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ABSTRACT: The task of assessing similarity between data sets is common in hydrological modelling. 
While this has been widely researched for temporal data sets, the similarity between spatial patterns 
has been largely ignored. This has been due to a lack of spatial pattern data. Today there is 
widespread use of distributed hydrological models and increasing availability of observed spatial 
patterns. These observed spatial patterns are useful for model calibration and optimisation, though at 
present there is limited use of the spatial information contained in them, other than through visual 
comparison. This is mostly due to a lack of understanding of methods to make optimal use of this 
information-rich data. The work in this paper investigates quantitative measures for judging the 
similarity between observed and simulated spatial patterns, with a particular emphasis on local 
similarity techniques. Three methods — fuzzy comparison, importance maps and image segmentation 
— are introduced, with a detailed demonstration using fuzzy comparison. Fuzzy comparison allows 
users to specify their tolerance for errors in value and location when comparing spatial patterns. The 
different measures presented here can be used to assess many aspects of similarity, which is 
important for automated model calibration and/or evaluation.  

INTRODUCTION 

In hydrological modelling, assessing the 
similarity between data sets is an everyday task, 
regardless of whether the data is temporal or 
spatial. Many methods exist for doing this, but 
most were not developed specifically for, or 
applied to, hydrological data sets. As such, it is 
necessary to understand the methods, their 
application, and what their resulting measures 
actually represent.  

Research into similarity measures for comparing 
temporal data has made some progress in 
hydrological modelling. Legates and McCabe 
(1999) provide an evaluation of many methods 
used for assessing similarity between temporal 
data sets. Some methods are sensitive to 
matching extreme values, while others provide a 

test of fit but ignore absolute differences. It is 
concluded that relative, absolute, local and 
global measures should all be used when 
assessing the similarity between data sets. 
Additionally, the use of specialised methods for 
particular types of data can provide more 
informative similarity measures. Boyle et al. 
(2000) present a method for temporal data in 
which the hydrograph is divided into ‘process-
related’ components. Each component is then 
compared, providing a measure of similarity that 
can be directly related to the quality of process 
representation in the model. This requires prior 
knowledge about the phenomenon being 
compared, which is non-trivial for spatial data 
sets (herein referred to as spatial patterns). 
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There are many methods available for 
assessing similarity between spatial patterns 
data, but few have been applied in hydrological 
modelling. Together, these global and local 
methods can describe the similarity between the 
values in the spatial patterns. But as with many 
of the temporal measures, they ignore the 
specific arrangement of the values (especially 
the global methods). As a result, most 
hydrologists rely on visual comparison for 
assessing similarity (Grayson et al. 2002). 
Visual comparison can be thought of as a 
specialised method, as it incorporates 
knowledge about the hydrological phenomenon 
and other ancillary information. However, its 
weaknesses are that it is neither automated, 
objective, repeatable nor quantitative — all 
things that are important when assessing 
similarity between many data sets. This 
research aims to address some of these 
weaknesses by emulating parts of the visual 
comparison process computationally. There is 
no expectation that a computer algorithm will be 
able to emulate the human brain. However, the 
steps undertaken during visual comparison 
suggest many new avenues to pursue for 
developing specialised methods for assessing 
similarity in hydrological comparisons.  

This paper discusses the background to 
similarity assessment for spatial patterns and 
describes three different methods for assessing 
local similarity, including an example of their 
uses. A detailed demonstration of using fuzzy 
comparison is then given, using observed and 
simulated spatial patterns of soil moisture.  

BACKGROUND 

A review of the literature on computer vision, 
image processing and pattern recognition has 
identified the major processes undertaken 
during visual comparison and methods for their 
emulation (Wealands et al. submitted). A visual 
comparison involves both global and local 
similarity assessment (Hagen 2003, Hay et al. 
2003). During local comparison, the image is 
viewed as a set of homogeneous regions, rather 
than individual pixels (Hay et al. 2003). The 
visual comparison also focuses on particular 
features or parts of the spatial pattern, rather 
than treating every location equally (Tompa et 
al. 2000). During this process, observations 
such as the similarity of shape, location and 
intensity are noted. Finally, the observed 
similarities and differences observed are 
explained and/or interpreted using extensive 

background knowledge (Grayson et al. 2002). 
Thus, the procedure used during visual 
comparison can be described as ‘global 
similarity assessment, followed by local 
similarity assessment of regions in the spatial 
pattern using various measures, with a tolerance 
for minor differences, and additional focus on 
more important parts of the spatial pattern’.  

