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Inversion of soil roughness for estimating soil moisture
from time-series Sentinel-1 backscatter observations over
Yanco sites

Ju Hyoung Leea and Jeffrey Walkerb

aResearch Institute for Mega Construction, Korea University, Seoul, Republic of Korea; bDepartment
of Civil Engineering, Monash University, Clayton, Australia

ABSTRACT
Sentinel-1 provides improved temporal and spatial resolutions in
comparison with previous satellite missions. Unlike the change
detection method that assumes the time-invariance of surface
roughness at a coarse resolution, this study spatially inverted
roughness and soil moisture from Sentinel-1 backscatter.
Although it is important at high-resolution, local measurements of
surface roughness are not available in an operational setting.
Thus, question was how often time-varying soil roughness infor-
mation should be updated in operations for reasonable soil mois-
ture retrievals but at effective computational cost. Local
validations show that a monthly update for surface roughness is
sufficient for soil moisture retrievals. In more details, Root Mean
Square Errors (RMSE) of 0.01m3/m3 is found at Yanco A3 site, and
0.03m3/m3 at Yanco A5 site, with differences in backscattering
between Integral Equation Model (IEM) simulation and Sentinel-1
measurement of 0.78 dB at Yanco A3 site and 0.012 dB at Yanco
A5 site, respectively.

ARTICLE HISTORY
Received 19 April 2020
Accepted 23 July 2020

KEYWORDS
Synthetic Aperture Radar
(SAR) soil moisture;
Sentinel-1; inversion of
roughness; small-
scale roughness

1. Introduction

Soil moisture is an important variable in the water, energy and carbon cycles. It is regu-
larly used in hydrologic, land surface and climate model initialization, as it is fundamen-
tally involved in the energy and water balance as a controlling factor on rainfall
infiltration, energy flux, and deep drainage (Niu et al. 2011; Lee et al. 2014). The historical
records of soil moisture accumulated over several years provide an essential indicator of
climate change, while real-time soil moisture can be used for predicting urgent disasters
such as landslides, flooding, and fire events (Henry et al. 2006; Jensen et al. 2018).
However, despite significance, it is difficult to accurately simulate or predict soil moisture
with models alone (Paloscia et al. 2013). That is because uncertainties arise from errors in
rainfall, or soil hydraulic properties, and from the complex relationship between land sur-
face state evolution and meteorological forcing (Taylor et al. 2012).
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One way to globally estimate the spatial distribution of soil moisture and simulate such
a global circulation between land surface and meteorological forcing is to measure it with
satellites. The microwave sensors that are predominantly used for estimating soil moisture
operate at C- and L-bands. The first satellite that aimed for retrieving global soil moisture
was the ESA (European Space Agency)’s Soil Moisture Ocean Salinity (SMOS) mission
launched in 2009 (Kerr et al. 2012). The National Aeronautics and Space Administration
(NASA)’s Soil Moisture Active Passive (SMAP) mission was the next soil moisture satel-
lite launched in 2015. Both are passive microwave satellites operating at L-band
(1.413GHz, 21 cm, 2 to 3 day of revisit time). Their spatial resolutions are low at approxi-
mately 40 km, although their products are provided on the grids of 25 km or 9 km. The
issue is that such low resolutions do not properly recognize the land surface heterogeneity
(Kornelsen and Coulibaly 2013), which alter at the scale of meters.

In contrast, Sentinel-1, an active microwave sensor at C-band, provides high resolution
data, although active microwave data are much more challenging to interpret. It is often
discussed that difficulty arises from the radar signal complicated by dense vegetation or
instrumental configuration. Sentinel-1A carries a Synthetic Aperture Radar (SAR) that
operates at C-band (5.4GHz) with dual polarization (VVþVH, HHþHV), and four
exclusive acquisition modes of strip map, interferometric wide swath, extra-wide swath,
and wave mode. Its incidence angle has a variation of 20� 46� (Bauer-Marschallinger
et al. 2019). Its revisit time is 12 days, while it is 3 days at equator.

