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Abstract

The coarse resolution soil moisture (SM) data from NASA SMAP mission have been

steadily produced with the expected performance since April 2015. These coarse res-

olution observations could be downscaled to fine resolution using fine scale observa-

tions of SM sensitive quantities from existing satellite sensors. For operational users

who need near-real-time (NRT) high resolution SM data, the downscaling approach

should be feasible for operational implementation, requiring limited ancillary informa-

tion and primarily depending on readily available satellite observations. Based on

these principles, nine potential candidate downscaling schemes were selected for

developing an optimal downscaling strategy. Using remotely sensed land surface

temperature (LST) and enhanced vegetation index (EVI) observations, the optimal

downscaling approach was tested for operational producing a NRT 1 km SM data

product from SMAP. Comprehensive assessments on the 1 km SM product were

conducted based on agreement statistics with in-situ SM measurements. Statistical

results show that the accuracy of the original coarse spatial resolution SMAP SM

product can be significantly improved by 8% by the downscaled 1 km SM. With

respect to the in-situ measurements, the 1 km SM mapping capability developed here

presents a clear advantage over the SMAP/Sentinel SM data product; and it also pro-

vides better data availability for users. This study suggests that a NRT 1 km SMAP

SM data product could be routinely generated from SMAP at the centre for Satellite

Applications and Research of NOAA NESDIS for operational users.
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1 | INTRODUCTION

Soil moisture (SM) plays a critical role in exchange of water, energy

and carbon between the land surface and the atmosphere (Yin

et al., 2014). It controls the SM-precipitation feedback at continental

scale and runoff-precipitation response at watershed scale. As a

result, SM observations are widely used in meteorology, hydrology

and climatology (Peng, Loew, Merlin, & Verhoest, 2017; Yin, Hain,

Zhan, Dong, & Ek, 2019; Yin, Zhan, Hain, Liu, & Anderson, 2018). The

development of ground-based SM measurement techniques provides

an opportunity to obtain SM estimates at different soil depths

(Robinson et al., 2008, Dobriyal et al., 2012, Vereecken et al., 2014)

with the in situ observations commonly considered as the “truth” to

validate satellite and model SM simulations against. However, such

ground measurements typically have sparse spatial distributions which

cannot represent SM patterns at even regional let alone global scale.

Microwave remote sensing has shown a unique capability for

quantitative estimating of SM dynamics at regional and global scales
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(Jackson & O'Neill, 1990; Jackson & Schmugge, 1989; Wang, ET

Engman, Mo, & Schmugge, 1987). C- and X-band SM data products

have been operationally produced since 2001, which include the

Advanced Scatterometer (Wagner et al., 2013), Advanced Microwave

Scanning Radiometer for Earth Observing System (AMSR-E) (Njoku,

Jackson, Lakshmi, Chan, & Nghiem, 2003), AMSR2 (JAXA, 2013) and

WindSat (Li et al., 2010). However, they suffer from the relatively

short observation wavelength. Because L-band microwave remote

sensing is sensitive to a deeper subsurface SM (0–5 cm) and relatively

insensitive to vegetation (Colliander et al., 2017), the Soil Moisture

and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP)

satellites have been developed (Entekhabi et al., 2010; Kerr

et al., 2010). Compared to SMOS, SMAP presents a more accurate

SM retrieval due to it can reduce impact by Radio Frequency Interfer-

ence (RFI) contamination and its better antenna design (Chan

et al., 2016). Passive L-band microwave remote sensing has also been

generally accepted to have reduced impacts from surface roughness

and the atmosphere (Kerr, 2007). Despite the observed brightness

temperature (Tb) having a more direct connection with the surface

SM in the L-band frequency regime, they suffer from having a moder-

ately coarse spatial resolution (Piles et al., 2011; Wu, Walker, Rüdiger,

Panciera, & Gao, 2017), due to field of view being inversely proportion

to the wavelength.

Radars, especially synthetic aperture radars (SARs), can provide

higher spatial resolution SM, although the sensitivity of active micro-

wave observations is more subject to surface roughness impact. How-

ever, it had been shown by several studies that there is a potential to

enhance the spatial resolution of the retrieved SM by merging the

coarse but accurate precision microwave retrieval with the noisy but

fine resolution radar observations. SMAP was thus launched in 2015

to address the scale issue by using 3 km resolution active microwave

measurements to downscale the 40 km resolution passive microwave

SM retrievals (Entekhabi et al., 2010). In preparation for the SMAP

mission, many approaches were proposed to explore the feasibility of

merging radar backscatter and radiometer Tb observations, such as

the Bayesian merging method (Zhan, Houser, Walker, & Crow, 2006),

Triangular method (Merlin, Chehbouni, Kerr, & Goodrich, 2006),

Change Detection of Radar Backscatter (Narayan, Lakshmi, &

Jackson, 2006), Deterministic Method (Merlin et al., 2008), and the

Combined Modelling and Remote Sensing method (Merlin,

Chehbouni, Kerr, Njoku, & Entekhabi, 2005). However, the reported

results only provide testable explanation and their representativeness

at the global and multiyear scales was not addressed (Sabaghy,

Walker, Renzillo, & Jackson, 2018; Zhan et al., 2006). After SMAP was

launched, the baseline and optional downscaling algorithms were offi-

cially implemented to produce fine resolution SM retrievals along with

assuming a near linear relationship between radar backscatter and

radiometer Tb data (Das et al., 2014; Entekhabi et al., 2014; Wu

et al., 2017). With the loss of SMAP's L-band radar from July 7, 2015,

the capability of SMAP's providing a 3 and 9 km resolution SM prod-

uct was lost (Yin & Zhan, 2018).

