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2.1   Introduction  
Earth observing satellites have revolutionised our understanding and prediction of the 

Earth system over the last 30 years, particularly in the meteorologic and oceanographic 
sciences.  However, historically remote sensing data has not been widely used in hydrology.  
This can be attributed to: (i) a lack of dedicated hydrologic remote sensing instruments;  
(ii) inadequate retrieval algorithms for deriving global hydrologic information from remote 
sensing observations; (iii) a lack of suitable distributed hydrologic models for digesting 
remote sensing information; and (iv) an absence of techniques to objectively improve and 
constrain hydrologic model predictions using remote sensing data.  Three ways that remote 
sensing observations have been used in distributed hydrologic models are: (i) as parametric 
input data, including soil and land cover properties; (ii) as initial condition data, such as initial 
snow water storage; and (iii) as time-varying hydrological state data, such as soil moisture 
content, to constrain model predictions.  This chapter focuses on the latter. 

The historic lack of hydrologic missions and observations has been the result of an 
emphasis on meteorologic and oceanographic missions and applications, due to the large 
scientific and operational communities that drive those fields.  However, significant progress 
has been made over the past decade on defining hydrologically-relevant remote sensing 
observations through focused ground and airborne field studies.  Gradually, satellite-based 
hydrologic data are becoming increasingly available, though little progress has been made in 
understanding their observation error.  Land surface skin temperature and snow cover data 
have been available for many years, and satellite precipitation data are becoming available at 
increasing space and time resolutions.  In addition, land cover and land use maps, vegetation 
parameters (albedo, leaf area index and greenness), and snow water equivalent data of 
increasing sophistication are becoming available from a number of sensors.  Novel 
observations such as saturated fraction and changes in soil moisture, evapotranspiration, water 
level and velocity (i.e. runoff), and changes in total terrestrial water storage are also under 
development.  Further, near-surface soil moisture, a parameter shown to play a critical role in 
weather, climate, agriculture, flood, and drought processes, is currently available from non-
ideal sensor configuration observations.  Moreover, two missions targeted at measuring near-
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surface soil moisture with ideal sensor configuration are expected before the end of the 
decade.   

Though remote sensing can make spatially comprehensive measurements of various 
components of the hydrologic system, it cannot provide information on the entire system, and 
the measurements represent only a snap shot in time.  Land surface hydrology process models 
may be used to predict the temporal and spatial hydrologic system variations, but these 
predictions are often poor, due to model initialisation, parameter and forcing errors, and 
inadequate model physics and/or resolution. Figure 2.1 illustrates the hydrologic data 
assimilation challenge to optimally merge the spatially comprehensive but limited remote 
sensing observations with the complete but typically poor predictions of a hydrologic model 
to yield the best possible hydrologic system state estimation, and utilise limited point 
measurements to calibrate the model(s) and validate the assimilation results. 

Fig. 2.1 

While hydrologic data assimilation is still very much in its infancy, a few hydrologic 
models have been developed that can use remotely sensed observations.  The key is that the 
remote sensing observations of interest can be directly related to a prognostic state(s) of the 
hydrologic model.  Figure 2.2 demonstrates how satellite observations of the near-surface soil 
moisture content may be used to constrain the hydrologic model soil moisture prediction 
using state-of-the-art hydrologic data assimilation techniques [Walker et al., 2003].  This 
example uses actual space-borne near-surface soil moisture observations from a historic 
satellite record in a data assimilation framework, and highlights the significant benefit of 
using these techniques.  However, quantifying the hydrologic model prediction improvement 
by assimilating remote sensing data requires targeted field campaigns, and such data are 
lacking for these historic satellite records. 

Fig. 2.2 

Because of its importance, and our increasing ability to observe relevant hydrologic 
information remotely, it is expected that the amount of hydrologic remote sensing data will 
grow exponentially over the next decade.  However, its usefulness will be limited by our 
ability to analyse and integrate diverse hydrologic information with hydrologic models.  
Quantifying hydrologic process variability will require innovative interpretation of potentially 
large hydrologic observation volumes, due to observation type, scale, and error disparities 
(Table 2. 1).  The effect of variations in instrument type, placement, calibration and accuracy 
of both remote sensing and in-situ hydrologic observations must also be quantified.  The 
complexities of future hydrologic observation scenarios will require systematic methods to 
organise and comprehend this information.  Therefore a comprehensive hydrologic data 
assimilation framework will be a critical component of future hydrologic observation and 
modelling systems. 

 
Table 2.1 

 
2.2   History of Hydrologic Data Assimilation 

Charney et al. [1969] first suggested combining current and past data in an explicit 
dynamical model, using the model’s prognostic equations to provide time continuity and 
dynamic coupling amongst the fields.  This concept has evolved into a family of techniques 
known as data assimilation.  In essence, hydrologic data assimilation aims to utilise both our 
hydrologic process knowledge as embodied in a hydrologic model, and information that can 
be gained from observations.  Both model predictions and observations are imperfect and we 
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wish to use both synergistically to obtain a more accurate result.  Moreover, both contain 
different kinds of information, that when used together, provide an accuracy level that cannot 
be obtained when used individually.   

For example, a hydrologic model provides both spatial and temporal near-surface and root 
zone soil moisture information at the model resolution, including errors resulting from 
inadequate model physics, parameters and forcing data.  On the other hand, remote sensing 
observations contain near-surface soil moisture information at an instant in time, but do not 
give the temporal variation or the root zone moisture content.  While the remote sensing 
observations can be used as initialisation input for models or as independent evaluation, 
providing we use a hydrologic model that has been adapted to use remote sensing data as 
input, we can use the hydrologic model predictions and remote sensing observations together 
to keep the simulation on track through data assimilation [Kostov and Jackson, 1993].  
Moreover, large errors in near-surface soil moisture content prediction are unavoidable 
because of its highly dynamic nature. Thus when measured soil moisture data are available, 
their use to constrain the simulated data should improve the overall estimation of the soil 
moisture profile.  However, this expectation is based on the assumption that measurement 
errors are smaller than simulation errors [Arya et al., 1983].  

Data assimilation techniques were pioneered by meteorologists [Daley, 1991] and have 
been used very successfully to improve operational weather forecasts for decades.  Data 
assimilation has also been widely used in oceanography [Bennett, 1992] for improving ocean 
dynamics prediction.  However, hydrologic data assimilation has just a few case studies 
demonstrating its utility.  Fortunately, we have been able to jumpstart hydrologic data 
assimilation by building on knowledge derived from the meteorologic and oceanographic data 
assimilation experience, with significant advancements being made over the past decade. 

One of the primary areas of hydrologic data assimilation application has been with soil 
moisture content.  Other observation types, such as surface temperature, snow, terrestrial 
water storage and streamflow, have been used only in more recent applications.  The study by 
Jackson et al. [1981] was among the first to update soil moisture predictions using near-
surface soil moisture observations.  In this application, the soil moisture values in both layers 
of the United States Department of Agriculture Hydrograph Laboratory model were 
substituted with observed near-surface soil moisture observations as they became available.  
The model’s performance improvement was evaluated by annual runoff values.  Ottlé and 
Vidal-Madjar [1994] used a similar approach but with the assimilation of thermal infrared 
derived near-surface soil moisture content.  

