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Intercomparison of Alternate Soil Moisture
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Abstract— Three active–passive soil moisture downscaling
algorithms are tested to demonstrate the feasibility of each for
application to NASA’s Soil Moisture Active Passive (SMAP)
mission launched in January 2015. These algorithms include
the official baseline and optional downscaling algorithms, and
a change detection method. These synergistically use 1-km syn-
thetic aperture radar backscatter to downscale 36-km brightness
temperature to 9 km, which is then converted into soil moisture
at 9 km, or downscale soil moisture directly to 9-km resolution.
While these algorithms have been tested previously, this was
mostly using synthetic data sets. Moreover, there has never
before been a direct comparison of the alternate methods using
the same data sets. Thus, it is imperative that they be tested
against each other for a comprehensive range of land surface
conditions prior to global application. Consequently, this letter
evaluates these three algorithms using data collected from the
soil moisture active passive experiments (SMAPExs) in Australia,
designed to closely simulate the SMAP data stream for a single
SMAP radiometer pixel over a three-week interval. Results
suggested that the average root-mean-square error (RMSE) in
downscaled soil moisture at 9-km resolution was 0.019, 0.021,
and 0.026 cm3/cm3 for the baseline, optional, and change
detection method, respectively. While there was a little difference
in the RMSE, the optional method showed the best correlation
between the downscaled soil moisture and the reference soil
moisture map. Therefore, the optional algorithm is recommended
for global implantation by SMAP.

Index Terms— Active–passive, downscaling algorithms, soil
moisture, soil Moisture active Passive (SMAP), soil moisture
active passive experiments (SMAPExs).

I. INTRODUCTION

THE global measurement of soil moisture is vital to under-
standing the components and interactions of the global

water, energy, and carbon cycles, and therefore benefit applica-
tions in agriculture, hydrology, and meteorology [1]. Methods
are being developed to make use of emerging remotely sensed
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soil moisture information to constrain numerical model predic-
tion of soil moisture [2], and hence improve the forecasting of
weather, floods, and agriculture-related applications, leading to
significant societal benefits.

The passive microwave remote sensing has been gen-
erally accepted as the most accurate of the remote sens-
ing methods for soil moisture mapping, due to its stronger
and more direct connection between the observed brightness
temperature (Tb) and the surface soil moisture (∼5 cm),
than with radar backscatter obtained using active microwave
sensing or thermal data [3]. The best results were found at
low frequency (∼1.4 GHz) due to reduced interference by the
atmosphere, surface roughness, and vegetation. Consequently,
the Soil Moisture and Ocean Salinity mission [4] was launched
by the ESA in November 2009, as the first-ever satellite ded-
icated to soil moisture measurement using the L-band passive
microwave measurements. However, it suffers from being rela-
tively low spatial resolution (around 36 km), which, therefore,
is a significant limitation for regional applications, such as
precipitation forecasting and flood prediction. While fine-scale
soil moisture information can be retrieved by active microwave
remote sensing, the observations are less sensitive to changes
in soil moisture due to the confounding effects of vegetation
conditions and surface roughness. Consequently, NASA’s Soil
Moisture Active Passive (SMAP) mission [5], launched in
January 2015, aims to overcome this scale issue by using
fine-scale (3 km) active microwave observations to downscale
the coarse-scale (36 km) passive microwave observations to
medium (9 km) resolution. The synergy between active and
passive observations may overcome the limitations of each
observation individually, ultimately providing soil moisture
data at a resolution more suitable for hydrometeorological
applications.

In preparation for operational delivery of downscaled soil
moisture from combined SMAP radiometer and radar observa-
tions, suitable algorithms need to be developed and validated.
Those algorithms include the proposed baseline downscaling
method [6], [7] and the optional method for SMAP [7], [8],
and a change detection method [9], [10].