Global methods for assessing similarity of 
spatial patterns are plentiful (see Scheibe 1993). 
Basic statistics, geostatistics and landscape 
indices can all characterise certain features of 
the spatial pattern. These numerical summaries 
can then be compared to measure the similarity 
between spatial patterns.  

Spatial patterns are usually grid-based 
representations of an area, comprising a 
number of cells. Each cell has a location and a 
value. Some spatial patterns, such as 
simulations from a contour-based model, are 
made up of regions rather than cells, but they 
can be readily converted into a grid-based 
format. For local similarity methods, it is usual to 
examine the similarity for every cell in the spatial 
pattern. The most common method used is root 
mean squared error (RMSE), which provides a 
summary of the squared residuals (differences 
between the similarly located pixel values in the 
two spatial patterns). Local similarity methods 
are far more sensitive to differences between 
the spatial patterns than global methods 
because they evaluate every location and use 
the spatial data in its complete form. At each 
cell, a measure is calculated (e.g. the squared 
residual) to represent the similarity and this is 
stored in an intermediate spatial pattern (e.g. of 
residuals). The intermediate spatial pattern is 
useful for closer inspection of the differences 
and is finally summarised to produce the 
resultant local similarity measure.  

More specialised methods involve additional 
processing both before and during the 
calculation of similarity measures. For example, 
preprocessing can involve smoothing or 
aggregation to change the scale of the observed 
or simulated spatial patterns to account for such 
things as measurement error, mismatches in 
scale and so on. These adjusted spatial patterns 
are then used for computing the similarity 
measure. A problem with these cell-by-cell 
comparisons is that minor errors in spatial 
location can severely degrade correlations. 
Alternatively, each location can be compared 
against neighbouring locations in the other 
spatial pattern, with the most similar measure 
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from the whole neighbourhood used to 
represent the similarity for that location. Both 
these examples illustrate how a minor 
modification can alter a standard method, thus 
making it more specialised. 

LOCAL COMPARISON METHODS 

The aim of local comparison methods is to 
emulate the major features of detailed visual 
comparison, so that these can be quantified and 
automated. Three methods used to produce 
local similarity measures are i) fuzzy 
comparison, ii) importance maps and iii) image 
segmentation (Baatz & Schäpe 2000, Tompa et 
al. 2000, Hagen 2003). 

Fuzzy comparison is a method used for 
tolerating shifts and differences during the 
calculation of the similarity measure. This allows 
the user to specify weights for locational 
matching (i.e. what amount of displacement is 
acceptable) and value matching (i.e. what 
amount of error is considered acceptable). The 
method processes each cell, computing a 
similarity value between the respective location 
and its neighbouring locations in the second 
spatial pattern (Hagen 2003, Wealands et al. 
submitted). These values reflect the level of 
similarity when considering the specified 
weights, with 0 denoting values that are not 
similar and 1 denoting identical values and 
locations. For each cell, the final similarity is 
computed as the average of a two-way 
comparison. More details are given using a 
detailed example. 

Figure 1 i) shows two different sets of residual 
and location weights that have been used to 
calculate the fuzzy similarity between observed 
and simulated soil moisture data. The more 
tolerant residual weights (b) produce a higher 
overall similarity value than the more limiting 
weights (a). When multiple sets of observed and 
simulated spatial patterns are compared, this 
method can help reveal similar spatial patterns 
that are not detected by standard local similarity 
methods due to shifts or minor differences.  

Weighting spatial patterns before computing 
similarity measures is a way of focusing on the 
important areas. Visual comparison does this 
automatically as a result of both visual cues 
(e.g. bright spots) and background knowledge 
(e.g. focusing only on areas the user knows are 
gullies). While there is literature on what draws 
visual attention in an image, the findings are 
often related to the type of image (e.g. in an 

image of a human face, viewers are drawn to 
the eyes). However, it has been recognised that 
features occurring infrequently in images (e.g. 
extreme values) are of high perceptual 
importance, regardless of the context (Tompa et 
al. 2000). This can be used to produce 
perceptually weighted spatial patterns, in which 
the infrequent values are given higher weights 
than those that are common. Due to the 
weightings, calculation of the standard RMSE 
measure will lead to a larger residual where the 
infrequent values do not match (see Wealands 
et al. 2004 for examples). Weighting can also be 
applied to limit the areas in which the similarity 
measure is computed. If the user is only 
interested in the similarity of certain areas (e.g. 
north facing slopes), then a weighting that either 
enhances or separates these areas will focus 
the meaning of the similarity measure 
accordingly.  