Optical and thermal infrared satellite SM sensing started in the

1970 with several approaches developed to exploit the relationships

between surface reflectance and SM (Carlson, Gillies, & Perry, 1994;

Liu et al., 2002). When SM is low, evaporative cooling may be low and

in turn results in higher land surface temperature (LST). A wetter land

surface generally helps plant growth and thus a higher vegetation

index value observed from optical/infrared satellite sensors. Unlike

microwave remote sensing, optical and thermal satellite sensors pro-

vide finer spatial resolution (Peng et al., 2017). To overcome the

coarse spatial scale limitation of the relatively accurate microwave

radiometer SM data, recent attempts to generate higher spatial reso-

lution L-band measurements using the fine scale vegetation index and

LST observations have been well documented (Table 1). However, the

addition of surface albedo does little to enhance downscaled SM esti-

mates (Knipper et al., 2017; Wu et al., 2017). Specifically, empirical

polynomial fitting or regression methods typically exploit the relation-

ships between L-band SM and optical/thermal observations (Table 1).

Given correlations between SM and geoformation data, topography is

also generally used as ancillary information within the downscaling

approaches (Peng et al., 2017). Long-term dense in situ SM observa-

tions allow training regression models to generate finer resolution SM

retrievals; however, operational application of these empirical polyno-

mial fitting methods is hampered by requirements of extensive in situ

SM observations (Abbaszadeh et al., 2019; Senanayake et al., 2019;

Zhao et al., 2018). Optimizing land surface model (LSM) variables to

provide fine-scale SM estimations for the overlapping coarse resolu-

tion pixels is also proposed to downscale L-band SM observations; yet

differences in climatology between remote sensing and LSM SM esti-

mates limit their applicability (Fang et al., 2018). The semi-physical

evaporation-based methods (Colliander et al., 2017; Mishra

et al., 2018) are possible to obtain disaggregated SM at finer resolu-

tion and have been proposed to operationally generate a SMOS dis-

aggregated SM product (Molero et al., 2016). Yet, the reasonable

performance of the evaporation-based fine scale SM in semi-arid

regions cannot mirror the good behaviour in wet areas. Based on the

Neural-network approach, using the monthly Normalized difference

vegetation index (NDVI) and topographic index, a 2.25 km SMAP SM

data product is reported, but it is unable to retrieve fine resolution

SM near coastal regions or for high vegetation covered areas

(Alemohammad et al., 2018). After the SMAP L-band radar stopped

operation, integration of L-band radiometer brightness temperature

(Tb) and C-band Sentinel-1A SAR backscatter observations was recog-

nized as a feasible approach to produce fine scale SMAP SM data

(Das et al., 2019; He et al., 2018; Li et al., 2018). However, few studies

have conducted inter-comparisons of performances at large scale

between C-band SAR- and optical/thermal observations-based down-

scaling fine resolution SM data. Table 1 also shows that ideally results

with low uncertainties were generally documented in semi-arid areas,

but the feasibility of implementing them for operational product gen-

eration is still unknown.

Current operational satellite SM data products are at a spatial res-

olution as coarse as 40 km (Yin et al., 2015; Yin, Zhan, Liu, &

Schull, 2019) at National Oceanic and Atmospheric Administration

(NOAA). However, operational applications such as numerical weather

and seasonal climate predictions, agricultural drought and flood

2 YIN ET AL.
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monitoring and wildfire risk assessment, require near real time (NRT)

finer resolution SM data. This study therefore proposes an operation-

ally feasible approach to providing a high resolution SMAP SM data

product at the centre for SaTellite Applications and Research (STAR)

of NOAA. Three downscaling algorithms were selected in this paper

due to their significance and representativeness and inter-compared

including evaluation against the SMAP/Sentinel 3 km product. An

operational pathway of the 1 km soil moisture product is also

described.

2 | DATASETS

2.1 | SMAP 25 km SM

The SMAP satellite was launched on January 31, 2015 to an altitude

of around 685 km and began to provide science data on April 1, 2015.

It was designed to provide the 2–3 day fine resolution SM required

for hydrology, climatology and meteorology by merging L-band radar

and radiometer data (Entekhabi et al., 2010). The SMAP mission was

targeted to measure top 5 cm surface SM with retrieval errors below

0.04 m3/m3, with the L-band radar and L-band radiometer sensors on

SMAP designed to penetrate vegetation with vegetation water con-

tent up to 5 kg/m2 (Entekhabi et al., 2010). With loss of the L-band

radar on July 7, 2015, however, the SMAP satellite lost its capability

to directly provide high resolution global soil moisture data products.