Given that the current downscaling algorithms are relatively
immature and not widely tested using experimental data, the
main objective of this letter is to evaluate these three linear
downscaling algorithms using active and passive observations
from the Soil Moisture Active Passive Experiment (SMAPEx)
field campaigns undertaken in Australia [11]. The SMAPEx
provides the opportunity to evaluate the SMAP active–passive
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Fig. 1. Overview of the SMAPEx site showing the SMAP pixel sized study
site, and the SMAP grid on which the 36-km resolution radiometer data, 3-km
resolution radar data, and 9-km resolution active–passive downscaled product
will be provided.

baseline algorithms using data that present with different
surface conditions and land cover. Importantly, this is the first
study to make a direct intercomparison of the three algorithms
using the experimental data.

II. DATA SET

The SMAPEx study area, with a size of approximately
38 km × 36 km, is situated within the Murrumbidgee River
catchment, as shown in Fig. 1. It was chosen for testing
the performance of SMAP downscaling algorithms due to
its flat topography, high density of soil moisture monitor-
ing stations, and the spatial variability in soil, vegetation,
and land use, allowing an investigation of the downscal-
ing algorithms under unique geophysical and meteorological
conditions that are so far not tested for this purpose. The
western part of the SMAPEx site is dominated by cropping
areas, while the eastern half consists mostly of grassland
areas. The SMAPEx airborne instrument suite consists of the
polarimetric L-band multibeam radiometer (PLMR) and the
polarimetric L-band imaging synthetic aperture radar (PLIS),
so as to provide an SMAP-like data stream for developing
and testing of the algorithms applicable to the SMAP mission
viewing configuration. A complete description of the experi-
ment design can be found in [11]. The radiometer and radar
data were from the third SMAPEx campaign (SMAPEx-3,
September 5–23, 2011), which was conducted during the
spring vegetation growing season. This campaign was used,
since it comprised nine regional flights over a three-week time
period with the two to three days revisit time of SMAP.

In order to closely replicate the prototype SMAP data
stream, data collected during the campaigns were processed
in terms of resolution aggregation and incidence-angle nor-
malization [12]. The original resolutions of the data were
1 km for the PLMR Tb and 10–30 m for the PLIS backscat-
ter. PLMR data were linearly aggregated to 36 and 3 km,
while the PLIS data were aggregated to 1 and 9 km to

evaluate the performance of the SMAP downscaling algorithm
if applied at different resolutions. In terms of the number of
pixels, one at 36-km scale, 16 at 9-km scale, and 1296 at 1-km
scale were used in this letter. The reference used to evaluate the
downscaling results came from the 1-km PLMR retrieved soil
moisture, which has been validated against the ground sampled
soil moisture, with an accuracy of 0.06 m3/m3 in cropland and
0.05 m3/m3 at grassland according to [13]. The reference data
were also aggregated to resolutions of 3 and 9 km, in order
to evaluate the efficiency of each downscaling algorithm at
different resolution levels.

III. METHODOLOGY

A. Baseline Downscaling Algorithm

The baseline downscaling algorithm to be implemented
by SMAP is based on the assumption of a near-linear rela-
tionship between Tb and σ [6], [7], [14]. In the following, the
naming convention of “C” (coarse) and “F” (fine) represents
36- and 3-km resolutions. Implementation of this method
requires a background Tb at coarse resolution, with the vari-
ation of Tb imposed by the distribution of fine scale σ mod-
ulated by the sensitivity parameter β1 of the linear regression
between Tb and σ at coarse resolution, according to

Tbp(Fj ) = Tbp(C) + β1(C) × {[σpp(Fj ) − σpp(C)]
+ �×[σpq(C) − σpq (Fj )]} (1)

where p indicates the polarization, including h- and v-pol; and
pp means copolarization of radar observations σ , including hh-
or vv-pol; and pq represents hv-pol. Tbp(Fj ) is the brightness
temperature value of a particular pixel “ j” of resolution F ,
and σpp(Fj ) is the corresponding radar backscatter value of
pixel “j.” � is a sensitivity parameter for each particular grid
cell C and season defined as � = [δσpp(Fj )/δσpq (Fj )]C . The
output of this baseline downscaling algorithm is the down-
scaled Tb, with details described in the previous study done
by Wu et al. [15]. Therefore, the main work concerning this
downscaling algorithm in this letter is to interpret the obtained
downscaled Tb to the downscaled soil moisture product, using
the tau–omega (τ − ω) passive microwave retrieval algorithm
with soil and vegetation parameters [16], [17].