Various approaches are available to retrieve soil moisture from SAR measurements
(Kornelsen and Coulibaly 2013). Nonetheless, it still remains a complicated and ill-
posed problem, because backscattering is not only affected by dielectric constant (i.e.,
soil moisture) but also by other variables such as soil roughness, volumetric scattering
from the soil and vegetation, and SAR configuration including incidence angle, wave-
length/frequency of instrument and polarization (Mirsoleimani et al. 2019). Moreover,
soil moisture retrieval has the nature of equi-finality (Beven and Freer 2001). Multiple
physical parameter combinations often produce the same SAR backscattering intensity.
For example, wet soils produce a similarly high SAR backscatter intensity like rough
soils, dense vegetation or rocks. Thus, for a successful retrieval, it is required to make
an appropriate estimation of other physical parameters in order to isolate the contribu-
tion from soil moisture.

One of the common methods for retrieving soil moisture from active microwave
sensors or scatterometers is change detection. It decomposes the radar backscattering
into largely two simple elements: dielectric constant and roughness (Bauer-
Marschallinger et al. 2019). In a dry state where the effects of dielectric constant are
negated, it is considered that the radar backscattering comes from the surface rough-
ness and vegetation only. In contrast, backscattering for wet soils is interpreted as soil
moisture by subtracting backscattering in the dry conditions (i.e., roughness) . In other
words, land surface homogeneity and time-invariance of surface parameters is assumed
within low-resolution scatterometer footprint rather than estimating surface roughness
or vegetation parameters. Thus, backscatter data at a coarse resolution and high tem-
poral sampling have shown interesting results with this approach. However, such a
change detection is not appropriate for high-resolution SAR data over spatially hetero-
geneous land undergoing vegetation distribution, tillage or soil erosion. Hence, with
respect to the applicability of change detection, Wagner et al. (1999, 2010) clarified
that to assume time-invariance of surface roughness is reasonable at low-resolution
scatterometer, but inapplicable to high-resolution. Sentinel-1 SAR data corresponds to
the latter.
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One of the useful approaches to retrieve such heterogeneous land surface parameters at
high-resolution is an inversion. Unlike change detection, it characterizes the physical
parameters by minimizing the difference between model estimates and instrument meas-
urements (Pauwels et al. 2002). This inversion approach is still useful, although other
approaches such as fractal method or Artificial Neural Networks (ANNs) are suggested to
estimate SAR roughness, recently. That’s because they all require some roughness inputs
as a priori. For example, to generate fractal surface, spatially distributed root-mean-square
heights are needed. This SAR roughness is fundamentally different from roughness meas-
ured in the field, due to difference in scale and various instrumental factors to have an
influence on backscatter. In addition, when estimating SAR roughness or soil moisture
with ANNs, we still need to provide roughness inputs used as ‘target’ vectors (i.e., desired
outcome). Thus, despite other alternatives, the need for inversion methods is very clear.

Several studies employed inversion methods for SAR retrievals. van der Velde et al.
(2012) inverted soil roughness by comparing the ENVISAT Advanced Synthetic Aperture
Radar (ASAR) backscattering measured from three different incidence angles with the
IEM (Integral Equation Model) backscattering. They discussed that an enhanced temporal
resolution is needed, suggesting to apply the approach for Sentinel-1 data as future works.
Pierdicca et al. (2010) retrieved soil moisture content in a vegetated area, using multi-
temporal Airborne SAR and biomass data from Landsat reflectance to correct the effects
of vegetation. After generating a probability distribution function of a target parameter
conditioned to SAR backscattering, soil moisture was inverted from backscattering. They
concluded that this inversion approach better deals with ill-posed problems complicated
by vegetation.

For supporting an inversion, Look Up Table (LUT) has also been widely used
(Rahman et al. 2007; Merzouki et al. 2011). Forward model outputs of backscattering are
established for a diverse range of input parameters, for example, soil roughness condi-
tions, dielectric constant or incidence angle. The physical parameters to produce the simi-
lar backscattering coefficients with the backscattering measurements are selected from
the LUT.