Fortunately, the SMAP L-band radiometer has been successfully and

continuously providing high quality coarse resolution Tb observations

(Yin, Zhan, et al., 2019) enabling the operational production of level-2

SM data products (Colliander et al., 2017; Reichle et al., 2017). The

L-Band radiometer on the SMAP satellite offers 40 km resolution Tb

observation with ±1.3 K radiometric uncertainty. Note that SMAP SM

observations were resampled to a regular 25 km × 25 km grid in this

paper. The SMAP v5.0 (SMAPV5) SM data used here were obtained

from National Snow and Ice Data Center.

2.2 | SMAP/sentinel 3 km SM product

After loss of the SMAP L-band radar, merging C-band radar and

L-band radiometer data was proposed to recover the capability of

producing fine resolution SM (Das et al., 2016). The orbit configura-

tion of Sentinel-1A is similar to that of SMAP, meaning that their

swaths overlap with minimal time difference. Consequently, it has

been recognized that the C-band SAR data from Sentinel-1A observa-

tions can be used as a substitute for the SMAP radar (Das

et al., 2019). Specifically, the SMAP/Sentinel (SPL2SMAP) product

combines the coarse resolution SMAP Tb with the 3 km C-band back-

scatter measurements from the Sentinel-1A SARs to provide 3 km SM

data (Das et al., 2019). It is important to note that the C-band radar

on Sentinel-1 is not a perfect replacement for SMAP's lost L-band

radar, but it is the only radar trailing SMAP closely enough to improve

the SMAP's radiometer measurements. The SPL2SMAP SM data from

NASA (National Aeronautics and Space Administration) Jet Propulsion

Laboratory (JPL) are used to conduct complementary evaluations on

the optimal downscaling strategic.

2.3 | VIIRS LST data product

The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument is a

primary sensor onboard the S-NPP satellite that was launched on

October 28, 2011. It is designed to provide operational observation

continuity with the Advanced Very High Resolution Radiometer

(AVHRR) and MODerate resolution Imaging Spectroradiometer

(MODIS). VIIRS provides 750-m LST observations at nadir during the

S-NPP satellite overpass time at 1:30 am/pm local time (Liu, Yu, Yu,

Göttsche, & Trigo, 2015). The VIIRS level 2 LST data product began

from January 19, 2012. The validation results demonstrated that the

VIIRS LST has a good agreement with ground LST measurements (Liu

et al., 2015; Liu, Yu, Yu, Wang, & Rao, 2019). The level 3 daily gridded

VIIRS LST data with 1 km spatial resolution has been locally generated

at NOAA-STAR since May 3, 2017. The operational level 3 VIIRS LST

will be operational in the near future. As the three selected downscal-

ing approaches require the LST, the 1 km VIIRS LST data were used in

this paper.

2.4 | Enhanced vegetation index

Compared to the NDVI, the enhanced vegetation index (EVI) was

developed to reduce the aerosol contaminations and canopy back-

ground brightness variations (Huete et al., 2002). Both the MYD13A2

V6 product from Aqua observations and MOD13A2 V6 product from

Terra measurements provide 16-day composites of the 1 km EVI

retrievals, which permit an eight-day phasing in the EVI production

through combining both data records. The EVI uses a MODIS-specific

compositing method that removes low quality pixels on the basis of

product quality assurance metrics. In this study, the gridded 8-day

1 km MODIS EVI data are those distributed by NASA. Compared to

the 90-day achieving period of VIIRS EVI in the NOAA, MODIS pro-

vides continuous and reliable long-term EVI data, which allow the sta-

tistical results in this paper to represent a longer analysis period. Note

that cross-sensor compatibilities of the EVI data between VIIRS and

MODIS indicate that their systematic differences are less than 2%

(Miura, Muratsuchi, & Vargas, 2018). It should thus be expected to

obtain similar results are obtained using VIIRS EVI as ancillary infor-

mation in future operation. The 1 km EVI data were employed here to

satisfy the requirements of the three selected downscaling methods.

2.5 | SCAN in situ observations

The US Department of Agriculture Soil Climate Analysis Network

(SCAN) provides hourly measurements with automatic devices mea-

suring the soil dielectric constant at depths of 5, 10, 20, 50 and

4 YIN ET AL.



100 cm where soil depth permits (Schaefer et al., 2007). The data sets

from each SCAN site were quality controlled by detecting problematic

observations. Specifically, SM measurements outside of the physically

possible range were excluded (Liu et al., 2011). The SM observations

under frozen conditions were also excluded on basis of SCAN soil

temperature measurements for the corresponding soil layer (Yin

et al., 2016; Yin, Zhan, et al., 2015). The quality controlled 5 cm SCAN

SM observations were then aggregated into daily averages. Station

SM records with data coverage below 70% (510 days) over the May

3, 2017–April 30, 2019 period were also excluded (Yin et al., 2015).

Finally, the SM observations from the 148 stations were used in this

study.