Another early study based on the direct insertion assimilation method was that of Bernard 
et al. [1981].  Here synthetic observations of near-surface soil moisture content were used to 
specify the surface boundary condition of a classical one-dimensional soil water diffusion 
model, in order to estimate the surface flux.  They found that large soil moisture content 
variations resulting from rainy periods required special handling of the upper boundary 
condition.  Prevot et al. [1984] repeated this study with real observations and a similar 
approach was used by Bruckler and Witono [1989].  A more popular approach for the 
improved estimation of land surface fluxes has been the assimilation of screen-level 
measurements of relative humidity and temperature [Bouttier et al., 1993; Viterbo and 
Beljaars, 1995].  To date only one study has explored the assimilation of remotely sensed 
land surface flux observations [Schuurmans et al., 2003]. 

The first known study to use an “optimal” assimilation approach is that of Milly [1986].  In 
this study, a Kalman filter (a statistical assimilation approach) was used to update a simple 
linear reservoir model with near-surface soil moisture observations.  It was not until 



 4

Entekhabi et al. [1994] that this approach was extended, when synthetically-derived vertical 
and horizontal polarised passive microwave and thermal infrared observations were 
assimilated into a one-dimensional soil moisture and temperature diffusion model using the 
Kalman filter.  This synthetic study was further extended by Walker et al. [2001a] to more 
realistic observation times and Walker et al. [2001b] to a field application.  Since then there 
has been a plethora of one-dimensional Kalman filter and variational assimilation studies.    

Georgakakos and Baumer [1996] were one of the first to use the Kalman filter to update a 
hydrologic basin model with near-surface soil moisture measurements.  Results showed that 
even when the observations carried substantial measurement errors, estimation of soil 
moisture profiles and total soil moisture storage was possible with an error that was smaller 
than that achieved without the use of remotely sensed data.  Walker et al. [2002] were also 
among the first to use a three-dimensional Kalman filter based assimilation in a small 
catchment distributed hydrologic model.  Houser et al. [1998] was the first detailed study of 
several alternative assimilation approaches, including direct insertion, statistical correction, 
Newtonian nudging and optimal interpolation.  Both the Newtonian nudging and optimal 
interpolation approaches, pathological cases of the Kalman filter, showed the greatest 
improvement.   

 
2.3   Summary of Data Assimilation 

The data assimilation challenge is: given a (noisy) model of the system dynamics, find the 
best estimates of system states X from (noisy) observations Z.  Most current approaches to 
this problem are derived from either the direct observer (i.e. Kalman filter) or dynamic 
observer (i.e. variational through time) techniques.  Figure 2.3 illustrates schematically the 
key differences between these two approaches to data assimilation.  To help the reader 
through the large amount of jargon typically associated with data assimilation, a list of 
terminology has been provided (Table 2.2).  

 
Fig. 2.3 

 
Table 2.2 

 
2.3.1  Direct Observer Assimilation  

The direct observer techniques sequentially update the model forecast, using the 
difference between observation Z and model predicted observation Ẑ , known as the 
‘innovation’, whenever observations are available.  The predicted observation is calculated 
from the model predicted or ‘background’ states, indicated by the superscript b.  The 
correction added to the background state vector is the innovation multiplied by a weighting 
factor K known as the ‘gain’ (sometimes called the Kalman gain).  The gain represents the 
relative uncertainty in the observation and model variances, and is a number between 0 and 1 
in the scalar situation.  The resulting estimate of the state vector is known as the ‘analysis’, as 
indicated by the superscript a.   
 

( )kk
b
k

a
k ZZKXX ˆˆ −+=  (2.1) 

 
The subscript k refers to the time of the update.  If the uncertainty of the predicted observation 
(as calculated from the background states and their uncertainty) is large relative to the 
uncertainty of the actual observation, then the analysis state vector takes on values that will 
yield the actual observation.  Conversely, if the uncertainty of the predicted observation is 
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small relative to the uncertainty of the actual observation, then the analysis state vector is 
unchanged from the original background value.  The commonly used direct observer methods 
are: 
 

1. Direct Insertion 
2. Statistical Correction 
3. Successive Correction 
4. Optimal Interpolation/Statistical Interpolation 
5. Analysis Correction 
6. Nudging 
7. 3D Variational 
8. Kalman Filter and variants 

 
While approaches like direct insertion, nudging and optimal interpolation are computationally 
efficient and easy to implement, the updates do not account for observation uncertainty or 
utilise system dynamics in estimating model background state uncertainty, and information on 
estimation uncertainty is limited.  The Kalman filter, while computationally demanding in its 
pure form, can be adapted for near-real-time application and provides information on 
estimation uncertainty.  However, it has only limited capability to deal with model errors, and 
necessary linearisation approximations can lead to unstable solutions.  The ensemble Kalman 
filter, while it can be computationally demanding (depending on the size of the ensemble) is 
well suited for near-real-time applications, is robust, very flexible and easy to use, and is able 
to accommodate a wide range of model error descriptions. 
 
2.3.2  Dynamic Observer Assimilation  

The dynamic observer techniques find the best fit between the forecast model state and the 
observations, subject to the initial state vector uncertainty Σ and observation uncertainty R, by 
minimising over space and time an objective function J such as 
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where the superscript b refers to the initial or ‘background’ estimate of the state vector, the 
subscript refers to time, and N is the number of time steps.  To minimise the objective 
function over time, an assimilation time ‘window’ is defined and an ‘adjoint’ model is 
typically used to find the derivatives of the objective function with respect to the initial model 
state vector X0.  The adjoint is simply a mathematical operator that allows one to determine 
the sensitivity of the objective function to changes in the solution of the state equations by a 
single forward and backward pass over the assimilation window.  While an adjoint is not 
strictly required (i.e. a number of forward passes can be used to numerically approximate the 
objective function derivatives with respect to each state), it makes the problem 
computationally tractable.  The dynamic observer techniques can be considered simply as an 
optimisation or calibration problem, where the state vector – not the model parameters – at the 
beginning of each assimilation window is “calibrated” to the observations over that time 
period.  The dynamic observer techniques can be formulated with:  
 

1. Strong Constraint (variational) 
2. Weak Constraint (dual variational or representer methods)  
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Strong constraint is where the model is assumed perfect, as in equation 2.2, while weak 
constraint is where errors in the model formulation are taken into account as process noise.  
This is achieved by including an additional term in equation 2.2 so that 
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where w is the model error vector and Q is the model error variance-covariance matrix.   

Dynamic observer methods are well suited for smoothing problems, but provide 
information on estimation accuracy only at considerable computational cost.  Moreover, 
adjoints are not available for many existing hydrologic models, and the development of robust 
adjoint models is difficult due to the nonlinear nature of hydrologic processes.   
 
2.3.3  Features of Data Assimilation 

The potential benefit of data assimilation for hydrologic science is tremendous and can be 
summarised as follows [adapted from Rood et al., 1994]:  

• Organises the data by objectively interpolating from the observation space to the 
model space.  The raw observations are organised and given dynamical consistency 
with the model equations, thereby enhancing their usefulness.  

• Supplements the data by constraining the model's physical equations with 
parsimonious observations, which can be used to estimate unobserved quantities.  This 
allows the progress of research that would be impossible without assimilation, because 
it allows for a more complete understanding of the true state of a hydrologic system 
(see Figure 2.4a).  

