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The task of assessing similarity between data sets is common in hydrological modelling.
While this has been widely researched for temporal data sets, the similarity between spa-
tial patterns has been largely ignored. This has been due to a lack of spatial pattern data.
Today there is widespread use of distributed hydrological models and increasing availability
of observed spatial patterns. These observed spatial patterns are useful for model calibration
and optimisation, though at present there is limited use of the spatial information contained
in them. This is mostly due to a lack of understanding in how to make optimal use of this
information rich data. The work in this paper investigates some quantitative measures for
judging the similarity between observed and simulated spatial patterns, with a particular
emphasis on local similarity techniques. The different measures allow the user to assess dif-
ferent aspects of similarity, which can then be used together for automated model calibration
and/or evaluation.

Introduction In hydrological modelling, assessing the similarity between data sets is an everyday
task, regardless of whether the data is temporal or spatial. Many methods exist for doing this, but
most were notdeveloped specifically for hydrological data sets. As such, it is necessary to un-
derstand the methods and what their resulting measures actually represent.Legates and McCabe
(1999) evaluate many methods used for assessing similarity between temporal data sets. Some
methods are sensitive to matching extreme values, while others provide a test of fit but ignore ab-
solute differences. It is concluded that relative, absolute, local and global measures should all be
stated when assessing the similarity between data sets. Additionally, the use of specialised meth-
ods for particular types of hydrological data can provide more informative similarity measures.
Boyle et al.(2000) present a method in which the hydrograph is divided into “process-related”
components. Each component is then compared, providing a measure of similarity that can be
directly related to the process. This requires prior knowledge about the phenomenon being com-
pared and is more difficult for spatial data sets (herein referred to as spatial patterns).

There are many methods available for assessing similarity between spatial patterns. Together,
these global and local methods can describe the similarity between the values in the spatial pat-
terns. But as with most temporal measures, they mostly ignore the specific arrangement of the
values (especially the global methods). As a result of this, most hydrologists rely on visual com-
parison for assessing similarity (Grayson et al., 2002). Visual comparison can be thought of as a
specialised method, as it incorporates knowledge about the hydrological phenomenon and other
ancillary information. However, its weaknesses are that it is neither automated, objective, repeat-
able nor quantitative - all things that are important when assessing similarity between many data
sets. This research aims to address some of these weaknesses by emulating parts of the visual com-
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parison process computationally. There is no expectation that a computer algorithm will be able to
emulate what the human brain does. However, the steps undertaken during visual comparison sug-
gest many new avenues to pursue for developing specialised methods for assessing similarity. This
paper discusses the background to similarity assessment and describes three different methods for
assessing local similarity, including an example of their use.

Background A review of the literature on computer vision, image processing and pattern recog-
nition has identified the major processes undertaken during visual comparison and methods that
try to emulate them (Wealands et al., 2004). A visual comparison involves both global and local
similarity assessment (Hagen, 2003;Hay et al., 2003). During local comparison, the image is
viewed as a set of homogeneous regions, rather than individual pixels (Hay et al., 2003). The
visual comparison also focuses on particular features or parts of the spatial pattern, rather than
treating every location equally (Tompa et al., 2000). During this process, observations such as the
similarity of shape, location and intensity are noted. Finally, the observed similarities and differ-
ences observed are explained and/or interpreted using extensive background knowledge (Grayson
et al., 2002). Thus, the procedure used during visual comparison can be described as “global sim-
ilarity assessment, followed by local similarity assessment of regions in the spatial pattern using
various measures, with a tolerance for minor differences and additional focus on more important
parts of the spatial pattern”.

Global methods for assessing similarity of spatial patterns are plentiful (seeScheibe, 1993). Ba-
sic statistics, geostatistics and landscape indices can all characterise certain features of the spatial
pattern. These numerical summaries can then be compared to measure the similarity between
spatial patterns. For local similarity, the most common method used is root mean squared error
(RMSE), which provides a summary of the squared residuals. Local similarity methods are far
more sensitive to differences between the spatial patterns than global methods, as they evaluate
everylocation and use the spatial data in its complete form. At each location, a measure is cal-
culated (e.g., the squared residual) to represent the similarity and this is stored in an intermediate
spatial pattern. The intermediate spatial pattern is useful for closer inspection of the differences
and is summarised to produce the resultant local similarity measure.