On the other hand, soil moisture can also be stochastically retrieved with a Bayesian
approach, which uses the probability distribution function (PDF) generated by a broad
range of dielectric constant and roughness conditions. This is a very useful method for
resolving a perplexing retrieval problem of estimating soil roughness from SAR backscat-
tering (Lee 2016). Verhoest et al. (2007) resolved uncertainty in soil roughness with a
probabilistic approach for the estimation of soil moisture with the European Remote
Sensing (ERS) scatterometer. After generating the PDFs of soil moisture with backscatter-
ing coefficients modeled with a possible range of Root Mean Square (RMS) height and
correlation length, the mean value of the PDFs was used for determining optimal soil
moisture values. RMS errors in soil moisture was less than 6%. Notarnicola et al. (2006)
attempted to find the optimal soil moisture in a vegetated area by taking an average of
PDFs. They assumed a Gaussian distribution for generating the PDFs of backscattering
coefficient with an IEM simulation in various soil and vegetation water content condi-
tions, and assessed the PDFs with soil parameter measurements. Synergy with optical data
improved their parameterization of PDF shape.

In this study, we inverted time-varying soil roughness from backscattering to consider
the dynamics of high-resolution land surface heterogeneity. The objective of this study is
to retrieve low to medium levels of soil moisture in sparsely vegetated soils without rely-
ing on any soil parameter measurements in the field or multi-angular acquisitions, but
with an inversion method applicable to small scale-roughness.
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2. Methods

2.1. Study area

The Yanco site was established for the purpose of validating Soil Moisture Active Passive
(SMAP) soil moisture data. It is a large flat area where barley and wheat are often grown.
Two local stations at Yanco sites are used; Yanco-A3 station is (hereafter called YA3) and
Yanco-A5 (hereafter, YA5). We have chosen these sites, as they are considered to have
stable roughness during specified periods. The YA3 local point station is located at
�34.73521 latitude, and 146.08197 longitude (elevation: 132m) while local point station
YA5 is located at �34.712858 latitude and 146.127712 longitude (elevation: 136m). The
spatial domains are set to include these local point stations: latitude of �34.7399 to
�34.7320 and longitude of 146.0780 to 146.0829 for YA3, and latitude of �34.7150 to
�34.7110 and longitude of 146.1260 to 146.1299 for YA5. This corresponds to 2,475 pix-
els (i.e., 45� 55 in latitude� longitude) for the YA5 site, while it is 4,895 pixels (i.e.,
89� 55 in the same dimension) for the YA3 site. The spatial domain sizes do not include
large-scale topography due to scale-dependency of roughness.

Soil texture for both sites has been found to be silty clay (conversation with Dr. Jason
Beringer). During this experiment period, two sites were almost bare soils with no vegeta-
tion growth. In details, the time-average of Leaf Area Index (LAI) was 0.225 at the YA3
site, and 0.279 at the YA5 site, with respect to the maximum LAI value of 10. Soil moisture
data was acquired from the OzNet data archive (http://www.oznet.org.au/) (Smith et al.
2012). It was measured with SDI-12 soil moisture probes every 20minutes. In this study,
the 2018 soil moisture data of the top 5 cm layer was collected from Day of Year (DoY) 25
to 145 at the YA3 site, and from DoY 1 to 145 in YA5 site are used. The soil has never
been frozen in these sites. The time-average of soil temperature at YA3 site is 22 �C during
experiment period, while it is 27 �C at YA5 site. Unfortunately, the measurements of surface
roughness (e.g., RMS height or correlation length) or rainfall data are unavailable.

2.2. Sentinel-1 data

Time-series of SAR backscattering data at C-land (5.4GHz) for the period of January to
May 2018 were used in this study. High resolution Interferometric Wide (IW) swath
mode at Level-1 Ground Range Detected (GRD) has a spatial resolution of 20� 22m, and
a pixel spacing of 10� 10m. Revisit time was 12 days over the Yanco sites. Polarization is
VVþVH. Pass direction is a descending orbit with similar incidence angles of 35� 38�

over the study area.
Following pre-processing procedure yielded gridded time-series SAR images stacked

over the experiment site and period. Because the VV-polarized IW data in GRD format
was already multi-looked and projected to ground range at a pixel spacing of 10m (high
resolution), radiometric and terrain correction (Range-Doppler Terrain Correction) were
carried out with ESA’s Sentinel Application Platform (SNAP)-python tool to mitigate geo-
metric distortions in SAR data arising from topography or geometry, after calibrating it
by Laur et al. (2004). After co-registration, multi-temporal speckle filtering was performed
for the time-series data sets.