• Complements the data by propagating information into regions of sparse observations 
using either observed spatial and temporal correlations, or the physical relationships 
included in the model (see Figure  2.4b). 

• Quality controls the data through comparison of observations with previous forecasts 
to identify and eliminate spurious data.  By performing this comparison repeatedly, it 
is possible to calibrate observing systems and identify biases or changes in observation 
system performance. 

• Validates and improves the hydrological models by continuous model confrontation 
with real data.  This helps to identify model weaknesses, such as systematic errors, 
and correct them. 

 
Fig. 2.4 a, b 

 
2.3.4  Quality Control for Data Assimilation 

One of the major components of any data assimilation system is quality control of the input 
data stream.  Quality control is a pre-assimilation rejection or correction of questionable or 
bad observations, which begins where the remote sensing product quality control activities 
leave off.  The observation data from remote sensing systems contain errors that can be 
classified into two types: 

1. Natural Error (including instrument and representativeness error) 
2. Gross Error (including improperly calibrated instruments, incorrect registration or 

coding of observations, and telecommunication error) 
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These errors can be either random or spatially and/or temporally correlated with each other; 
inversion techniques and instrument biases can be correlated in time and space, and 
calibrations of remote sensing instruments can drift.  To address these problems a number of 
quality control operations are performed.   

The quality control process consists of a set of algorithms which examine each data item, 
individually or jointly, in the context of additional information.  Their primary purpose is to 
determine which of the data are likely to contain unknown (incorrigible) gross errors, and 
which are not.  Quality control proceeds in a three step process: (i) test for potential problem 
observations; (ii) attempt to correct the problem observation; and (iii) decide the fate of the 
observation (data rejection).  The quality control algorithms can be categorised as follows:  

• Quality control flags are used to check the data for inconsistencies noted during the 
measurement, transmission, pre/post processing and archiving stages. 

• Consistency or sanity checks see if the observation absolute value or time rate of 
change is physically realistic.  This check filters such things as observations outside 
the expected range, unit conversion problems, etc. 

• Buddy checks compare the observation with comparable nearby (space and time) 
observations of the same type and reject the questioned observation if it exceeds a 
predefined level of difference.   

• Background checks examine if the observation is changing similarly to the model 
prediction.  If it is not, and the user has some reasonable confidence in the model, the 
observation may be questioned.   

 

2.3.5  Validation Using Data Assimilation 
The continuous confrontation of model predictions with observations in a data assimilation 

system presents a rich opportunity to better understand physical processes and observation 
quality in a structured, iterative, and open-ended learning process.  Inconsistencies between 
observations and predictions are easily identified in a data assimilation system, providing a 
basis for observational quality control and validation.  Systematic differences between 
observations and model predictions can identify systematic error.  This methodology clearly 
illustrates the importance of a good quality forecast and an analysis that is reasonably faithful 
to the observations.  If the hydrologic model makes reasonably good predictions, then the 
analysis must only make small changes to an accurate background field. 

The validation of observations in a data assimilation system is centred on: (i) comparisons 
of new observations with the model forecast and the data assimilation analysis; and (ii) 
interpretation of the forecast error covariances.  The data assimilation validation algorithms 
can be categorised as follows:  

• Innovation evaluation compares the observation with the model prediction as either a 
single point in time or change over time; large or obvious deviations from the model 
prediction are probably wrong.  Means, standard deviations, and time evolution of 
observed minus predicted fields are examined with the goal of detecting abrupt 
changes. 

• Analysis residual evaluation compares the observation with the data assimilation 
analysis.  Examination of the means, standard deviations, and time evolution of 
observed minus predicted fields will help to diagnose systematic or abrupt observation 
system changes.  This technique is useful to diagnose the performance of the analysis, 



 8

and if the observations are being used effectively [Hollingsworth and Lonnberg, 
1989]. 

• Observation withholding is a stringent method for validation in an assimilation system 
where some of the observational data are withheld from the analysis procedure in 
data-dense regions.  This allows the analysis to be validated against the withheld 
observations. 

• Εrror  propagation is undertaken and changes in the regional distribution or absolute 
value of these errors could indicate observational problems. 

• Model and observation bias is generally assumed to be zero and uncorrelated in space.  
These assumptions work reasonably well for in situ observations, but satellite 
observations are usually biased by inaccurate algorithms, and their errors are usually 
horizontally correlated because the same sensor is making all the observations.  With 
recent work by Dee and Todling [2000] the bias of the model and observations can be 
continuously estimated and corrected for.  Evaluation of these bias estimates in space 
and time may lead to additional insights on the observational characteristics.  

 

2.4   Direct Observer Assimilation Methods 
Land surface hydrology process models are typically nonlinear, and can be considered to 

forecast the system state vector X at time k+1 as a function of the system state vector estimate 
at the previous time step k and a forcing vector U.  The model state forecast is subject to a 
model error vector w, which represents errors in the model forcing data, initial conditions, 
parameters and physics.  The state equation is given by 

 
( ) kkkkk a wUXX +=+ ,1 , (2.4) 

 
where a is a nonlinear operator.  This equation can be linearised to obtain the ‘tangent linear 
model’ as 
 

kkkkkk wUBXAX ++=+1 . (2.5) 
 
The state space equation is subject to the initial state vector 
 

( ) 000 eXX += t , (2.6) 
 

with error vector e.  The observation equation is given by 
 

( ) kkkk h vXZ +=ˆ , (2.7) 
 

where h is a nonlinear operator.  This equation can also be linearised as 
 

kkkk vYHXZ ++=ˆ , (2.8) 
 

with error vector v. 
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The key assumptions of this assimilation approach are that the error terms w, v and e are 
uncorrelated (white) through time and have Gaussian distributions as represented by their 
covariance matrices Q, Σ and R, respectively. That is 
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where E is the expectation operator.  The assumption that observation and model errors are 
unbiased relative to each other and the “truth” is the most restrictive assumption, most 
commonly violated assumption, and most detrimental assumption in terms of predictive 
performance. 

One key question in the direct observer data assimilation technique, and the fundamental 
difference between the various methods, is the choice of the gain matrix K.  Ultimately Kk 
should be chosen such that a

kX  approaches the expectation of Xk as k approaches infinity.  
This can be achieved by choosing K as the optimal least squares estimator or Best Linear 
Unbiased Estimator (BLUE) analysis obtained as a solution to the variational optimisation 
problem posed in equation 2.2.  That is, choosing K such that objective function J is a 
minimum.  This can be shown analytically to produce [Bouttier and Courtier, 1999] 

 
( ) 1TT −

+= RHHΣHΣK bb , (2.10) 
 

where RHHΣ ˆT =b  is the covariance matrix of the predicted observation Ẑ .  Thus, on 
assimilation interval k∈[0,N], the analysis a

NX  given by the Kalman filter should be equal to 
the converged solution obtained by the adjoint method at time k equal to N. 

From application of standard error propagation theory on the correction equation it can 
also be shown that the updated uncertainty of the states is given by 
 

( ) ( ) TT KRKKHIΣKHIΣ +−−= ba , (2.11) 
 
where I is the identity matrix.  Equations 2.1, 2.5, 2.8, 2.10 and 2.11 form the basis of the 
Kalman filter approach [Kalman, 1960] to data assimilation.   

