Abstract—Currently, near-surface soil moisture at a global scale is being provided using National Aeronautics and Space Administration’s (NASA’s) Soil Moisture Active Passive (SMAP) and European Space Agency’s (ESA’s) Soil Moisture and Ocean Salinity (SMOS) satellites, both of which utilize L-band (1.4 GHz; 21 cm wavelength) passive microwave remote sensing techniques. However, a fundamental limitation of this technology is that the water content can only be measured for approximately the top 5-cm layer of soil moisture, and only over low-to-moderate vegetation covered areas in order to meet the 0.04 m3/m3 target accuracy, limiting its applicability. Consequently, a longer wavelength radiometer is being explored as a potential solution for measuring soil moisture in a deeper surface layer of soil and under denser vegetation. It is expected that P-band (wavelength of 40 cm and frequency of 750 MHz) could potentially provide soil moisture information for the top ∼10-cm layer of soil, being one-tenth to one-quarter of the wavelength. In addition, P-band is expected to have higher soil moisture retrieval accuracy due to its reduced sensitivity to vegetation water content and surface roughness. To demonstrate the potential of P-band passive microwave soil moisture remote sensing, a short-term airborne field experiment was conducted over a center pivot irrigated farm at Cressy in Tasmania, Australia, in January 2017. First results showing a comparison of airborne P-band brightness temperature and ground L-band brightness temperature observations and ground soil moisture measurements are presented. The P-band brightness temperature was found to have a similar but stronger response to soil moisture compared to L-band.

Index Terms—Airborne field experiments, brightness temperature, L-band, P-band, soil moisture.
II. Study Area and Data Sets

A three-day long airborne field experiment was conducted over a center pivot irrigated dairy farm, with a radius of \(\sim 500 \) m at Cressy in Tasmania, Australia (Fig. 1), between January 17 and 19, 2017. The focus area was divided into 15 paddocks, which were alternately grazed by dairy cattle, resulting in diverse grass density across the paddocks. During the experiment, the center pivot irrigator was continuously spray irrigating the area from \(\sim 2 \) m in front to \(\sim 2 \) m behind the boom. Three types of instruments were used during the experiment including airborne sensors, monitoring stations, and the mobile Hydraprobe Data Acquisition System (HDAS [19]) sensors.

A small fixed-wing aircraft was used to carry the polarimetric P-band multibeam radiometer (PPMR), the polarimetric L-band multibeam radiometer (PLMR), a FLIR A65 thermal infrared (TIR) camera, a modified Canon EOS-5D Mark III Digital Single-Lens Reflex (DSLR) camera, and a Canon EOS-1Ds Mark III DSLR camera. Table I summarizes the specifications of the airborne instruments. The PPMR and PLMR were configured in a multiangular mode such that all of the beams were distributed along the flight line with different incidence angles including fore and aft. As a result, the elliptical footprints of the different beams have similar sizes across the track but slightly different sizes along the track. However, due to a high along track sampling rate, the oversampled PPMR and PLMR observations could be gridded at the same size as the across-track diameter of footprints. For each pixel, the gridded brightness temperature was, therefore, taken as

<table>
<thead>
<tr>
<th>Specification</th>
<th>PPMR (75 m)</th>
<th>PLMR (75 m)</th>
<th>TIR (1.5 m)</th>
<th>NDVI (1.5 m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency/Wavelength</td>
<td>742 - 752 MHz</td>
<td>1401 - 1425 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polarization</td>
<td>H & V</td>
<td>H & V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observation Mode</td>
<td>Multi-beam (linear)</td>
<td>Multi-beam (linear)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>View angle</td>
<td>4 beams: (\pm 15^\circ) and (\pm 65^\circ)</td>
<td>6 beams: (\pm 7^\circ), (\pm 15^\circ), and (\pm 38.5^\circ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam width</td>
<td>(30^\circ) (\times) (30^\circ)</td>
<td>(17^\circ) (\times) (15^\circ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground resolution/Altitude</td>
<td>75 m (/) 150 m</td>
<td>75 m (/) 225 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accuracy</td>
<td>(< 1.5) K</td>
<td>(< 1.5) K</td>
<td>(\pm 5) °C</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2. Overview of airborne and ground sampling data (January 19, 2017). Brightness temperature observations of PLMR Beam 2 (22.1°) and PPMR Beam 2 (15.5°) are plotted together with optical images, derived NDVI map, and gridded ground soil moisture measurements.
Fig. 3. (Top row) Multiangular brightness temperature maps of PLMR and (Bottom row) PPMR at horizontal polarization on January 19, 2017. Mean incidence angle over the pivot area is shown for each beam.

Fig. 4. (Top) Angular relationship of P- and L-band dual-polarized brightness temperature observations over a grassland area near the airport and (Bottom) water body at the northwest of the study area.

The average brightness temperature of the footprints “dropped in the pixel” weighted by the reciprocal distance between the given footprint center and the pixel center. Being limited by the standard minimum permissible flying height, an across-track footprint size of ~75 m was the highest common resolution (smallest footprint) that could be achieved for PPMR and PLMR. However, this meant flying at two different altitudes due to their different fields of view. Before and after each flight, both PPMR and PLMR were removed from the aircraft and calibrated using the sky and a microwave absorber box as cold and warm targets, respectively. The FLIR A65 and the two DSLRs provided high-resolution optical images covering visible, near-infrared, and TIR spectra, collected simultaneously. All airborne data were time tagged, and georeferenced using airborne inertial navigation system (INS)/GPS records. Normalized difference vegetation index (NDVI) was calculated from airborne optical observations and plotted in Fig. 2.