B. Optional Downscaling Algorithm

The optional downscaling algorithm [8] for SMAP is similar
to the baseline algorithm, but uses the soil moisture instead
of Tb in (1). Implementation of this method requires a back-
ground soil moisture θ at C resolution, with the variation
of θ imposed by the distribution of fine scale σ within
C modulated by β2(C) of the linear regression between θ
and σ at C resolution according to

θ(Fj ) = θ(C) + β2(C) × {[σpp(Fj ) − σpp(C)]
− �×[σpq(C) − σpq(Fj )]} (2)

where θ(Fj ) is the soil moisture of a particular pixel “ j”
of resolution F , θ(C) aggregated from a 1-km resolution
PLMR retrieved soil moisture product (through the passive
microwave retrieval algorithm). β2(C), which is also assumed
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to be time-invariant and homogenous over the entire 9-km
pixel, is obtained through the time-series of θ(C) and σpp(C).
Other terms in (2) are the same as (1). The main differences
between the optional and baseline downscaling algorithms are:
1) estimation of the sensitivity parameter β from θ and σ
(optional) rather than from Tb and σ (baseline) and 2) soil
moisture retrieved in a direct (optional) rather than an indirect
(baseline) way; the latter needs the downscaled Tb to go into
the τ − ω retrieval model.

C. Change Detection Method

The change detection method assumes a linear relationship
between the temporal change of radar backscatter and temporal
change of soil moisture at the same spatial scale [9]. It has the
same assumption as the optional algorithm, but is different in
retrieving medium resolution soil moisture

θ(Fj , t) = θ(C, t − tR) + β3(C) × {σpp(Fj , t)

− σpp(Fj , t − tR)} (3)

where θ (Fj , t) is the soil moisture of a particular pixel
“ j” of resolution F and at time t and θ (C, t-tR) is
aggregated from the 1-km resolution PLMR retrieved soil
moisture product at time t-tR , where tR is the revisit time
of the observations; two to three days for the SMAP case.
θ (C, t-tR) is then updated with the soil moisture change
evident in the fine resolution radar backscatter σ at the two dif-
ferent times. β3(C), which is also assumed to be time-invariant
and homogenous over the entire site, is obtained through the
time-series of θ(C) and σpp(C). While the optional algorithm
is based on a background soil moisture value with the variation
across the entire area characterized by radar observations, the
change detection method assumes that a soil moisture estimate
at a given time can be obtained according to the previous soil
moisture estimate plus the change in soil moisture, given by
the radar observations and the regression slope β3.

IV. RESULTS AND DISCUSSION

For the baseline algorithm, β was estimated from Tb
and σ at 36-km resolution. As stated in [15], σ at vv-pol
showed the best correlation with Tb and was used for esti-
mating β1. Therefore, β1 was calculated at h- and v-pol,
being −3.4 and −2.2 K/dB, respectively. Different to the base-
line algorithm, the sensitivity of soil moisture to backscatter
in the optional algorithm was analyzed using the slope of
the linear regression as a measure of quality and, therefore,
the parameter β2 was obtained, being 0.018 cm3/cm3/dB.
Since β3 of the change detection method is also the sensitivity
of soil moisture to backscatter, the same value as β2 was used.
According to the previous work done by Wu et al. [14], [15],
the magnitude of β was actually affected by the land cover
types, vegetation biomass, and the existence of water bodies.
Therefore, the assumption of a constant β in this letter may
influence the resulting accuracy of the downscaled product
when compared with the reference.

Since the observed σ from radar is not only related to
the soil moisture, but also to the vegetation conditions,
the use of � in the baseline and optional downscaling

algorithm aims to reduce the influence of vegetation on σ
and to make it more strongly correlated to the soil moisture.
The study area was divided into 16 subareas of 9 km by 9 km
in size, and the value of � calculated using the snapshots
of all σvv–σhv pairs at 1-km resolution contained within
each of those subareas, allowing an analysis of the relation-
ship between the estimation of � and vegetation conditions.
� ranges from 0.2–0.45 according to different vegetation
conditions.