Apart from the assumption that errors are unbiased and normally distributed, the difficulty 
associated with applying these equations is an estimate of the background variance-covariance 
matrix Σb, and that to find the analysis Xa one must compute ( ) ( )bbb ZZRHH ΣHΣ ˆ1TT −+

− , 
which is computationally expensive.  As a result, approximations to these equations and/or 
alternative methodologies of solving the key equations are sought.  Ultimately, it is 
approximations to K that are typically made. 

 
2.4.1  Direct Insertion 

One of the earliest and most simplistic approaches to data assimilation is direct insertion.  
As the name suggests, the forecast model states are directly replaced with the observations by 
essentially assuming that K = 1.  This approach makes the explicit assumption that the model 
is wrong (has no useful information) and that the observations are right, which both 
disregards important information provided by the model and preserves observation errors.  A 
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further key disadvantage of this approach is that model physics are solely relied upon to 
propagate the information to unobserved parts of the system [Houser et al., 1998; Walker et 
al., 2001a]. 

 
2.4.2  Statistical Correction 

A derivative of the direct insertion approach is the statistical correction approach, which 
adjusts the mean and variance of the model states to match those of the observations.  This 
approach assumes the model pattern is correct but contains a non-uniform bias.  First the 
predicted observations are scaled by the ratio of observation field standard deviation to 
predicted field standard deviation.  Second, the scaled predicted observation field is given a 
block shift by the difference between the means of the predicted observation field and 
observation field [Houser et al., 1998].  This approach also relies upon the model physics to 
propagate the information to unobserved parts of the system. 
 
2.4.3  Successive Correction 

This is an iterative type approach that uses weights W to smooth observations into the 
model states, by modifying the states at all grid points within a specified radius of influence r 
of each observation s [Bratseth, 1986].  Any weighting system can be used, but the Cressman 
weights given by  
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are commonly used, where dij is the distance between grid point i,j and the observation.  In 
practice the approach is usually applied consecutively to each observation s from 1 to sf as  
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and then setting fs
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This approach assumes that the observations are more accurate than model forecasts, with the 
observations fitted as closely as is consistent.  Moreover, it is ineffective in data sparse 
regions [Nichols, 2001]. 
 
2.4.4  Optimal Interpolation 

The optimal interpolation (OI) approach, sometimes referred to as statistical interpolation, 
approximates the “optimal” solution from equation 2.10 by choosing 
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( ) 1TT ~~ −
+= RHΣHHΣK bb  (2.15) 

 
where bΣ~  is an approximated background covariance matrix with a “fixed” structure for all 
time steps, and is often given by prescribed variances and a correlation function given only by 
distance [Lorenc, 1981]. 
 
2.4.5  Analysis Correction 

This is a modification to the successive correction approach that is applied consecutively to 
each observation s from 1 to sf as [Lorenc et al., 1991] 
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k ZZVWXX ˆ1 −+=+ , (2.16) 

 
where the observation vector Zs is also successively updated by 
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and the weight matrices W and V given by 
 

1T~ −= kk
b
kk RHΣW  (2.18a) 

( ) 1−
+= kkk WHIV . (2.18b) 

 
In practice Zs is not updated and Vk is approximated to avoid inversion.  The result of these 
assumptions is an update equation equivalent to that for optimal interpolation [Nichols, 1991].  
 
2.4.6  Nudging 

The nudging approach approximates the gain matrix by the empirical function  
 

( )( ) 1T  −≈ IWΘWWK G , (2.19) 
 
where G is a nudging factor that gives the magnitude of the nudging term and has a value 
from 0 to 1, Θ is an observational quality factor with a value from 0 to 1, I is the identity 
matrix and W is a temporal and spatial weighting function also with a value from 0 to 1.  The 
function W is given by wxywzwt, where wxy is a horizontal weighting function (i.e. Cressman), 
wz is a similar vertical weighting function, and wt is a temporal weighting function.  Each of 
these temporal/spatial weighting functions has a value from 0 to 1 [Stauffer and Seaman, 
1990].   
 
2.4.7  3D Variational 

This approach directly solves the iterative minimisation problem given by equations 2.2 or 
2.3 for N = 1 [Parrish and Derber, 1992].  The same approximation for the background 
covariance matrix as in the optimal interpolation approach is typically used.  The solution 
gives an analysis which is similar in nature to the direct insertion approach. 
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2.4.8  Kalman Filter 
The family of Kalman filter data assimilation approaches calculate the gain matrix in 

equation 2.10 by directly forecasting the background covariance matrix.  In the traditional 
Kalman filter (KF) approach this is achieved by application of standard error propagation 
theory on the (tangent) linear model in equation 2.5.  (The only difference between the 
Kalman filter and the extended Kalman filter is that the forecast model is linearised using a 
Taylor’s series expansion; the same forecast and update equations are used for each.)  The 
state covariance forecast equation is 

 
kk

b
kk

b
k QAΣAΣ +=+

T
1 , (2.20) 

 
where A is the linear operator from equation 2.5 and Q is the model error covariance matrix 
given in equation 2.9.  Thus, the (extended) Kalman filter requires propagation of the state 
covariances along with the states.  While the approach gives an optimal analysis for the 
assumed statistics, the initial state error covariance matrix Σ0 and more seriously the model 
error covariance matrix Q are difficult to define, and often assumed ad hoc.   

The standard extended Kalman filter (EKF) approach assumes an explicit model, which is 
limiting in terms of computational runtime as a result of the small step size necessary to 
satisfy stability criteria.  However, it is also possible to apply the same update and state 
covariance forecast equations to an implicit formulation, such as the Crank-Nicholson scheme 
 

22111 Ω+Φ=Ω+Φ + kk XX , (2.21) 
 

by making the substitutions that 
 

 2
1

1 ΦΦ= −
kA  (2.22a) 

[ ]12
1

1 Ω−ΩΦ= −
kk UB , (2.22b) 

 
but the inverse and multiplication required to calculate A is costly for large systems [Walker 
et al., 2001b]. 

The standard extended Kalman filter update and state covariance forecast equations can 
also be applied directly with a nonlinear state forecast model. This is achieved by numerically 
approximating the Jacobians A and H as required by 
 

b
k

b
k

k X
XA
∂
∂

= +1  (2.23a) 

b
k

k
k X

ZH
∂
∂

= . (2.23b) 

 
However, the cost of doing this is n+1 times the standard model run time, where n is the 
number of state variables to be updated by the assimilation.  Note that only states with 
significant correlation to the observation need be included in the state covariance forecast and 
update [Walker and Houser, 2001].  

A further approach to estimating the state covariance matrix is the ensemble Kalman filter 
(EnKF).  As the name suggests, the covariances are calculated from an ensemble of state 
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forecasts using the Monte Carlo approach rather than a single discrete forecast of covariances.  
In this case m ensembles of n model predicted states X are stored as x using different initial 
conditions and forcing [Turner et al., 2004], different parameters and/or models, different 
model error (additive/multiplicative/etc.), etc., in order to get a representative spread of state 
forecasts amongst the ensemble members.  While this is quite straight forward, the question of 
what model error w to apply, and how, is still a major unknown.  Moreover, special care is 
required when m is less than the number of observations n. 