3 | METHODOLOGY

With the aim to operationally generate a NRT fine resolution SMAP

SM data product at the NOAA-STAR, the downscaling method should

include pure dependent on satellite measurements, have limited ancil-

lary information requirements, be computationally fast, and feasible to

implement as an automated routine. Based on the fine scale observa-

tions from the Suomi National Polar-orbiting Partnership (S-NPP),

three classical optical/thermal and microwave fusion approaches were

inter-compared, including (a) the triangular method (Carlson

et al., 1994; Petropoulos, Carlson, Wooster, & Islam, 2009), (b) the

vegetation temperature condition index (VTCI) method (Peng, Loew,

Zhang, Wang, & Niesel, 2016; Wan, Wang, & Li, 2004), and (c) soil

wetness index (SWI)-based UCLA method (Jiang & Islam, 2003; Kim &

Hogue, 2012). Utilizing EVI and different LST information, including

daytime, nighttime and day-time LST difference (DTR), nine downscal-

ing schemes were designed and tested to find out the optimal down-

scaling strategy.

3.1 | Triangle method

The temperature–vegetation TRIAngle (TRIA) treats limited water

availability at the “dry edge” and unlimited water access at the “wet

edge” (Sandholt et al., 2002). The LST is sensitive to SM over bare

soil areas, whereas the vegetation index has high sensitivity to SM

over vegetated regions (Carlson et al., 1994; Peng et al., 2017). As a

result, SM is parameterized based on a triangular distribution of

fine resolution LST and EVI. The regression relations can be

expressed as

SMAP= αEVI�X� + β ð1Þ

where SMAP is the gridded 25 km SMAP SM. Variables α and β are

the slope and intercept, respectively. While EVI� and X� are given by

EVI� =
1
mn

Xi= n
i=1

Xj=m
j=1

EVI� ð2Þ

X� =
1
mn

Xi= n
i=1

Xj=m
j=1

X� ð3Þ

where both m and n are 25 in this paper and EVI* and X* are defined

as (Kim & Hogue, 2012)

EVI� =
EVI−EVImin

EVImax−EVImin
ð4Þ

X� =
X−Xmin

Xmax−Xmin
ð5Þ

The subscripts max and min indicate the maximum and minimum

EVI or X over the study area, respectively. Based on the established

relationship, the 1 km SM (DSM) can be calculated by

DSM= αEVI×X + β ð6Þ

where the downscaling schemes are recognized as TRIA_DAY, TRI-

A_NIGHT and TRIA_DTR when the variable X represents day-time

LST, night-time LST and DTR, respectively.

3.2 | VTCI method

According to the temperature–vegetation Triangle, the increasing LST

is reflected at the “dry edge” due to low SM limits on evapotranspira-

tion which in turn to raise LST, whereas unlimited SM and maximum

evapotranspiration are formed at the “wet edge” (Sandholt et al.,

2002). The VTCI is thus calculated for each EVI interval (Peng

et al., 2017)

VTCI =
Xmax−X

Xmax−Xmin
ð7Þ

where the subscripts max and min indicate the maximum and mini-

mum X that have the same EVI value. Particularly, the VTCI_DAY,

VTCI_NIGHT and VTCI_DTR are downscaling schemes with the

corresponding X representing day-time LST, night-time LST and DTR,

respectively. The relationship between 1 km SM (DSM) and VTCI is

given by

DSM=VTCI×
SMAP

1
mn

Pi= n
i=1

Pj=m
j=1

VTCI

ð8Þ

3.3 | UCLA method

Based on the triangle interpretation of vegetation index and LST,

Jiang and Islam (2003) proposed a simple method to retrieve evapora-

tive fraction, which can also be used as a soil wetness index (SWI)

defined as (Kim & Hogue, 2012)