The downscaled θ from three algorithms was retrieved at
resolutions of 1, 3, and 9 km, from linearly aggregating the
1-km resolution downscaled θ to 3- and 9-km resolution.
The accuracy of these three downscaling algorithms was
evaluated against the reference soil moisture θ , being the
PLMR retrieved soil moisture at 1-km resolution [13]. The
downscaled results of the baseline and optional algorithms
are similar in terms of the root-mean-square error (RMSE).
For the baseline algorithm, the average RMSE across the nine
days was 0.038, 0.028, and 0.019 cm3/cm3 at 1-, 3-, and 9-km
resolution, respectively. The average RMSE for the optional
algorithm differed by only 0.002–0.003 cm3/cm3 depending
on the resolution. In comparison, the change detection method
had the largest RMSE, being 0.006 cm3/cm3 larger than
the baseline algorithm. One possible reason contributing this
relatively poor performance of the change detection method
is the unaccounted influence from the vegetation. Unlike the
baseline or optional methods, the change detection method
does not use σhv and the parameter � to compensate for the
influence of vegetation on the soil moisture retrieval.

The RMSE of each algorithm generally decreased from the
beginning to the end of the nine days. Results of the first
days, i.e., D1 to D3 displayed relatively poor performance,
when compared with the later days. One possible reason is
attributed to the heavy rainfall events that led to wet soil
and vegetation conditions in the northeastern part of the study
area at the beginning of SMAPEx-3, subsequently impacting
the radiometer and radar observations. Since Tb was more
sensitive to the immediate soil moisture changes due to the
rain in this region, the value of Tb drop according to soil mois-
ture increase was more significant than the radar backscatter
changes, as the latter are more influenced by the vegetation
cover and consequently less sensitive to the soil moisture
changes. Consequently, the sensitivity of backscatter to
Tb/θ decreases, resulting in an obvious difference in the
sensitivity parameter β for the area subjected to rainfall
when compared with the other drier areas, which would have
dominated the derivation of β itself. The influence on surface
heterogeneity due to the rain event decreased during the
dry-down period, especially after D3, as shown through the
decrease in RMSE from D3 onward. In terms of resolution,
there is an obvious reduction of RMSE when applied to a
larger scale, e.g., from 1 km to 3 and 9 km, respectively,
which can be attributed to the reduction of random (white)
noise following the aggregation of the backscatter data.

Intercomparison of three downscaling algorithms on D8 is
shown in Fig. 2 as an example of the results. The pattern of
the optional algorithm largely matched that of the reference,
the change detection method could hardly represent the actual
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Fig. 2. Example comparison of downscaled soil moisture maps (cm3/cm3)
from each downscaling algorithm (baseline, optional, and change detection)
and the reference at different resolutions (1, 3, and 9 km). Data were collected
on D8 (September 21, 2011) of SMAPEx-3. Pixels at 1-km resolution in the
northeast of the study area are the water bodies, which have been removed
prior to conducting the downscaling.

Fig. 3. Comparison between reference and downscaled soil moisture maps
from the baseline, optional, and change detection method at 1-, 3-, and 9-km
resolution. Performance of each method was evaluated in terms of RMSE
(in unit of cm3/cm3) and correlation (R2) between downscaled and reference
soil moisture. Data are from all nine days of SMAPEx-3, with data from
days 1–3 denoted by circles, and data from days 4–9 denoted by solid circles.

pattern, and the baseline algorithm showed a similar pattern
to the reference but with poorer performance than for the
optional algorithm. Although each of these three downscaling
algorithms had similar RMSE, their ability to correctly detect
the soil moisture pattern as shown in the reference map was
considerably different; this is another key factor in examining
the performance of the downscaling algorithms.

In order to quantify the degree of pattern match, a further
evaluation of the skill of each algorithm was undertaken,
through the examination of the correlation (R2) between
downscaled and reference θ (see Fig. 3) using all nine days
of data. It is noted that the correlation at 1 km was quite poor
for all algorithms, primarily due to the high noise level of the

Fig. 4. Spatial distribution of RMSE for baseline algorithm, optional
algorithm, and change detection method across the entire SMAPEx site at
1-, 3-, and 9-km resolution. RMSE for each pixel was calculated from the
downscaled soil moisture and the reference at this pixel across the nine days.