Using this approach, the background state covariance matrix is basically calculated as  
 

( )( )
1

T

−
−−

=
m

b
k

b
k

b
k

b
kb

k
xxxxΣ . (2.24) 

 
This could then be used in equation 2.10 directly, except some smart maths is typically used 
so only matrices of size (n x m) are required [Evensen, 1994; Houtekamer and Mitchell, 
1998].  Thus, Σb is never calculated explicitly.  Here the analysis equation is presented as 
 

kk
b
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a
k bBXX T+= , (2.25) 

 
where 

 
TT
k

b
kk HΣB =  (2.26a) 

( ) ( )kkkk
b
kkk ZZRHΣHb ˆ1T −+=

− . (2.26b) 
 

By rearranging equation 2.26a and letting y = Z + ζ, where ζ is a zero mean random 
observation error term with covariance matrix R, b is solved for each ensemble from 

 
( ) ( )kkkkk

b
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where  
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and 

 
( ) ( )kk

b
k

b
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The vector ẑ  is the predicted observation vector for each of the respective ensemble 
members.  In this case it is not necessary to solve for H either, and the updates are made 
individually to each of the ensemble members.  Finally, B can be estimated from 

 
( ) TT

1 k

b
k
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k m
qxxB

−
−

= . (2.30) 

 
Reichle et al. [2001a] applied the ensemble Kalman filter to the soil moisture estimation 

problem and found it to perform as well as the numerical Jacobian approximation approach to 
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the extended Kalman filter, with the distinct advantage that the error covariance propagation 
is better behaved in the presence of large model nonlinearities.  This was the case even when 
using only the same number of ensembles as required by the numerical approach to the 
extended Kalman filter i.e. n+1. 
 
2.5   Dynamic Observer Assimilation Methods 

In its pure form, the ‘variational’ (otherwise known as Gauss-Markov) dynamic observer 
assimilation methods use an adjoint to efficiently compute the derivatives of the objective 
function J with respect to each of the initial state vector values X0.  This adjoint approach is 
derived by defining the Lagrangian L as the adjoining of the model to the model response 
using Lagrange multipliers λ  
 

( )[ ]∑
−

++ −+=
1

0
1

T
1 ,

N

kkkkk aJ UXXλL , (2.31) 

 
where ideally the second term is zero.  Thus the Lagrange multiplier is chosen such that  
∇L = 0 and λN = 0, yielding (i.e. backward pass) 
 

( )kkkkkkk ZZRHλAλ ˆ1T
1

T −−= −
+ . (2.32) 

 
The derivative of the objective function is given from the Lagrange multiplier at time zero by 

T
0λ−  [Castelli et al., 1999; Reichle et al., 2001a].  Note that AT, the adjoint operator, is from 

the tangent linear model in equation 2.5, and effectively needs to be saved during the forward 
pass [Bouttier and Courtier, 1999].  Solution to the variational problem is then achieved by 
minimisation and iteration.  In practical application the number of iterations is usually 
constrained to a small amount. 

While ‘adjoint compilers’ are available (see http://www.autodiff.com/tamc/) for automatic 
conversion of the nonlinear forecast model into a tangent linear model, application of these is 
not straight forward.  It is best to derive the adjoint at the same time as the model is 
developed.   
 
2.6   Case Studies 

Significant advances in hydrologic data assimilation have been made over the past decade 
from which we have selected a few case studies to demonstrate the utility of hydrologic data 
assimilation.  

 

2.6.1  Case Study 1: Soil Moisture Assimilation 
A one-dimensional Kalman filter soil moisture assimilation strategy was developed by 

Walker and Houser [2001] that provides a framework to constrain model predicted soil 
moisture with observations, using covariances that represent their respective uncertainty.  A 
one-dimensional extended Kalman filter was used because of its computational efficiency and 
the fact that horizontal correlations between soil moisture prognostic variables of adjacent 
catchments at the scales of interest to climate modelling are likely only through the large-
scale correlation of atmospheric forcing.  A set of numerical experiments was undertaken for 
North America to illustrate the effectiveness of the Kalman filter assimilation scheme in 
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providing an accurate soil moisture estimate.  When assimilating surface soil moisture once 
every 3 days, the scheme was generally able to retrieve the “true” profile soil moisture after 
only 1 month, and the predicted evapotranspiration and runoff fluxes were significantly 
improved.   

Walker and Houser [2004] used this same EKF framework to address soil moisture 
satellite mission accuracy, repeat time and spatial resolution requirements through a 
numerical twin study.  Simulated soil moisture profile retrievals were made by assimilating 
near-surface soil moisture observations with various accuracy, repeat time and spatial 
resolution.  It was found that: (i) near-surface soil moisture observation error must be less 
than the model forecast error required for a specific application and must be better than 5%v/v 
accurate to positively impact soil moisture forecasts, (ii) daily near-surface soil moisture 
observations achieved the best soil moisture and evapotranspiration forecasts, (iii) near-
surface soil moisture observations should have a spatial resolution of around half the model 
resolution, and (iv) satisfying the spatial resolution and accuracy requirements was much 
more important than repeat time.  This kind of study is important for planning future 
observation systems, but it must be recognised that observation requirements are also highly 
application specific; for example, flood forecasting and precision agriculture requirements 
will likely have different requirements than climate modelling and policy planning, as they 
operate at different scales. 

Walker and Houser [2002] was the first known study to use space-borne measurements of 
near-surface soil moisture content to estimate the spatial and temporal variation of soil 
moisture content at the continent scale by the process of data assimilation.  Near-surface soil 
moisture measurements from the 6.6 GHz (C-band) channels of the Scanning Multi-channel 
Microwave Radiometer (SMMR) were assimilated into a land surface model over North 
America using a Kalman filter to correct for soil moisture estimation errors.  Comparison with 
the limited ground-based point measurements of soil moisture content found a net 
improvement when near-surface soil moisture observations were assimilated.  Walker et al. 
[2003] used a similar approach to estimate the spatial and temporal variation of soil moisture 
content across Australia (Figure 2.2).  Unfortunately the lack of appropriate soil moisture 
evaluation data and mismatch in scale between model output and available data made it 
difficult to draw any conclusive statements regarding improvements in soil moisture 
predictions.  There was however an obvious increase in correlation between soil moisture 
predictions and NDVI data when SMMR surface soil moisture data were assimilated.  This 
provides some encouragement for pursuing assimilation experiments using the new AMSR-E 
data, and the collection of more appropriate ground-based soil moisture data for validation 
purposes. 

 

2.6.2  Case Study 2: Downscaling With Data Assimilation 
In a data assimilation framework, it may be possible to effectively increase the resolution 

of observations by making use of forecasts that include higher resolution meteorological, land 
cover, and soil texture information.  Figure 2.5 demonstrates how low resolution brightness 
temperature observations have been used to estimate soil moisture at high resolution through 
variational assimilation into a land surface model [Reichle et al., 2001b].  Spatial structures at 
scales well below the scale of the observations were resolved satisfactorily.  This means that 
brightness images with a resolution of a few tens of kilometres are useful, even if the 
estimation scale of interest is of the order of a few kilometres, provided that fine-scale 
information is available on the meteorological forcing, land cover, and texture. 
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Fig. 2.5 

The downscaling properties of data assimilation may also be able to help overcome the 
limitations of passive radiometric remote sensing (higher accuracy but lower spatial 
resolution) and active radar remote sensing (higher spatial resolution but lower accuracy) for 
sensing soil moisture.  Zhan et al. [2004] tested this hypothesis by conducting an Observation 
System Simulation Experiment (OSSE), where the feasibility of retrieving surface soil 
moisture at a medium spatial scale (10 km) from both coarse scale (40 km) radiometer 
brightness temperature and fine scale (3 km) radar backscatter cross-section observations was 
evaluated using the extended Kalman filter.  In this case the background field was an 
inversion of the passive data.  Compared with the results from traditional soil moisture 
inversion algorithms, the combined active-passive extended Kalman filter retrieval algorithm 
significantly reduced soil moisture error at the medium scale.  There is the potential to further 
enhance this downscaling approach by additionally using the information contained in 
overlapping observations. 