YIN ET AL. 5



SWI=1−
1−φEVIð ÞΔX

1−EVIð ÞΔXmax + EVIΔXe
ð9Þ

where Xe indicates the maximum X when the EVI value is roughly 1.0,

and ΔX, ΔXmax, ΔXe and φ are expressed as

ΔX =X−Xmin ð10Þ

ΔXmax =Xmax−Xmin ð11Þ

ΔXe =Xe−Xmin ð12Þ

φ=1−
ΔXe

ΔXmax
ð13Þ

The downscaling schemes are recognized as UCLA_DAY,

UCLA_NIGHT and UCLA_DTR when the X represents day-time LST,

night-time LST and DTR, respectively. The 1 km SMAP SM is then

derived by

DSM=SWI×
SMAP

1
mn

Pi= n
i=1

Pj=m
j=1

SWI

ð14Þ

3.4 | Performance measures

Based on the quality controlled SCAN SM observations (O), evaluation

metrics in this paper include correlation coefficient (r), root mean

square error (RMSE) and unbiased RMSE (ubRMSE), which can be

expressed as

rM,O =

Pi= n
i=1

Mi− �M
� �

Oi− �O
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPi= n
i=1

Mi− �M
� �2 Pi= n

i=1
Oi− �O
� �2s ð15Þ

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPi= n
i=1

Mi−Oið Þ2

n

vuuut
ð16Þ

ubRMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPi= n
i=1

Mi−Oið Þ2

n

vuuut
ð17Þ

where M is satellite SM and n is the sample size. Similarly, root mean

square deviation (RMSD) and r are also employed to assess the differ-

ences between SPL2SMAP (S) and the downscaled SM (D) retrievals

in this paper as

RMSD=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPi= n
i=1

Si−Dið Þ2

n

vuuut
ð18Þ

rS,D =

Pi= n
i=1

Si−�S
� �

Di− �D
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPi= n
i=1

Si−�S
� �2 Pi= n

i=1
Di−Dð Þ2

s ð19Þ

4 | VALIDATION OF DOWNSCALING
METHODS

Comprehensive assessments on advantages and disadvantages of the

above approaches were conducted based on agreement statistics with

the quality controlled SCAN SM measurements. With respect to the

SCAN observations, Figure 1 shows correlations coefficients (r) for

25 km SMAPV5 and l km UCLA_DTR SM data during the May 3, 2017

to April 30, 2019 period. Overall, the UCLA_DTR 1 km SM presents a

similar pattern with the original 25 km SMAP. Both SMAPV5 and

UCLA_DTR present a good agreement with in situ observations on the

CONUS domain except for few scattered stations in the Great Plaints

and northeastern area. With respect to the quality controlled in situ SM

measurements, the SMAPV5 exhibited stronger correlations (r > 0.70) at

41.5% SCAN sites, which increased slightly to 42.6% by the UCLA_DTR.

Figure 2 shows differences in correlation coefficients between

the SMAPV5 and 1 km SMAP SM estimations over the May 3, 2017–

April 30, 2019 period. Sites in blue colours indicate that the down-

scaled 1 km SMAP SM had a stronger agreement with SCAN mea-

surements, whereas in red colours mean that the SMAPV5 performed

better. Overall, both TRIA and VTCI methods presented modest per-

formance in comparison with the SMAPV5, while the situation was

F IGURE 1 Correlations coefficients (r) of the quality controlled
SCAN observations for (a) 25 km SMAP and (b) l km UCLA_DTR SM
during the May 3, 2017 to April 30, 2019 period
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markedly improved by the UCLA approach. Over the UCLA_DAY and

UCLA_NIGHT cases, the UCLA_DTR was more successful in respect-

ing the dynamic trends of the SCAN measurements. Specifically, rela-

tive to the SMAPV5 (r = 0.642), the CONUS domain-averaged

correlation coefficients were reduced by 0.06 (9.4% reduction versus

SMAPV5), 0.058 (9.0% reduction) and 0.046 (7.2% reduction) by the

VTCI_DAY, VTCI_NIGHT and VICI_DTR, respectively (Table 1). Simi-

larly, the TRIA method showed a humble behaviour with the CONUS

domain-averaged correlation coefficients spanning from 0.576 to

0.582. With benefits of day-time, night-time and diurnal VIIRS LST

information, the CONUS domain-averaged correlation coefficients for

the corresponding UCLA downscaling schemes were 0.640, 0.632 and

0.642, respectively. The UCLA_DTR showed the strongest consis-

tency with the SCAN observations in the nine downscaling schemes,

being also the only one that is comparable to the 25 km SMAPV5.

The original 25 km SMAP SM data product presented reasonable

uncertainties (RMSE ≤ 0.1m3/m3) in the mid-western CONUS, while

having a modest performance in the eastern area which is covered by

dense vegetation (Figure 3a).UCLA_DTR showed a relatively better

performance with respect to the quality controlled in situ observa-

tions (Figure 3b). Compared to SMAPV5, the 1 km SM on basis of

UCLA_DTR downscaling strategy exhibited lower RMSEs, not only in

F IGURE 2 Differences in correlation coefficients (r) between the original 25 km SMAP5 and the various downscaled 1 km SMAP soil
moisture estimations when evaluated against the quality controlled SCAN soil moisture during the May 3, 2017 to April 30, 2019 period. Sites in
blue (red) colour indicate the downscaled 1 km SMAP has stronger (weaker) consistency with the SCAN measurements

F IGURE 3 RMSE (m3/m3) of the quality controlled SCAN
observations for (a) 25 km SMAP and (b) l km UCLA_DTR SM during
the May 3, 2017 to April 30, 2019 period
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the sparsely vegetated west areas but also in the densely vegetated

Mississippi river region (Figure 4f). Statistical results demonstrate that

the original 25 km SMAP SM had a performance of RMSE ≤ 0.05 m3/

m3 at 22.3% of SCAN sites, while the UCLA_DTR archived this at

28.4% of sites (6.1% increase versus SMAPV5). Meanwhile, the

SMAPV5 SM showed reasonable performance (RMSE ≤ 0.1 m3/m3) at

74.3% SCAN sites, which can be increased to 79.1% (4.8% increase

versus SMAPV5) by the UCLA_DTR 1 km SM.

With respect to the quality controlled SCAN SM observations,

Figure 4 exhibits differences in RMSE between the original SMAPV5

and the downscaled 1 km SMAP soil moisture estimations from May

3, 2017 to April 30, 2019 period. Relative to the original SMAP, the

TRIA-based 1 km SMAP exhibited larger errors in the eastern CONUS

and the western mountain areas (Figure 4). The VTCI-based 1 km SM

was found to be comparable to SMAPV5 in the mid-west CONUS,

but presented a modest performance in the densely vegetated areas

(Figure 4). However, compared to SMAPV5, the uncertainties were

clearly reduced by the UCLA downscaling schemes not only in the

western mountain areas but also in the densely vegetated eastern

CONUS. Specifically, compared to SMAPV5 (0.089 m3/m3), the

CONUS domain-averaged RMSEs were increased by 0.008 m3/m3

(9.0% increase versus SMAPV5), 0.008 m3/m3 (9.0% increase) and

0.002 m3/m3 (2.3% increase) by VTCI_DAY, VTCI_NIGHT and

VICI_DTR, respectively (Table 2). Similarly, over the 25 km SMAPV5,

F IGURE 4 Differences in RMSE (m3/m3) between the original 25 km SMAP5 and the various downscaled 1 km SMAP soil moisture
estimations when evaluated against the quality controlled SCAN soil moisture during the May 3, 2017 to April 30, 2019 period. Sites in blue (red)
colour indicate the downscaled 1 km SMAP has stronger (weaker) consistency with the SCAN measurements