2.3. SAR retrieval process

In this section, an inversion for surface roughness and soil moisture is described. Simply,
it minimizes a difference between the Sentinel-1 backscattering measurement and IEM
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forward model estimate. In other words, this algorithm retrieves the physical conditions
(i.e., RMS height, correlation length, and dielectric constant) that IEM-modelled backscat-
tering produces Sentinel-1 backscattering.

2.3.1. IEM backscattering model
The IEM is a standard model to simulate the single backscattering coefficient under the
physical conditions defined by dielectric constant, surface roughness, and SAR configur-
ation (Fung 1994). It is based upon an exponential relationship between backscattering
coefficient and soil dielectric constant (Bindlish and Barros 2000). Its limitation is that the
sensitivity of backscattering to soil moisture changes, depending on soils. In other words,
it tends to be constant in wet soils, while it overestimates dry soils (Verhoest et al. 2007).

This IEM forward model computes the backscattering coefficients as follows (Ulaby
et al. 1982; Shi et al. 1997):

ropp ¼
k2

2
expð�2k2

zs2Þ
X1

n¼1

s2njInppj2
Wnð�2kX; 0Þ

n!
(1)

where subscript pp indicates the polarization, k is the wave number and S is the RMS
height. In addition, kx ¼ k sinh, kz ¼ k cosh, where, h is incidence angle. Ipp

n is a func-
tion of the Fresnel reflection coefficient, relative permittivity and permeability of the sur-
face (for a more detailed formula, see Chen et al. (1995); Shi et al. (1997)), and Wn is the
Fourier transform for the n th power of the normalized surface correlation function.

As seen from Equation (1), soil roughness and dielectric constant information are
required to estimate backscattering with the IEM, in addition to SAR configuration such
as frequency or incidence angle. Such variables become dimensions of the LUT. In details,
for the generation of LUT, RMS height ranged from 0.22 to 3.92 cm by an increment of
0.05 cm, while correlation length ranged from 0.2 to 11.2 cm by an increment of 0.1 cm.
The Autocorrelation Function (ACF, the height probability distribution function of ran-
dom surface) has been set as an exponential shape for relatively smooth surface
(Davidson et al. 2000). The real part of the dielectric constant starts from 2.93 to 52.92
(Dobson et al. 1985; Reynolds et al. 2000; van der Velde et al. 2012).

2.3.2. Inversion of roughness
From the LUT generated in section 2.3.1, the retrieval algorithm selects soil roughness
conditions (i.e., RMS height and correlation length) to minimize a difference in backscat-
tering between IEM simulation and Sentinel-1 measurement, as follows:

min jrsentinel�1 �rIEMðe, RHÞj (2)

where r is backscattering, and subscript describes the source of backscattering. IEM back-
scattering is shown as a function of e dielectric constant and RH soil roughness.

Roughness was updated approximately monthly, due to high computational cost. Soil
roughness is assumed to be invariant during three Sentinel-1 measurement data acquisi-
tions. This is a reasonable assumption, as the site remained as bare soils with no dramatic
change in vegetation growth (see Supplementary Figure 1 for LAI) during the experimen-
tal period. In addition, relatively smooth surface roughness (e.g., kS less than 3) was
assumed to ensure compliance with the IEM validity range (Mancini et al. 1999).
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2.3.3. Estimation of soil moisture
With surface roughness estimated in section 2.3.2., soil moisture is retrieved. The dielec-
tric constant value that yielded the smallest difference between IEM backscattering simu-
lated for the roughness condition estimated in 2.3.2. and Sentinel-1 backscattering is
selected, as follows:

min jrsentinel�1 �rIEMðeÞj (3)

The limitation in this approach is that it assumes a stable surface condition. If the land
surface changes over a short period of time, as in the agricultural season, a temporal sam-
pling in the current data acquisition scheme may be too slow to appropriately retrieve
the roughness.