 

2.6.3  Case Study 3: Snow Assimilation 
Because of snow’s high albedo, thermal properties, feedback to the atmosphere and being a 

medium-term water store, improved snow state estimation has the potential to greatly increase 
climatological and hydrological prediction accuracy.  An analysis scheme to assimilate 
observed snow water equivalent into a land surface model has been developed [Sun et al., 
2004].  Using a set of numerical ‘twin’ experiments, the scheme is shown to be successful in 
retrieving the snow states (snow water equivalent, snow depth and snow temperature) from 
observations of snow water equivalent alone.  The study illustrates that by assimilating 
remotely sensed snow water equivalent observations, the errors in forecast snow states from 
poor initial conditions can be removed (Figure 2.6), and the prediction of runoff and 
atmospheric fluxes improved.  A comparison between monthly-averaged runoff and 
atmospheric fluxes showed negligible differences between the assimilation and truth 
simulations.  Moreover, the assimilation significantly improved both upward shortwave and 
longwave radiation, and runoff predictions, as compared to no assimilation.  

Fig. 2.6 

Snow has several properties that make it uniquely challenging to assimilate, as follows. 
First, snow cover and depth observations provide an incomplete description of the multi-layer 
snow water equivalent, temperature and density states used in most physical snow models.  For 
example, snow cover observations provide a binary snow presence description without snow 
quantity information.  This is generally incompatible with data assimilation schemes that act 
on snow states.  Rodell et al. [2002] overcame this problem by adding an arbitrarily thin layer 
of snow to model elements that have no snow when snow cover was observed.  Second, snow 
is a highly transient model state that disappears and is not predicted for long periods of time 
during the year.  This is generally incompatible with modern data assimilation techniques that 
seek to propagate error covariances; when there is no snow state prediction (i.e. when the 
temperature is above freezing), then there can also be no error propagation.  This problem was 
overcome by Sun et al., [2004] by simply reinitializing the error covariances when snow 
reappeared, but may not be so easily overcome in an ensemble Kalman filter context where 
ensemble members may vary significantly.  Finally, in the presence of temperature bias, snow 
assimilation may have an undesirable water budget impact.  Cosgrove et al. [2004] show that 
large water balance errors occur when imperfect snow melting processes interact with the 
direct insertion of perfect snow observations.  Constraining these snow melt biases is important 
for achieving optimal assimilation results, and is an important topic for future research. 
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2.6.4  Case Study 4: Skin Temperature Assimilation 

The land surface skin temperature state is a principle control on land-atmosphere fluxes of 
water and energy. It  is closely related to soil water states, and is easily observable from space 
and aircraft infrared sensors in cloud-free conditions.  The usefulness of skin temperature in 
land data assimilation studies is limited by its very short memory (on the order of minutes) 
due to the very small heat storage it represents.  Radakovich et al. [2001] have demonstrated 
skin temperature data assimilation in a land surface model (Figure 2.7) using three-hourly 
observations from the International Satellite Cloud Climatology Project (ISCCP).  
Incremental and semi-diurnal bias correction techniques based on Dee and da Silva [1998] 
were developed to account for biased skin temperature forecasts.  The assimilation of ISCCP-
derived surface skin temperature significantly reduced the bias and standard deviation 
between model predictions and the NCEP reanalysis [Kalnay et al., 1996].  However, the 
assimilation of ISCCP-derived surface skin temperature has a substantial impact on the sensible 
heat flux, due to an enhanced gradient between the surface and 2m air temperatures.  If the near-surface 
air temperature were interactive, as in a coupled land-atmosphere model, then it would respond to this 
enhanced flux rather then maintaining the artificial temperature gradient. 

Fig. 2.7 

 

2.7   Summary 
Hydrologic data assimilation is an objective method to estimate the hydrologic system 

states from irregularly distributed observations.  These methods integrate observations into 
numerical prediction models to develop physically consistent estimates that better describe 
the hydrologic system state than the raw observations alone.  This process is extremely 
valuable for providing initial conditions for hydrologic system prediction and/or correcting 
hydrologic system prediction, and for increasing our understanding and improving 
parameterisation of hydrologic system behaviour through various diagnostic research studies.   

Hydrologic data assimilation is still in its infancy, with many open areas of research.  
Development of hydrologic data assimilation theory and methods is needed to: (i) better 
quantify and use model and observation errors; (ii) create model independent data 
assimilation algorithms that can account for the typical non-linear nature of hydrologic 
models; (iii) optimise data assimilation computational efficiency for use in large operational 
hydrological applications; (iv) use forward models to enable the assimilation of remote 
sensing radiances directly; (v) link model calibration and data assimilation to optimally use 
available observation information; (vi) create multivariate hydrologic assimilation methods to 
use multiple observations with complementary information; (vii) quantify the potential of data 
assimilation downscaling; and (viii) create methods to extract the primary information content 
from observations with redundant or overlaying information.  Further, the regular provision of 
snow, soil moisture, and surface temperature observations with improved knowledge of 
observation errors in time and space are essential to advance hydrologic data assimilation.  
Hydrologic models must also be improved to: (i) provide more “observable” land model 
states, parameters, and fluxes; (ii) include advanced processes such as river runoff and 
routing, vegetation and carbon dynamics, and groundwater interaction to enable the 
assimilation of emerging remote sensing products; (iii) have valid and easily updated adjoints, 
and (iv) have knowledge of their prediction errors in time and space.  The assimilation of 
additional types of hydrologic observations, such as streamflow, vegetation dynamics, 
evapotranspiration, and groundwater or total water storage must be developed.   
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As with most current data assimilation efforts, we describe data assimilation procedures 
that are implemented in uncoupled models.  However, it is well known that the high-
resolution time and space complexity of hydrologic phenomena have significant interaction 
with atmospheric, biogeochemical, and oceanic processes.  Scale truncation errors, unrealistic 
physics formulations, and inadequate coupling between hydrology and the overlying 
atmosphere can feedback to cause serious systematic hydrologic errors.  Hydrologic balances 
cannot be adequately described by current uncoupled hydrologic data systems, because large 
analysis increments that compensate for errors in coupling processes (e.g. precipitation) result 
in important non-physical contributions to the energy and water budgets.  Improved coupled 
process models with improved feedback processes, better observations, and comprehensive 
methods for coupled assimilation are needed to achieve the goal of fully coupled data 
assimilation systems that should produce the best and most physically consistent estimates of 
the Earth system. 

 
2.8   References 
Arya, L. M., Richter, J. C., and Paris, J. F., (1983). Estimating profile water storage from 

surface zone soil moisture measurements under bare field conditions. Wat. Resour. Res., 
19(2): 403-412. 

Bennett, A. F., (1992.) Inverse methods in physical oceanography. Cambridge University 
Press, 346 pp. 