TABLE 2 Summary of the statistical comparison results when averaged across the CONUS, including correlation coefficient (r), RMSE
(m3/m3), and ubRMSE (m3/m3)

Metrics SMAPV5

VTCI UCLA TRIA

DAY NIGHT DTR DAY NIGHT DTR DAY NIGHT DTR

R 0.642 0.582 0.584 0.596 0.640 0.632 0.642 0.576 0.574 0.582

RMSE 0.089 0.091 0.092 0.086 0.084 0.086 0.082 0.097 0.097 0.091

ubRMSE 0.054 0.060 0.059 0.054 0.051 0.053 0.049 0.062 0.063 0.060

Note: Italic bold indicates the optimal metric, while the abbreviations DAY, NIGHT and DTR means fusion schemes using day-time LST, night-time LST and

day-night LST difference, respectively.
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the CONUS domain-averaged errors were increased by 0.002 m3/m3

(2.3% increase versus SMAPV5) and 0.003 m3/m3 (3.4% increase) by

VTCI_DAY and VTCI_NIGHT, respectively, while reduced by

0.003 m3/m3 (3.4% reduction) by VTCI_DTR. Relative to the 25 km

SMAP, the UCLA method showed a better performance with the

CONUS domain-averaged RMSEs reduced by 0.05 m3/m3 (5.6%

reduction versus SMAPV5), 0.03 m3/m3 (3.4% reduction) and

0.07 m3/m3 (7.9% reduction) by UCLA_DAY, UCLA_NIGHT and

UCLA_DTR, respectively.

After the radar stopped operation, the SMAP SM data product

had been continuously generated with the radiometer (Yin

et al., 2018). The SMAP is expected to archive accurate SM with the

expected performance that ubRMSE is less than 0.04 m3/m3 (Chan

et al., 2016; Colliander et al., 2017). With respect to the quality con-

trolled SCAN measurements, the original 25 km SMAP SM meets the

requirement well in the mid-western and southeastern CONUS,

whereas larger ubRMSEs can be found in the Mississippi river and

northeastern areas (Figure 5a). Relatively, the UCLA_DTR shows a

consistently successful behaviour on the CONUS domain (Figure 5b).

Specifically, statistical results document that SMAPV5 showed a per-

formance of ubRMSE≤0.04 m3/m3at 21.6% of SCAN sites, which

increased to 31.8% (10.2% increase versus SMAPV5) by the

UCLA_DTR. Validation results also show that SMAPV5 exhibited a

good performance (ubRMSE less than 0.05 m3/m3) at 49.3% SCAN

sites, while the UCLA_DTR performs reasonably at 61.8% (12.5%

increase versus SMAPV5) of SCAN sites.

Statistical results document that the CONUS domain-averaged

ubRMSE for SMAPV5 was 0.054 m3/m3, which increased by

0.006 m3/m3 (11.1% increase versus SMAPV5), 0.005 m3/m3 (9.3%

increase), 0.008 m3/m3 (14.8% increase), 0.009 m3/m3 (16.7%

increase) and 0.006 m3/m3 (11.1% increase) by VTCI_DAY,

VTCI_NIGHT, TRIA_DAY, TRIA_NIGHT and TRIA_DTR, respectively

(Figure 6). However, compared to the 25 km SMAP, UCLA_DAY,

UCLA_NIGHT and UCLA_DTR exhibited better performance with

reduced ubRMSEs by 0.003 m3/m3 (5.7% reduction), 0.001 m3/m3

(1.9% reduction) and 0.004 m3/m3 (7.4% reduction), respectively

(Table 2).

5 | COMPLEMENTARY EVALUATIONS
WITH COMPARING WITH SPL2SMAP

The downscaled 1 km SMAP SM based on the UCLA_DTR method

was upscaled to 3 km spatial resolution (UCLA_DTRup) to match

the grid of the 3 km SPL2SMAP SM data product. Figure 7 shows

the UCLA_DTRup versus the SPL2SMAP SM over the CONUS

domain from May 1, 2017 to April 30, 2019. The correlation coeffi-

cient r value is 0.834, which implies that variation trends between

UCLA_DTRup and SPL2SMAP SM match well. However, the large

RMSD value (0.071 m3/m3) indicates that their differences are

remarkable. In particular, it can be found that the UCLA_DTRup

and SPL2SMAP match well in dry (SM less than 0.2 m3/m3) areas.

