAE) and error variance are 
summarised for each of the four days and two 

resolutions in Table 2.  
 
A satisfactory error in soil moisture estimation is 
considered as 4% v/v; the target for the future 
SMOS mission.  This aim was achieved on 
November 23 when the soil moisture variation 
was low and the soil moisture content was dry, 
with both resolutions having a MAE of about  
3% v/v.  In all the other cases the MAE was 
lower than 9% v/v, with an average MAE of 
5.7% v/v for the 250m resolution and 6.8% v/v 
for the 500m resolution.  While these are 
somewhat larger than the target accuracy, one 
must remember that a single point 
measurement is being compared with an areal 
average, and these point measurements may 
not always be representative of a larger area.  
Moreover, these are preliminary results that are 
relying upon a preliminary calibration of the 
point measurement device. 
 
It was also found that there was no systematic 
over- or under-estimation for three out of four 
days of data processed.  Only on November 16 
was there evidence of an underestimation in the 
value of soil moisture.  This is likely to be due to 
the drying process the soil was experiencing on 
that day, as a result of earlier rainfall.  
 
The temporal trend of the soil moisture variation 
during the month of the campaign was well 
predicted by the model, since there is 
consistency between the retrieved soil 
moisture, ground measured soil moisture, and 
rainfall observations (Figure 4).  The whole 
range of conditions for soil moisture has been 
successfully retrieved, from the first week of the 
campaign when the soil water content was 
close to saturation, through to the last week of 

Table 2. Mean absolute error (MAE) and 
variance of the error (% v/v) across Midlothian 
farm for the two resolutions and four dates. 

 MAE Error Variance 

 250m 500m 250m 500m 
2-Nov 5.9 6.3 0.6 0.6 
11-Nov 5.1 6.6 0.4 0.6 
16-Nov 7.9 9.3 0.6 0.5 
23-Nov 3.1 2.7 0.2 0.0 
Average 5.7 6.8 0.4 0.4 

2nd November       
Figure 3. From left to right, maps of derived VWC from 500m MODIS data and a land cover 
classification, derived soil temperature from aircraft measurements of thermal infrared and 

subsequently processed to 500m resolution, and retrieved soil moisture at 250m resolution. 
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the campaign when soil moisture was close to 
the residual moisture content across the entire 
farm. 
 
7.  CONLUSIONS 
 
The results from this preliminary study are 
encouraging.  Consequently the methodology 
presented here will be refined and applied to 
further data sets of NAFE for ongoing 
improvement and verification.  An ability to 
efficiently and economically map soil moisture 
content across entire farms and/or regions at 
resolutions as high as 50m will be a powerful 
tool for many environmental applications. 
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Figure 4. Comparison of continuous soil moisture measurement at one location on the Midlothian farm, 
with spatial (min/mean/max) soil moisture from ground measurements and estimates from concurrent 

aircraft observations.  Also shown is daily rainfall observed at the monitoring station. 