Figure 1ii) shows the differences between 
standard RMSE calculations when using 
different slope weights to focus the comparison. 
By using the weights to limit the influence of 
slopes greater than 10 degrees (a), the similarity 
measure is focused more on similarity in flatter 
areas. If the weights exclude the steeper areas 
entirely (b), then a measure that is only related 
to flatter gully areas is produced. 

Segmentation is the process of breaking up an 
image into regions using a set of rules. The 
simplest approach to segmentation is 
thresholding, where a value is chosen to 
separate an image into two or more regions. 
During visual comparison, spatial patterns are 
viewed as regions rather than pixels (Hay et al. 
2003), with the regions detected at varying 
scales. Emulating this computationally is a 
difficult task.  

Using a multiresolution segmentation technique 
from image processing (Baatz & Schäpe 2000), 
the spatial patterns of soil moisture have been 
segmented into homogeneous regions in Figure 
1 iii). Using the mean values for each region, an 
RMSE measure has been calculated between 
the segmented spatial patterns. This value is 
less than the RMSE calculated between the 
original spatial patterns (shown in Figure 1 ii)) 
due to the removal of noise via the averaging 
within regions. This method seeks to emulate 
the region detection process that is done 
visually, by simplifying the spatial pattern prior to 
comparison. It may be particularly useful for 
detecting similarity between noisy data sets, in 
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which the noise precludes the use of standard 
methods like RMSE. 

FUZZY COMPARISON 

Fuzzy comparison has been applied to the task 
of comparing spatial patterns to produce a 
measure that tolerates errors in value and 
location. The user can specify the tolerances as 
fuzzy membership functions, which relate the 
error amount to a level of similarity (see Power 
et al. 2001). By then combining the various 
aspects of similarity (e.g. similarity of location, 
similarity of value), an intermediate fuzzy 
similarity map is produced. This can be used to 
visually interpret the spatial arrangement of 

similarity, but is usually reduced down to the 
average similarity to summarise the entire 
spatial pattern.  

When comparing spatial patterns from 
hydrological models, we are interested in 
tolerating some error in the values and also in 
the location of the values. If the process 
understanding or model parameterisation are 
wrong, this can lead to shifted values (e.g. due 
to drainage being too rapid). The situation 
detailed in this paper applies to continuous 
value spatial patterns. In the past these methods 
have been applied to categorical data (Hagen 
2003, Güntner et al. 2004).  

 

Figure 1. Example illustrating three specialised methods for assessing local similarity. The methods aim 
to emulate some aspects of visual comparison, including i) tolerance for differences in values and 

locations; ii) focus on certain parts of the spatial pattern more than others; and iii) comparison of regions 
rather than pixels.
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Tolerance for value differences 

For continuous data, a different approach for 
specifying the fuzzy membership functions is 
required compared to those used for categorical 
data. One possible method is to categorise the 
continuous data, but this removes the variability 
in the data and requires decisions to be made 
about category numbers and bounds. Instead, 
an approach was developed in which the user 
specifies the ‘allowable error’ and the ‘error 
limit’. The allowable error is the amount of error 
between values that will be ignored (i.e. the 
value will be judged to be identical). The error 
limit is the amount of error at which values are 
judged to be completely different. In between 
these values, a linear decay is used to 
determine the membership value for similarity 
(see Figure 1 i)). For example, if the allowable 
error in rainfall was 1mm, and the limit was 
3mm, then values that differed by 2mm would 
have similarity of 0.5 (within range 0 to 1). 
These values can usually be derived from 
analysis of measurement techniques or model 
expectations.  

Tolerance for locational differences 

As with errors in value, errors in location can be 
specified using a fuzzy membership function 
(except that the function is two-dimensional). 
The approach used here produces a window 
around the processing cell that contains 
membership values for each cell around it (out 
to a specified distance). These values reflect 
how similar the location of other cells is to the 
central cell. This is done with a decay function 
(e.g. linear, exponential), starting at a 
membership of 1 for the central cell and 
decaying as distance increases. Alternatively, 
the user can choose the membership values 
subjectively, as done in Figure 1 i). Here, the 
immediately neighbouring cells have 
membership 1 (i.e. they are considered as the 
same), while those two cells away have 
membership 0.7 (i.e. still similar, but not as 
much). Often in hydrology, the locational error 
tolerance would have an upper limit, as seen in 
Güntner et al. (2004) where the maximum shift 
tolerated was 5 cells (due to resampling the 
observed data from 10m to 50m resolution). 