However, wetter patterns of SPL2SMAP in the wet areas led to the

lower sample density area with shading in the blue colour departing

from the ideal regression curve. The situation was significantly

improved when the 3 km SPL2SMAP was quality controlled by

excluding the measurements outside of the physically possible

range (SM greater than 0.50 m3/m3). After quality control, the

UCLA_DTRup showed a robust agreement with the SPL2SMAP

with the regression curve shifting towards the perfectly matched

line. Benefits of the quality control are also seen by improvements

in r value from 0.834 to 0.845, and the RMSD from 0.071 to

0.057 m3/m3.

Based on the quality controlled SCAN measurements, validations

on SPL2SMAP and UCLA_DTRup 3 km SM estimations were con-

ducted on the CONUS domain (Figure 8). The SPL2SMAP is well con-

sistent with the SCAN observations in the middle-southern and

north-western CONUS, while having a modest performance in the

western-mountain and central-eastern areas (Figure 8a). However,

the UCLA_DTRup presents a much stronger agreement with in situ

observations over the entire CONUS domain except in the middle-

southern region. Specifically, statistical results indicate that

SPL2SMAP had r > 0.5 at 67.8% SCAN sites, while UCLA_DTRup had

reasonable behaviour r > 0.5 at 78.5% stations (10.7% increase versus

SPL2SMAP). The CONUS domain-averaged correlation coefficient for

the SPL2SMAP was 0.532, which increased to 0.620 (16.5% increase

versus SPL2SMAP) by the UCLA_DTRup (Figure 8b).

Regarding the uncertainties, SPL2SMAP showed a strong gradient

of lower RMSEs in the west to higher errors in the east (Figure 8c).

Compared to the SPL2SMAP, the UCLA_DTRup typically exhibited a

better performance in densely vegetated areas and a comparable

behaviour in sparsely vegetated regions. Specifically, UCLA_DTRup

F IGURE 5 UbRMSE (m3/m3) of the quality controlled SCAN
observations for (a) 25 km SMAP and (b) l km UCLA_DTR SM during
the May 3, 2017 to April 30, 2019 period
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showed reasonable uncertainties (RMSE ≤ 0.1 m3/m3) at 75.2% of

SCAN sites, yet it is declined to 65.3% by the SPL2SMAP. The

CONUS domain-averaged RMSE for the NASA 3 km SMAP was

0.0975 m3/m3, which was reduced by 0.014 m3/m3 (14.4% reduction

versus SPL2SMAP) by the UCLA_DTRup (Figure 8d).

Additionally, the SPL2SMAP showed lower ubRMSEs in the west-

ern and south-eastern CONUS, whereas a modest performance was

found in the Mississippi River and the north-eastern areas (Figure 8e).

Particularly, the 3 km SMAP met the target of the SMAP mission

(ubRMSE less than 0.04 m3/m3) at 17.4% SCAN sites, while dramati-

cally increasing to 34.7% (17.3% increase versus SPL2SMAP) by the

UCLA_DTRup. Besides, the SPL2SMAP documented a reasonable per-

formance (ubRMSE less than 0.05 m3/m3) at 38.8% stations, raising to

62.8% (24.0% increase versus SPL2SMAP) by the UCLA_DTRup

(Figure 8e). The CONUS domain-averaged ubRMSEs for SPL2SMAP

and UCLA_DTRup were 0.065 and 0.049 m3/m3 (32.7% reduction

versus SPL2SMAP), respectively.

With respect to the quality controlled SCAN SM measurements,

validation metrics including correlation coefficients, RMSE and

ubRMSE showed that the UCLA_DTRup had an overwhelming advan-

tage over the 3 km NASA SPL2SMAP SM product, with significantly

decreased uncertainties and raised the agreement with in situ obser-

vations. To inter-compare SPL2SMAP and the downscaled SM estima-

tions in a fair way, the UCLA_DTR was upscaled to 3 km spatial

resolution, but it cannot overshadow the better performance of the

downscaled 1 km SM. Given UCLA_DTR 1 km SM presents a much

F IGURE 6 Differences in ubRMSE (m3/m3) between the original 25 km SMAP5 and the various downscaled 1 km SMAP soil moisture
estimations when evaluated against the quality controlled SCAN soil moisture during the May 3, 2017 to April 30, 2019 period. Sites in blue (red)
colour indicate the downscaled 1 km SMAP has stronger (weaker) consistency with the SCAN measurements

F IGURE 7 The UCLA_DTRup versus the SPL2SMAP from May
1, 2017 to April 30, 2019
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better behaviour (Table 2) in comparison with UCLA_DTRup, the sta-

tistical results can certainly mirror the developed 1 km SMAP data

product on the basis that the UCLA_DTR method may achieve accu-

rate fine spatial resolution SM.