More specialized methods involve additional processing both before and during the calculation of
similarity measures. For example, preprocessing can involve smoothing or aggregation to change
the scale of the spatial patterns. These adjusted spatial patterns are then used for computing the
similarity measure. Alternatively, each location can be compared against neighbouring locations
in the other spatial pattern, with the most similar measure from the whole neighbourhood used to
represent the similarity for that location. Both these examples illustrate how a minor modification
can alter a standard method, thus making it more specialised.

Local comparison methodsThe aim of local comparison methods is to emulate the major features
of detailed visual comparison, so that these can be quantified and automated. Three methods used
to produce local similarity measures are (1) fuzzy comparison, (2) importance maps and (3) image
segmentation.

Fuzzy comparison is a method used for tolerating shifts and differences during the calculation
of the similarity measure. This allows the user to specify weights for locational matching (i.e.,
what amount of displacement is acceptable) and value matching (i.e., what amount of error is
considered acceptable). The method processes each location in the spatial pattern, computing
a similarity value between the respective location and its neighbouring locations in the second
spatial pattern (more details inHagen, 2003;Wealands et al., 2004). From the nine similarity
values (range of 0 to 1) computed, the highest level of similarity is retained. Figure 2.1i) shows
two different sets of residual and location weights that have been used to calculate the fuzzy
similarity between observed and simulated soil moisture data. The more tolerant residual weights
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Figure 2.1: Example illustrating three specialized methods for assessing local similarity. The
methods aim to emulate some aspects of visual comparison, including i) tolerance
for differences in values and locations; ii) focus on certain parts of the spatial pattern
more than others; and iii) comparison of regions rather than pixels.

(b) produce a higher overall similarity value than the more limiting weights (a). When multiple
sets of observed and simulated spatial patterns are compared, this method can help reveal similar
spatial patterns that are not detected by standard local similarity methods due to shifts or minor
differences.

Weighting spatial patterns before computing similarity measures is a way of focusing on the “im-
portant areas”. Visual comparison does this automatically as a result of both visual cues (e.g.,
bright spots) and background knowledge (e.g., focusing only on areas the user knows are gullies).
While there is literature on what draws visual attention in an image, these findings are often re-
lated to the type of image. However, it has been recognised that features occurring infrequently
in images (e.g., extreme values) are of high perceptual importance (Tompa et al., 2000). This
can be used to produce perceptually weighted spatial patterns, in which the infrequent values are
given higher weights than those that are common. Due to the weightings, calculation of the stan-
dard RMSE measure will lead to a larger residual where the infrequent values do not match (see

48



CAHMDA-II workshop Session 2 Wealands

Wealands et al., 2004, for examples). Weighting can also be applied to limit the areas in which
the similarity measure is computed. If the user is only interested in the similarity of certain areas
(e.g., north facing slopes), then a weighting that either enhances or separates these areas will focus
the meaning of the similarity measure accordingly. Figure 2.1ii) shows the differences between
standard RMSE calculations when using different slope weights to focus the comparison. By us-
ing the weights to limit the influence of slopes greater than 10 degrees (a), the similarity measure
is focused more on similarity in flatter areas. If the weights exclude the steeper areas entirely (b),
then a measure that is only related to flat areas is produced.

Segmentation is the process of breaking up an image into regions using a set of rules. The sim-
plest approach to segmentation is thresholding, where a value is chosen to separate an image into
two regions. During visual comparison, spatial patterns are viewed as regions rather than pixels
(Hay et al., 2003), with the regions detected at varying scales. Emulating this computationally
is a difficult task. Using a multiresolution segmentation technique from image processing (Baatz
and Schäpe, 2000), the spatial patterns of soil moisture have been segmented into homogeneous
regions in figure 2.1iii). Using the mean values for each region, an RMSE measure has been
calculated between the segmented spatial patterns. This value is less than the RMSE calculated
between the original spatial patterns due to the removal of “noise” via averaging within regions.
This method seeks to emulate the region detection process that is done visually, by simplifying the
spatial pattern prior to comparison. It may be particularly useful for detecting similarity between
noisy data sets, in which the noise precludes the use of standard methods like RMSE.

DiscussionThis research has investigated multiple methods for assessing different aspects of local
similarity between spatial patterns. Methods have been sourced from other disciplines and adapted
to work with spatial patterns common in hydrology. These methods focus on emulating aspects
of visual comparison. It is widely recognised that no single method for assessing similarity can
capture everything, but by using multiple methods together a strong test of spatial pattern similarity
can be made. Further work with the methods described above will identify their particular benefit
for assessing similarity in different contexts.
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