Computing fuzzy similarity values 

At each cell where a value occurs in both the 
observed and simulated spatial pattern, the 
observed value is compared with the simulated 
value and its neighbours (those cells that have 
locational membership > 0). For each simulated 

value, the fuzzy similarity is computed by 
multiplying the locational membership by the 
value error membership. From all the fuzzy 
similarity values computed for the processing 
cell, the maximum similarity is kept. To do a 
complete comparison, we conduct this both 
ways and take the average maximum similarity 
(i.e. the observed value is compared against the 
window of simulated values, and the simulated 
value is compared against the window of 
observed values). This progresses until a 
similarity value is computed for every cell. The 
final similarity measure is the average similarity 
for all cells in the intermediate similarity map. 

Demonstration of fuzzy comparison 

A number of fuzzy comparisons have been 
undertaken using the method described here. 
The data used are spatial patterns of soil 
moisture that were observed and simulated as 
part of the Tarrawarra project (Western et al. 
1998). A sample of the observed and simulated 
spatial patterns from May 2, 1996 is shown in 
Figure 1. There are 10 different simulations 
used for comparison, as well as two diagnostic 
spatial patterns — one has relabeled every cell 
with the mean value of the observed spatial 
pattern, the other has all values of the observed 
spatial pattern shifted by 1 cell to the east.  

The fuzzy similarity values have been computed 
for six different sets of fuzzy tolerances. These 
tolerances are realistic for this data. There is 
approximately 2% V/V accepted as being 
measurement error, while 5% V/V is the 
maximum error desired between the 
observations and simulations. In terms of 
locational error, the correlation length of these 
spatial patterns is around 20m (Western et al. 
1998), so any related value should fall within 2 
cells (2 x 10m resolution). A RMSE measure is 
also provided for comparison of the fuzzy 
method against a standard method. The lower 
RMSE values and the higher fuzzy similarity 
values represent more similar spatial patterns. 

RESULTS 

Similarity of model simulations 

The measures that are computed in Table 1 
indicate the model simulations that have the 
most similar arrangement of values to the 
observed spatial pattern. Using only the RMSE 
(as is commonly done), model runs 2 and 3 are 
the most similar, while runs 4 and 7 are the least 
similar. These runs actually produce worse 
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results than the mean observed pattern, 
suggesting that they poorly simulate the 
observations. This can be verified visually using 
Figure 2.  

In all of the fuzzy measures computed, run 3 is 
the most similar. The RMSE indicates that the 
agreement between coincident pixel values 
sums to the lowest total error. As the tolerance 
for value differences increases (without 
locational tolerance), the similarity values also 
increase, but the relative ranking of the different 
simulations remains much the same. When 
there is no tolerance for locational error, there is 
simply a linear rescaling of the residuals.  

Introducing some tolerance for locational errors 
(i.e. the 1 and 2 cell fuzzy measures) permits 
close matches with neighbours to be included in 
the comparison. As a result, the overall similarity 
for spatial patterns with shifted cells improves 
more than those where shifts do not occur. This 
is where the fuzzy similarity measure starts to 
provide different information to the standard 
RMSE. As the tolerance for locational error is 
increased, different simulations emerge as being 
more similar to the observed. The results for 1 
and 2 cells, with 0% allowed and 2% limit, 
consistently identify the best three simulations 
as runs 3, 9 and 6. Each approach recommends 
the user investigate the similarity maps for runs 
3, 6 and 9 more closely before deciding which is 
most similar. From previous visual comparison 
of this same data, Western & Grayson (2000) 
decided that run 5 was best, although this 
considered multiple different simulation dates. 
The reader can experience the subjective nature 
of visual comparison by contrasting the 
quantitative results of Table 1 with the spatial 
patterns shown in Figure 2.  