3. Results and discussions

3.1. Local point validation for time-series SAR soil moisture

YA3 site is consistently dry at 0.049m3/m3 on the time-average of soil moisture measured
in the field during experimental period. SAR retrievals also report such soil dryness at
0.0372m3/m3. Retrieval accuracy is considered satisfactory. As shown in Table 1, the Root
Mean Square Error (RMSE) was found to be 0.01m3/m3, showing a marginal difference
between IEM simulated and Sentinel-1 measured backscattering coefficients at 0.78 dB.
The dry bias was also very small at � 0.0009m3/m3.

Time series soil moisture dynamics (top 5 cm) data for the YA3 site are presented in
Figure 1. Some overestimation during DoY 100 to 120 is considered to be made because

Table 1. Time-average soil moisture data.

YA3 YA5

Average (m3/m3) 0.0372 0.1018
RMSE (m3/m3) 0.0103 0.030033
Bias (m3/m3) �0.0009 �0.015691
Difference (dB)� 0.7808 0.012560
�difference is the difference between IEM and Sentinel-1 backscattering.

Figure 1. Surface conditions over YA3 site in 2018: (a) surface roughness (b) validation of SAR soil moisture
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actual soils were drier than the minimum levels assumed in LUT. Overall, this retrieval
algorithm appropriately estimates dry soils at YA3 site.

Unlike the YA3 site, time series soil moisture measurements were moderately wet in
the YA5 site (see Figure 2). As shown in Table 1, the time-average of SAR soil moisture
is also moderate at 0.1m3/m3. RMSE was found to be 0.03m3/m3, showing satisfactory
results for the difference between IEM simulated and Sentinel-1 measured backscattering
coefficients at 0.0126 dB. Negative biases were found being � 0.016m3/m3. It seems to be
related to inversion errors in roughness (Lee 2016).

Based upon two different retrieval error structures discussed above, it is suggested that soil
moisture retrieval errors are related to dependency on physical variables such as soil moisture

Figure 2. Surface conditions over YA5 site in 2018: (a) surface roughness (b) validation of SAR soil moisture.

Figure 3. Surface roughness [cm] in YA3 site on DoY 60: (a) RMS height (b) correlation length.
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levels or surface roughness rather than season-dependent errors. However, this marginal level
of retrieval errors seems acceptable, suggesting that a monthly update of roughness is reason-
able under current surface conditions (i.e., LAI of 0.1� 0.3). Thus, it is stated that despite a
sparse temporal sampling this retrieval method is appropriate when there is no weekly or
daily change in vegetation growth or surface roughness. This is considered as the improve-
ment of Sentinel-1 data, as compared to ENVISAT ASAR data (van der Velde et al. 2012).

3.2. Spatial distribution of SAR soil moisture

After validating the retrieval method over the local point measurement data, it is applied
for estimating the spatial distribution of soil moisture.

Figure 4. Spatial distribution for YA3 site on DoY 60: (a) soil moisture (b) difference in backscattering between IEM
and Sentinel-1 and (c) Sentinel-1 backscattering. Units are indicated by color bars.
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3.2.1. YA3 site
Figure 3 shows surface roughness over the area surrounding the YA3 site on DoY 60. In
Figure 3(a), RMS height is shown to be spatially heterogeneous, ranging from 0.5 to
1.5 cm. The spatial average of RMS height was found to be 0.99 cm. In Figure 3(b), simi-
larly to RMS height, the correlation length was also found to be spatially heterogeneous,
ranging from 3.0 to 4.0 cm. The spatial average of correlation length was found to be
3.33 cm. The surface soil moisture retrieved with this roughness is further shown in
Figure 4. In Figure 4(a), surface soil moisture was spatially mostly dry. The spatial average
was 0.052m3/m3.This is in agreement with the low soil moisture estimation of local field
measurements shown in Figure 1.