Bernard, R., Vauclin, M., and Vidal-Madjar, D., (1981). Possible use of active microwave 
remote sensing data for prediction of regional evaporation by numerical simulation of soil 
water movement in the unsaturated zone. Wat. Resour. Res., 17(6): 1603-1610. 

Bouttier, F., and Courtier P., (1999). Data assimilation concepts and methods. ECMWF 
training course notes. 

Bouttier, F., Mahfouf, J. -F., and Noilhan, J., (1993). Sequential assimilation of soil moisture 
from atmospheric low-level parameters. Part I: Sensitivity and calibration studies, J. Appl. 
Meteorol., 32(8): 1335-1351. 

Bratseth, A. M., (1986). Statistical interpolation by means of successive corrections. Tellus 
38A: 439-447. 

Bruckler, L., and Witono, H. (1989). Use of remotely sensed soil moisture content as 
boundary conditions in soil-atmosphere water transport modeling: 2. Estimating soil water 
balance. Wat. Resour. Res., 25(12): 2437-2447. 

Castelli, F., Entekhabi, D., and Caporali, E., (1999). Estimation of surface heat flux and an 
index of soil moisture using adjoint-state surface energy balance. Wat. Resour. Res., 35(10): 
3115-3125. 

Charney, J. G., Halem, M., and Jastrow, R., (1969). Use of incomplete historical data to infer 
the present state of the atmosphere. J. Atmos. Sci. 26: 1160-1163. 

Cosgrove, B. A., Houser P. R., and Toll D. L., (2004). Impact of surface forcing biases on 
snow assimilation. In preparation. 

Daley, R., (1991). Atmospheric data analysis. Cambridge University Press, 460 pp. 

Dee, D. P., and da Silva, A., (1998). Data assimilation in the presence of forecast bias. Q. J. 
R. Meteorol. Soc., 124: 269-295. 



 19

Dee, D. P., and Todling, R., (2000). Data assimilation in the presence of forecast bias: The 
GEOS moisture analysis. Mon. Wea. Rev., 128: 3268-3282. 

Entekhabi, D., Nakamura H., and Njoku, E. G., (1994). Solving the inverse problem for soil 
moisture and temperature profiles by sequential assimilation of multifrequency remotely 
sensed observations. IEEE Trans. Geosci. Rem. Sens., 32: 438-448. 

Evensen, G., (1994). Sequential data assimilation with a nonlinear quasi-geostrophic model 
using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99(C5): 10143-
10162. 

Georgakakos, K. P., and Baumer, O. W., (1996). Measurement and utilization of on-site soil 
moisture data. J. Hydrol., 184: 131-152. 

Hollingsworth, A. and Lonnberg, P., (1989). The verification of objective analyses: 
Diagnostics of analysis system performance. Meteor. Atmos. Phys., 40: 3-27. 

Houser, P. R., et al., (1998). Integration of soil moisture remote sensing and hydrologic 
modeling using data assimilation. Wat. Resour. Res., 34(12): 3405-3420. 

Houtekamer, P. L., and Mitchell, H. L., (1998). Data assimilation using a Ensemble Kalman 
filter techniques, Mon. Weather Rev., 126: 796-811. 

Jackson, T. J., et al., (1981). Soil moisture updating and microwave remote sensing for 
hydrological simulation. Hydrol. Sci. B., 26(3): 305-319. 

Kalman, R. E., (1960). A new approach to linear filtering and prediction  problems. Trans. 
ASME, Ser. D, J. Basic Eng. 82: 35-45. 

Kalnay, E., et al., (1996) The NCEP/NCAR 40-year reanalysis project. Bullet. Amer. 
Meteorol. Soc., 77: 437-471. 

Kostov, K. G., and Jackson, T. J., (1993). Estimating profile soil moisture from surface layer 
measurements – A review. In: Proc. The International Society for Optical Engineering, 
Vol. 1941, Orlando, Florida, 125-136. 

Lorenc, A., (1981). A global three-dimensional multivariate statistical interpolation scheme. 
Mon. Wea. Rev., 109: 701-721. 

Lorenc, A. C., Bell, R. S., and Macpherson, B. (1991). The Meteorological Office analysis 
correction data assimilation scheme. Quart. J. Roy. Meteor. Soc., 117, 59-89  

Milly, P. C. D., (1986). Integrated remote sensing modelling of soil moisture: sampling 
frequency, response time, and accuracy of estimates. Integrated Design of Hydrological 
Networks - Proceedings of the Budapest Symposium, 158: 201-211. 

Nichols, N. K., (2001). State estimation using measured data in dynamic system models, 
Lecture notes for the Oxford/RAL Spring School in Quantitative Earth Observation. 

Ottlé, C., and Vidal-Madjar, D., (1994). Assimilation of soil moisture inferred from infrared 
remote sensing in a hydrological model over the HAPEX-MOBILHY Region. J. Hydrol., 
158: 241-264. 

Parish, D., and Derber, J., (1992). The National Meteorological Center's spectral statistical 
interpolation analysis system. Mon. Wea. Rev., 120: 1747-1763. 

Prevot, L., et al., (1984). Evaporation from a bare soil evaluated using a soil water transfer 
model and remotely sensed surface soil moisture data. Wat. Resour. Res., 20(2): 311-316. 



 20

Radakovich, J. D., Houser, P. R., da Silva, A., and Bosilovich, M. G., (2001). Results from 
global land-surface data assimilation methods. Proceedings AMS 5th Symposium on 
Integrated Observing Systems, Albuquerque, NM, 14-19 January, 132-134. 

Reichle, R. H., and McLaughlin, D. B., (2001a). Variational data assimilation of microwave 
radiobrightness observations for land surface hydrologic applications.  IEEE Trans. Geosci. 
Rem. Sens., 39(8): 1708-1718. 

Reichle, R. H., Entekhabi, D., and McLaughlin, D. B., (2001b). Downscaling of 
radiobrightness measurements for soil moisture estimation: A four-dimensional variational 
data assimilation approach, Wat. Resour. Res., 37(9): 2353-2364.  

Rodell, M., (2002). Use of MODIS-derived snow fields in the Global Land Data Assimilation 
System. Proceedings GAPP Mississippi River Climate and Hydrology Conference, New 
Orleans. 

Rood, R. B., Cohn, S. E., and Coy, L., (1994.) Data assimilation for EOS: The value of 
assimilated data, Part 1. The Earth Observer, 6(1): 23-25. 

Schuurmans, J. M., et al., (2003). Assimilation of remotely sensed latent heat flux in a 
distributed hydrological model. Adv. Water Resour., 26(2): 151-159. 

Stauffer, D. R., and Seaman, N. L., (1990). Use of four-dimensional data assimilation in a 
limited-area mesoscale model.  Part I: Experiments with synoptic-scale data.  Mon. Wea. 
Rev., 118: 1250-1277. 

Sun, C., Walker, J. P., and Houser, P. R., (2004). A methodology for snow data assimilation 
in a land surface model. J. Geophys. Res.-Atmos., 109. 

Turner, M. R. J., Walker, J. P., and Oke, P. R., (2004). Ensemble member generation for 
sequential data assimilation. In preparation. 

Viterbo, P., and Beljaars, A., (1995). An improved land surface parameterization scheme in 
the ECMWF model and its validation. J. Climate, 8: 2716–2748. 