Fig. 5. Spatial distribution of correlation coefficient (R2) for baseline,
optional, and change detection method across the entire SMAPEx site at 1-, 3-,
and 9-km resolution. R2 for each pixel was calculated from the downscaled
soil moisture and the reference at this pixel across the nine days.

radar observations at 1 km; the correlation was improved by
approximately 0.23, 0.48, and 0.11, respectively, for baseline,
optional, and change detection method, when observations
were averaged to 9 km. One limitation for this letter was
only nine days’ of data were available and that the size of the
study area was relatively small, limiting the number of pixels
that could be analyzed. However, the results from different
methods are still comparable. By comparing the behavior
of each algorithm at 9-km resolution, the optional algorithm
showed the best correlation with the reference at around 0.62,
being approximately 0.14 higher than the baseline; the change
detection algorithm was observed to have the poorest corre-
lation between its retrieved soil moisture and the reference,
around 0.21, when compared with the other.
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In order to differentiate the impact from land cover types
on the downscaling performance, the spatial distribution of
the RMSE and the correlation coefficient R2 was also obtained
at different spatial resolutions across the entire study area, as
shown in Figs. 4 and 5. Both RMSE and R2 were calculated
from the series of downscaled soil moisture and the reference
at each pixel across nine days, and at three resolution levels.
As shown in Fig. 4, the optional and baseline downscaling
algorithms showed minor difference in terms of the spatial plot
of RMSE, but overall these two were better than the change
detection method. It is noted that at 1 km, a number of pixels
have an error as large as 0.10 cm3/cm3, being attributed to the
weak linear relationship between backscatter and Tb at 1 km
and also the noisy radar data at 1 km which got cancelled out
when upscaled to 3 and 9 km. It is observed that the left side
of the study area dominated by crops had greater error than
the middle part that was occupied by grasslands, indicating
the higher heterogeneity in the croplands attributed to a worse
performance of downscaling. Moreover, the northeast area also
had poor performance, probably due to the increased surface
heterogeneity as a consequence of raining events during the
first couple days. The optional downscaling algorithm had the
best correlation, as shown in Fig. 5, in line with the results in
Fig. 3. Although the water bodies have been removed prior to
downscaling, there are a fair number of pixels in Fig. 5 where
the correlation coefficient is near zero. This was probably due
to irrigation activities in the cropping areas. The croplands,
which had more variations in the vegetation conditions, surface
roughness, and row structure, will also have impacted the radar
observations and, therefore, hampered the accuracy of down-
scaling. The forests, mainly distributed in the eastern part of
the study site, may also have impacted on the correlation. The
more homogenous grasslands had overall better performance
in downscaling with lower RMSE and higher correlation to
the soil moisture truth.

V. CONCLUSION

The objective of this letter was to test the robustness
of three downscaling algorithms using active and passive
observations from the SMAPEx field campaign in Australia.
Errors associated with each algorithm were assesed for
different spatial resolutions. The average RMSE of down-
scaled soil moisture at 9-km resolution was 0.019, 0.021,
and 0.026 cm3/cm3 for baseline, optional, and change detec-
tion method, respectively. All three algorithms were found to
perform poorly in the early days of the experiment due to large
rainfall events in the study area that created a large spatial
heterogeneity in terms of soil moisture content. In contrast,
the last six days of the experiment, characterized by a drying
down period and no rainfall, showed an improvement in the
algorithm performance, with an RMSE consistently better
than 0.02 cm3/cm3 at 9-km resolution. However, apart from
the RMSE, the ability to detect the soil moisture spatial pattern
is also an essential factor for examining the performance of
each algorithm. After looking at the patterns in retrieved soil
moisture, the change detection method showed the poorest
results while the optional algorithm was best in representing
the correct soil moisture pattern under dry surface conditions.

Thus, by assessing RMSE and the correlation between down-
scaled soil moisture and reference, the optional downscaling
algorithm was found to have the best performance and is,
therefore, recommended for use in SMAP.
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