It is thus stated that a spatial distribution of backscattering in YA3 site was related to
roughness. More specifically, areas with high backscattering (shown yellow in Figure 4(c))
were closely related to RMS height in Figure 3(a) and low soil moisture in Figure 4(a). In
other words, high backscattering is considered mostly due to roughness rather than soil
moisture. The retrieval for these dry soils has a reasonable certainty, suggesting a differ-
ence between IEM simulated and Sentinel-1 measured backscattering was less than
0.89 dB. Thus, uncertainty is mostly low, as shown by dark blue in Figure 4(b). In con-
trast, other areas higher than 4 dB of backscattering difference (shown yellow in Figure
4(b)) suggest that a retrieval algorithm might underestimate (or overestimate) soil mois-
ture there. As described in Section 2.3.1. and 3.1., error sources may be related to an
assumption converting dielectric constant to soil moisture. It may be also affected by
some ground features, or geometric errors in SAR (Zhu et al. 2019).

3.2.2. YA5 site
Figure 5 shows surface roughness over the YA5 site on DoY 121. Unlike the YA3 site,
RMS height was spatially random, ranging from 0.52 to 2 cm in Figure 5(a). The spatial
average of RMS height was found to be 0.796 cm. In Figure 5(b), similarly to RMS height,
the correlation length was also random. The spatial average of correlation length was
found to be 3.1 cm.

Surface soil moisture retrieved with this roughness condition is shown in Figure 6. In
Figure 6(a), surface soil moisture was found to be moderately wet. Quantitatively, the spatial
average of soil moisture was 0.1135m3/m3. This level of soil moisture is similar to that found
from local field measurements in Figure 2 and Table 1. Uncertainty for this estimation was

Figure 5. Surface roughness [cm] in YA5 site on DoY 121: (a) RMS height and (b) correlation length.
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also very little. The spatially averaged difference between the IEM simulated and Sentinel-1
measured backscattering was found to be very small at 0.024 dB in Figure 6(b).

It is suggested that the area with high backscattering (shown yellow in Figure 6(c)) was
not directly related to soil moisture in Figure 6(a) or RMS height in Figure 5(a).
Considering that overall uncertainty in retrieval is very low in Figure 6(b), it is stated that
several factors other than soil moisture or roughness can elevate backscattering in a com-
plicated way, and it is inappropriate to establish a direct and linear relationship between
soil moisture and backscattering.

4. Conclusion

ENVISAT ASAR was the first SAR sensor that produces a global coverage over the land
surface. However, for some operational reasons, a spatial coverage was irregular, and a
temporal resolution was low. Thus, it was difficult to collect time-series data. Although
ASCAT was operationally used for weather prediction models, its spatial resolution was
still low. As compared to ASAR or ASCAT, Sentinel-1 data has improvements in terms of
spatio-temporal resolutions. This study explored a retrieval algorithm to handle it in a
computationally effective way.

Figure 6. Spatial distribution in YA5 site on DoY 121: (a) soil moisture (b) difference in backscattering between IEM
and Sentine-1 (c) original Sentinel-1 backscattering. Units are indicated by color bars.
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For Sentinel-1 data, this study found that a monthly retrieval of surface roughness
from time series Sentinel-1 backscattering measurements is sufficient for soil moisture
retrievals, if surface condition is stable at LAI of 0.1� 0.3. In detail, a high spatial vari-
ability of surface roughness at this small scale is appropriately expressed by this inversion
approach, as spatial differences of backscattering between IEM simulated and Sentinel-1
were found to be small at 0.78 dB in YA3 site and 0.01 dB in YA5 site, respectively. the
YA3 site in dry soils exhibited spatially patterned roughness, which was considered as the
main contributor to backscattering variation. In contrast to the YA3 site, backscattering
intensity in the YA5 site was found to have a more complicated relationship with soil
moisture. Thus, it is suggested that this method fairly disentangled soil moisture from the
backscattering effects of other physical parameters such as roughness, and high backscat-
tering cannot be directly interpreted as wet soils. .

Due to assumption used for a retrieval of roughness, a change in vegetation conditions
or surface roughness should be well-monitored during a retrieval of roughness with this
algorithm. For example, a satellite-retrieved vegetation index should be associated with
this retrieval in order to monitor any change in land surface. In addition, large scale top-
ography would not be included for study domain. Thus, future works may suggest a strat-
egy to invert roughness and soil moisture from SAR backscattering under the effect of
volumetric scattering arising from time-varying vegetation. In addition, they will also
investigate whether artificial neutral network can effectively estimate roughness despite
this complicate and non-linear relationship between soil moisture and backscattering.
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