Walker J. P., and Houser, P. R., (2001). A methodology for initialising soil moisture in a 
global climate model: assimilation of near-surface soil moisture observations, J. Geophys. 
Res.-Atmos., 106(D11): 11761-11774. 

Walker, J. P., Willgoose, G. R., and Kalma, J. D., (2001a). One-dimensional soil moisture 
profile retrieval by assimilation of near-surface observations: A comparison of retrieval 
algorithms. Adv. Water Resour., 24(6): 631-650. 

Walker, J. P., Willgoose, G. R. and Kalma, J. D., (2001b). One-dimensional soil moisture 
profile retrieval by assimilation of near-surface measurements: A simplified soil moisture 
model and field application. J. Hydromet., 2(4): 356-373.  

Walker, J. P., Willgoose, G. R. and Kalma, J. D., (2002). Three-dimensional soil moisture 
profile retrieval by assimilation of near-surface measurements: Simplified Kalman filter 
covariance forecasting and field application. Wat. Resour. Res., 38(12): 1301.  

Walker, J. P., and Houser, P. R., (2002). Soil moisture estimation using remote sensing. 
Proceedings 27th Hydrology and Water Resources Symposium. The Institute of Engineers 
Australia, Melbourne, Australia, 20 - 23 May. 

Walker, J. P., and Houser, P. R., (2004). Requirements of a global near-surface soil moisture 
satellite mission: Accuracy, repeat time, and spatial resolution. Adv. Water Resour., 27: 
785-801. 



 21

Walker, J. P., Ursino, N., Grayson, R. B., and Houser, P. R., (2003). Australian root zone soil 
moisture: Assimilation of remote sensing observations, In: D. Post (Ed.), Proceedings of the 
International Congress on Modelling and Simulation (MODSIM). Modelling and 
Simulation Society of Australia and New Zealand, Inc., Townsville, Australia, 14-17 July, 
1: 380-385. 

Zhan, X., et al., (2004). Retrieving medium resolution surface soil moisture from coarse 
resolution radiometer and fine resolution radar observations using the Kalman filter. In 
preparation. 

 



 22

Table 2.1: Characteristics of hydrologic observations potentially available within the next 
decade. 
 
Hydrologic 
Quantity 

Remote 
Sensing 
Technique 

Time 
Scale  

Space 
Scale 

Accuracy Considerations Example Sensors 

Thermal 
infrared 

Hourly  
1day 
15days 

4km 
1km 
60m 

Tropical convective clouds 
only 

GOES 
MODIS, AVHRR 
Landsat, ASTER 

Passive 
microwave 

3hour 10km Land calibration problems TRMM, SSMI,  
AMSR-E, GPM 

Precipitation 

Active 
microwave 

Daily 10m Land calibration problems TRMM, GPM 

Passive 
microwave 

1-3days  25-50km  Limited to sparse 
vegetation, low 
topographic relief  

AMSR-E, SMOS, 
Hydros Surface soil 

moisture Active 
microwave 

3days 
30days  

3km  
10m  

Significant noise from 
vegetation and roughness  

 
ERS, JERS, RadarSat 

Surface skin 
temperature 

Thermal 
infrared 

1hour 
1day 
15days 

4km 
1km 
60m 

Soil/vegetation average, 
cloud contamination 

GOES 
MODIS, AVHRR 
Landsat, ASTER 

Snow cover Visible/ 
thermal 
infrared 

1hour 
1day 
15days 

4km 
500m-
1km 
30-60m 

Cloud contamination, 
vegetation masking, bright 
soil problems 

GOES 
MODIS, AVHRR 
Landsat, ASTER 

Passive 
microwave 

1-3days 10km Limited depth penetration AMSR-E 
Snow water 
equivalent Active 

microwave 
30days 100m Limited spatial coverage SnoSat or CLPP 

(proposed missions) 
Laser 10days 100m Cloud penetration 

problems 
ICESAT Water level/ 

velocity Radar 30days 1km Limited to large rivers TOPEX/POSEIDON 
Total water 
storage 
changes 

Gravity 
changes 

30days 1000km Bulk water storage change GRACE 

Evaporation 
Thermal 
infrared  

1hour 
1day 
15days 

4km 
1km 
60m 

Significant assumptions GOES 
MODIS, AVHRR 
Landsat, ASTER 
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Table 2.2: Commonly used data assimilation terminology. 
 

State condition of a physical system ie. soil moisture 
Prognostic a model state required to propagate the model forward in time 
Diagnostic a model state/flux diagnosed from the prognostic states – not required 

to propagate the model 
Observation measurement of a model diagnostic or prognostic  
Covariance matrix describes the standard deviations & correlations 
Prediction model estimate of states or covariances 
Update correction to a model prediction using observations 
Background prediction prior to an update 
Analysis prediction after an update 
Innovation observation-prediction 
Gain matrix correction factor applied to the innovation 
Tangent linear model linearised (using Taylor’s series expansion) version of a non-linear 

model 
Adjoint operator allowing the model to be run backwards in time 
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Figure 2.1: Schematic of the hydrologic data assimilation challenge. 
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Figure 2.2: Satellite observations of near-surface soil moisture content made by the scanning 
multifrequency microwave radiometer (SMMR) are used to constrain hydrologic model 
predictions of soil moisture throughout the root zone using data assimilation. 
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a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) 
 
 
Figure 2.3: Schematic of the a) direct observer and b) dynamic observer assimilation 
approaches. 
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Figure 2.4: Example of how data assimilation supplements data and complements 
observations: (a) Numerical experiment results demonstrating how near-surface soil moisture 
measurements are used to retrieve the unobserved root zone soil moisture state using (left 
panel) direct insertion and (right panel) a statistical assimilation approach [Walker et al., 
2001a]; (b) Six Push Broom Microwave Radiometer (PBMR) images gathered over the 
USDA-ARS Walnut Gulch Experimental Watershed in southeast Arizona were assimilated 
into the TOPLATS hydrological model using several alternative assimilation procedures 
[Houser et al., 1998].  The observations were found to contain horizontal correlations with 
length scales of several tens of kilometres, thus allowing soil moisture information to be 
advected beyond the area of the observations. 
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Figure 2.5: True and prior surface soil saturation (in the first two columns) at three different 
times. Corresponding estimates for downscaling ratios of (1:4) and (1:16) are shown in the 
third and fourth columns. The resolution of the observations used to compute the downscaled 
estimates are indicated with solid black grid lines [Reichle, 2001b]. 
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Figure  2.6: Comparison of snow simulations on January 5, 1987 over North America for 
snow water equivalent (in mm, top row); snow depth (in mm, second row); average snow 
temperature (in °C, third row); and areal snow fraction (bottom row) from a) truth run (using 
spin up initial condition), b) assimilation run (with degraded initial condition and assimilation 
of daily total snow water equivalent observations), and c) control run (with degraded initial 
condition) [Sun et al., 2004]. 
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Figure 2.7:  Differences between simulated and reanalysis (top left), assimilated and reanalysis (bottom 
left) mean skin temperature (K), and the resulting differences between simulated and reanalysis (top 
right), and assimilated and reanalysis (bottom right) mean sensible heat fluxes (Wm-2) for September 
through November 1992.  Global terrestrial mean bias and standard deviation (SD) for September 
through November are also noted [Radakovich et al., 2001].  
 
 