Fig. 5. Maps of P- and L-band brightness temperature observations and HDAS soil moisture measurements over the study area on three consecutive days. The black lines show the location of the center pivot irrigator during sampling with the arrow showing the direction of rotation.

Two identical monitoring stations were temporarily installed in Paddocks 2 and 10A (see Fig. 1) for the period of the experiment. These short-term monitoring stations were instrumented with a rain gauge, a TIR sensor, a leaf wetness sensor, soil moisture sensors at depths of 2.5 and 22.5 cm, and four soil temperature sensors at depths of 2.5, 5, 15, and 40 cm, in order...
Fig. 6. (Top) Time series of TIR temperature, soil temperature at the depths of 2.5, 5, 15, and 40 cm from Paddock 10A site, together with horizontally polarized brightness temperature at L- and P-band. (Bottom) Time series of soil moisture at the depths of 2.5 and 22.5 cm, together with MPDI at L- and P-band.

to provide time series of soil moisture and soil temperature profiles. Such measurements were collected as ancillary data for soil moisture retrieval and for estimating the temporal variation of soil microwave emission during airborne sampling.

Intensive ground soil moisture sampling was carried out coincident with airborne sampling in order to obtain the spatial variability of soil moisture across the pivot irrigated dairy farm. Accordingly, 193 sampling points at 75-m spacing were arranged on a predefined grid aligned with the flight lines for ground soil moisture sampling using the HDAS. Three independent measurements of top 5-cm soil moisture were taken within an approximately 1 m radius from each HDAS sampling point, to account for sampling uncertainty and spatial heterogeneity. Subsequently, soil moisture maps were generated on the same 75-m grid of PLMR/PPMR by averaging the HDAS point-based soil moisture measurements within a radius of 75 m, in order to minimize the effect of spatial heterogeneity. Soil surface roughness and vegetation water content of representative paddocks were also measured, for the purpose of soil moisture retrieval.

III. RESULTS

Taking airborne observations and ground measurements collected on January 19, 2017 as an example, Fig. 2 shows an overview of the field experiment data set. A number of high-resolution overlapped optical images of the farm were mosaicked, orthorectified, and georeferenced using a 3-D modeling software, while the PPMR and PLMR brightness temperature observations were georeferenced and gridded to 75-m resolution for each beam. As expected, the P-band brightness temperature map had a similar pattern to that at L-band, with both clearly showing the standing water body at the north of the farm. Fig. 3 shows PPMR and PLMR multiangular brightness temperature maps at horizontal polarization collected on January 19, 2017. Fig. 4 illustrates the dual-polarized brightness temperature observations at P- and L-bands collected over a uniform grassland (with high grass and medium soil moisture) near the airport from a low altitude, and over the water body at the northwest of the study area. Due to topographic impacts and pitch angle variation during flights, the local incidence angles of fore and aft beams of PLMR and PPMR were slightly offset while almost evenly distributed below 60°. It is clear that the P-band brightness temperature has a similar angular relationship to L-band. In addition, the angular relationship at P-band is stronger than that at L-band, especially in vertical polarization. Moreover, P-band brightness temperature at nadir is lower than that at L-band, which is expected to be a combination of higher moisture content of deeper soil layers, and less contributions from the vegetation layer and soil roughness at P-band.

Fig. 5 shows the temporal variation of brightness temperature maps at P- and L-bands together with ground soil moisture measurements during the three-day experiment. Due to the movement of the irrigator, the spatial pattern of microwave brightness temperature and soil moisture changed significantly between sampling days, especially over the freshly irrigated areas. It can be seen that both P- and L-band brightness temperatures were reduced over the northwest part of the farm between 17th and 18th January, and over the east part of the farm between 18th and 19th January, where irrigation had occurred between airborne sampling days.

During the experiment, the soil moisture ranged from 0.25 to 0.60 m3/m3, and vegetation water content ranged from 0.13 to 0.96 kg/m2 across the farm. Fig. 6 shows the soil temperature and soil moisture measurements from the temporary monitoring station in Paddock 10A (see Fig. 1). The horizontally polarized brightness temperatures and microwave
polarization difference index (MPDI [20]) at P- and L-bands over the station are plotted together with monitoring station data. Due to continuous irrigation and plant transpiration effects, near-surface soil moisture was significantly higher than deep soil moisture. Soil moisture in both layers was gradually decreasing with a relatively consistent offset, while the temporal changes in the brightness temperature and MPDI over this station were mainly caused by soil moisture variation and slight differences in soil temperature due to sampling time of the day. Similar trends of MPDI were found between L- and P-bands, which is potentially due to a similar sensing depths at L- and P-bands under high soil moisture conditions.

IV. CONCLUSION

An airborne field experiment was conducted over an irrigated dairy farm at Cressy in Tasmania, Australia, with the objectives of: 1) testing the performance of a newly developed P-band passive microwave remote sensing capability; 2) comparing P-band brightness temperature observations with L-band and ground soil moisture measurements; and 3) demonstrating the potential of the P-band passive microwave technique for soil moisture retrieval. Airborne P- and L-band brightness temperature observations collected across the three-day long field experiment, in association with high resolution optical observations and ground soil moisture sampling, showed a similar spatial pattern between P- and L-band brightness temperatures, a stronger relationship between P-band brightness temperature and incidence angle than at L-band, and a greater sensitivity of P-band brightness temperature to soil moisture. A long-term tower-based experiment and more extensive airborne field campaigns at P-band are now underway to further investigate the observation depth at P-band, impacts of surface roughness and vegetation layer on P-band brightness temperature, and the potential of P-band soil moisture sensing from space.

ACKNOWLEDGMENT

The authors would like to thank David McLaren from the University of Tasmania, and all the experiment participants: Ying Gao, Jon Johanson, Kiri Mason, and Jaya Pudashine.

REFERENCES