Data availability is defined as the fraction of available day number

for each land grid over total day number during the study period (Yin,

Zhan, et al., 2019). On the CONUS domain, the longitude-averaged

data availability (LDA) for the original 25 km SMAP presented a strong

west–east gradient with 70% longitude-averaged data availability

(LDA) in the western regions and 50% LDA in the densely vegetated

eastern area (Figure 9). Based on fine resolution C-band Sentinel-1

backscatters, SMAP Tb was downscaled to generated the 3 km SMAP

SM data. Revisit time for Sentinel-1 is 12-day, but the combination of

Sentinel-1A and -1B offers a 6-day repeat cycle. The low revisit rate

of Sentinel-1 leads to small LDA spanning from 10% to 15% for the

SPL2SMAP SM product (Figure 9). Compared to the NASA 3 km

SMAP, the LDA can be significantly improved by the downscaled

1 km SM data. In the eastern CONUS, LDA for the 1 km SMAP was

around 20%, while reaching to 45% in the western CONUS. The low

LDA for the UCLA_DTR 1 km in the eastern areas is not only resulted

from the strong west–east LDA gradient of the original coarse resolu-

tion SMAP, but also affected by the larger cloud cover in the eastern

wetter areas.

6 | OPERATIONAL PATHWAY

Building on the satellite LST and EVI measurements, the UCLA_DTR-

based 1 km SMAP SM had the best performance out of the 9 down-

scaling schemes tested with respect to the quality controlled SCAN

observations. The strong station-to-station and year-to-year consis-

tency of the results shown in Sections 4 and 5 document that the vali-

dations are qualitatively stable and should be representative of a

longer analysis period, permitting operational production of the NRT

1 km SMAP SM at NOAA-STAR using the UCLA_DTR method. Since

the LST and VI products are available daily only, the 1 km SM product

can only be generated daily with a latency limited by the SMAP

TB. The NASA official SMAPV5 SM product used for this study

allowed the 1 km and the NASA 3 km SPL2SMAP SM data to be

inter-compared in a fair way. NOAA-STAR has developed the NRT

25 km SMAP SM with about 2-hour latency, which is much shorter

than the official SMAP data product at NASA (Zhan et al., 2016).

The 1 km SMAP SM algorithm consists of the following major

functions as Figure 10: (a) a pre-processing function is designed to

F IGURE 8 With respect to
the quality controlled SCAN soil
moisture observations, left
column shows the metrics for
SPL2SMAP, while the right
column shows metric differences
between SPL2SMAP and
UCLA_DTRup during the May
1, 2017–April 30, 2019 period.

Top, middle and bottom rows are
for correlation coefficients (r),
RMSE and ubRMSE, respectively

F IGURE 9 Longitude-averaged data availability (Unit: %) for
25 km SMAPV5, 3 km SPL2SMAP and 1 km UCLA_DTR soil moisture
estimations over the CONUS domain over the May 1, 2017–April
30, 2019 period
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ingest the required input data including 1 km VIIRS LST and EVI

retrievals, as well as the SMAP SM data. The process is stopped if any

validity or quality assessment is invalid. (b) The NRT branch runs when

the NOAA-STAR NRT SMAP is available. The NRT daily 1 km SMAP

SM data will be produced using the UCLA_DTR downscaling strategy

if the current processing time is the end of the day. Based on quality

assessments of the input data, quality flag bits are generated grid-by-

grid with “0” indicating bad and “1” representing good. (c) Daily meta-

data and quality flag layers are produced and the corresponding status

report file generated, and then the NRT daily 1 km SMAP SM product

is delivered to operational users. (d) The NASA official SMAPV5 is

expected to have the highest quality compared to other coarse resolu-

tion radiometer SM retrievals. Thus, an archive run is activated to pro-

duce a daily 1 km SMAP SM product for archiving after 48-hour using

the SMAPV5. Similarly, quality flag bits are also generated grid-by-grid

with “0” indicating bad and “1” representing good. The daily archived

1 km SMAP SM product is then delivered to operational users.

Figure 11 shows sample maps for SMAPV5 25 km and the down-

loaded 1 km SMAP SM retrievals over the sub-region from −118�E,

37.5�N to 115�E, 39�N on August 3, 2018. The 1 and 25 km SMAP

SM maps display quite similar wet and dry patterns over the sub-

region domain. The original 25 km SMAP SM shows a strong west-to-

east gradient over the sub-region, which can be well captured by the

downscaled 1 km SM. As expected, the UCLA_DTR 1 km SM presents

much more spatial detail, which may highlight the advantages of the

1 km SMAP SM.

7 | CONCLUSIONS

Based on satellite LST and EVI observations, a fine scale SMAP soil

moisture data product was developed to meet the requirements of

regional meteorological, hydrological and agricultural applications. The

advantages of the downscaling technique include simplicity, feasibility

of operational implementation, pure reliance on remote sensing mea-

surements, computationally fast and limited ancillary information

requirements. With respect to the quality controlled SCAN observa-

tions, the UCLA_DTR method showed the most successful perfor-

mance out of the nine downscaling schemes, raising correlation

coefficients and decreasing uncertainties. Compared to the original

coarse spatial resolution SMAP, the downscaled 1 km SM data prod-

uct presents much more spatial details. As expected, the accuracy

level is significantly improved with the advance of the fine scale satel-

lite SM measurements.

Compared to the NASA 3 km SMAP/Sentinel product, the accu-

racy level was significantly improved. The downscaled 1 km SMAP

SM data product also provides larger data availability, although the

VIIRS observations used as ancillary information can be affected by

cloud coverage. Building on the results shown in this paper, a near real

time 1 km SMAP SM data product is proposed to be developed at

NOAA-NESDIS (National Environmental Satellite, Data, and Informa-

tion Service)-STAR.
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