Shifted spatial pattern 

To observe how fuzzy similarity responds to 
major locational errors, the observed spatial 
pattern had every value shifted by 1 cell. In the 
results, it is evident that as tolerance for shifts is 
permitted, the similarity increases dramatically. 
In practice, this kind of shifting may occur if 
there are georeferencing problems with either 
the observed or simulated data. More subtle 
shifts would happen when processes in a model 
are wrong (e.g. draining is too slow on a 
hillslope). These would produce less dramatic 
improvements in the overall similarity, as they 
only occur in a part of the whole spatial pattern. 
As such, limiting the error analysis to smaller or 

focused regions (as shown in Figure 1 ii)) can 
be useful to highlight these effects. 

DISCUSSION 

In the demonstration example used in this 
paper, there are only 10 different simulations, 
making it feasible to visually inspect each one 
and decide based on visual similarity. However, 
if many different parameterisations are used to 
produce many different simulations, then using a 
method such as fuzzy similarity allows the user 
to reveal the most similar spatial pattern under 
different tolerances, without subjective visual 
inspection of hundreds of spatial patterns. It is 
better to reduce the number of visual 
comparisons needed, so that they can be done 
carefully as a final step. 

The demonstration is of a method of fuzzy 
comparison, which tolerates errors in value and 
location. However, to fully use such a method to 
detect similarity, the concepts from the other 
methods need to be combined. For example, the 
spatial pattern can be broken into homogeneous 
units using image segmentation. These units 
can then be used to focus comparison on 
different parts of the spatial pattern. Similarly, 
importance maps (or weighting) can be used to 
control the influence of different parts of the 
spatial pattern in the overall similarity calculated. 
There are many ways to combine these 
relatively simple methods to test different 
hypotheses about similarity. Used together, they 
can provide specialised measures to assess 
particular aspects of similarity between spatial 
patterns. A comprehensive comparison of 
spatial patterns involves noting the various 
aspects of similarity that are important to the 
study of interest. From these, the user can then 
make their judgment about which simulations 
are the ‘most similar’. 

Quantitative comparison of spatial patterns for 
model testing and calibration is in its infancy. In 
this paper we have illustrated three automated 
methods that emulate key elements of visual 
comparison. These focus on the importance of 
particular parts of a spatial pattern and the 
tolerance of small differences in location or 
value. As with the more sophisticated methods 
in time series comparisons (e.g. Boyle et al. 
2000), user intervention is required to be explicit 
about what components of a pattern are critical. 
Nevertheless, the techniques enable rapid 
computation of summary similarity measures 
that enable a much richer quantitative 
comparison than has previously been possible.  
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Table 1. Fuzzy comparison of 12 simulated spatial patterns versus an observed spatial pattern of soil 
moisture for Tarrawarra on May 2, 1996. Results for six combinations of tolerances are shown. RMSE is 

computed to enable comparison of this method with a standard method. The best three results are shown 
in bold, while any results that are worse than the mean observed pattern are in italic. 

Location error 0 cells 0 cells 1 cell 1 cell 2 cells 2 cells 

Allowed error 0% V/V 2% V/V 0% V/V 2% V/V 0% V/V 2% V/V 

Limit of error 2% V/V 5% V/V 2% V/V 5% V/V 2% V/V 5% V/V 

RMSE 
(%V/V) 

Run 1 0.178 0.662 0.460 0.861 0.589 0.886 3.7 

Run 2 0.210 0.699 0.545 0.915 0.671 0.938 3.4 
Run 3 0.235 0.731 0.601 0.942 0.735 0.960 3.2 
Run 4 0.162 0.563 0.425 0.819 0.574 0.875 4.1 

Run 5 0.170 0.617 0.489 0.879 0.641 0.919 3.8 

Run 6 0.186 0.676 0.555 0.910 0.700 0.941 3.6 
Run 7 0.162 0.576 0.511 0.860 0.679 0.924 4.2 

Run 8 0.183 0.649 0.505 0.874 0.652 0.916 3.8 

Run 9 0.188 0.660 0.568 0.912 0.719 0.948 3.7 

Run 10 0.198 0.678 0.543 0.912 0.684 0.941 3.6 

Mean observed pattern 0.170 0.621 0.407 0.799 0.500 0.809 4.1 

Shifted observed pattern 0.322 0.766 0.973 0.990 0.980 0.992 3.1 

NOTE: All fuzzy comparison values are unitless and have the range from 0 to 1. 

 

Figure 2. The soil moisture spatial patterns used for the comparison results shown in Table 1. All spatial 
patterns are shown on the same colour range, from 26% V/V (dry) up to 52% V/V (wet). 
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