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Introduction 
Accurate latent and sensible heat flux prediction in response to land surface soil moisture at mid-
latitudes has been shown to be as important as sea surface temperature in making accurate 
precipitation prediction at mid-latitudes over land (Koster et al., 2000).  Unfortunately, land surface 
models typically give a poor prediction of soil moisture and atmospheric feedback, with large 
differences between predictions from different models even when using the same parameters, inputs, 
and initial conditions (Houser et al., 2001).  To overcome this limitation, assimilation of observed 
quantities has been pursued.  One of the earliest approaches has been the assimilation of screen level 
air temperature and relative humidity (eg. Mahfouf, 1991), which are only weakly related to soil 
moisture and not widely observed in remote areas.  More recently, a wide range of alternate 
assimilation approaches have been explored for accurate land surface model prediction of soil 
moisture.  Such approaches include the assimilation of i) remotely sensed near-surface soil moisture, 
ii) streamflow, iii) changes in terrestrial gravity, and iv) remotely sensed latent and sensible heat flux.  
This paper briefly describes progress from these approaches. 

Soil Moisture Remote Sensing 
Over the past two decades there have been numerous near-surface soil moisture remote sensing 
studies, using visible, thermal infrared (surface temperature) and microwave (passive and active) 
electromagnetic radiation.  Of these, passive microwave soil moisture measurement has been the most 
promising technique, due to its all-weather capability, its direct relationship with soil moisture through 
the soil’s dielectric constant, and a reduced sensitivity to land surface roughness and vegetation cover 
(Njoku et al., 2002).  Due to the long wavelengths required for soil moisture remote sensing, space-
borne passive microwave radiometers (both current and planned) have a coarse spatial resolution, 
being on the order of 50km, but have a frequent temporal resolution of 1 to 2 days.  
May 2002 saw the launch of NASA’s Advanced Microwave Scanning Radiometer for the Earth 
observing system (AMSR-E) on the Aqua satellite, the first passive microwave sensor in space with 
appropriate frequencies for measuring near-surface soil moisture content since the Scanning Multi-
channel Microwave Radiometer (SMMR) ceased operations in 1987.  During the SMMR mission, soil 
moisture remote sensing was in its infancy, and so there were no dedicated field campaigns for 
verification of remotely sensed and derived root zone soil moisture.  This lack of concurrent data has 
made evaluation of SMMR-based studies effectively impossible (Walker et al., 2003).  In addition to 
AMSR-E, there are two dedicated soil moisture missions planned with optimal frequencies for soil 
moisture measurement.  These are the ESA Soil Moisture and Ocean Salinity (SMOS) and NASA 
HYDROspheric States (HYDROS) satellites to be launched in 2007 and 2009 respectively.   
While these remote sensing satellites may be used to give measurements of soil moisture in the top 
few centimetres for areas with low to moderate vegetation cover, they do not provide any direct 
information on root zone soil moisture.  However, there are a number of studies over the past decade 
that have shown the potential for improving near-surface and root zone soil moisture, and the resultant 
latent and sensible heat flux predictions, through the assimilation of this data into a land surface 
model.  Moreover, a number of operational forecast centres are actively expanding their capacity in 
this direction in anticipation of data that will soon be available from SMOS and HYDROS.  An 
example of how such data may be used to constrain root zone soil moisture predictions is given in  
Fig. 1. 



Streamflow Observations 
While there have been encouraging results from the assimilation of remotely sensed near-surface soil 
moisture data into land surface models, it is unlikely that this approach will satisfactorily address the 
predictability problem alone.  The reasons for this are that i) current remote sensing of surface soil 
moisture is limited to regions of low-to-moderate vegetation (Jackson et al., 1982), ii) land surface 
models typically show the greatest uncertainty in regions of high vegetation (Houser et al., 2001), and 
iii) the regions where soil moisture knowledge is expected to have the greatest impact on precipitation 
prediction are also largely located in regions of high vegetation (Koster et al., 2000).  This means that 
alternate approaches for soil moisture estimation must be sought if improvements in precipitation 
prediction are to be realised for these regions.   
To overcome these limitations, the possibility of constraining land surface model soil moisture 
prediction through assimilation of widely available streamflow observations has been studied (Rüdiger 
et al., 2004; 2005).  The basis of this approach is that streamflow is dependent upon the lumped soil 
moisture conditions in the upstream catchment(s) in response to rainfall events hours to weeks in the 
past.  It has been shown that the assimilation of streamflow can have a significant improvement in the 
retrieval of profile and root zone soil moisture, but displays limitations in retrieving the surface soil 
moisture state (Fig. 2).  In contrast, the assimilation of near-surface soil moisture in a single low-to-
moderately vegetated catchment alone does not have any effect on the other catchments, as there is no 
feedback between the soil moisture predictions and respective runoff at the scale of catchments used in 
this simulation.  However, the joint assimilation of both streamflow and surface soil moisture 
observations leads to a further improvement from the streamflow assimilation alone. 

Gravity Remote Sensing 
A new and novel remote sensing system is the Gravity Recovery And Climate Experiment (GRACE), 
which provides precise measurements of temporal changes in the Earth’s gravity field that are related 
to changes in terrestrial water storage (soil moisture, groundwater, river and reservoir storage, and 
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Fig. 1: Comparison of soil moisture (v/v) simulations in the near-surface layer (top row), root zone (middle row) 
and entire soil profile (bottom row) from degraded soil moisture initial conditions (left column), spin-up initial 
conditions (middle column), and degraded soil moisture initial conditions with assimilation of synthetic near-
surface soil moisture observations from the true simulation once every 3 days (right column).  Results are after  
1 month of simulation (Walker and Houser, 2001). 



snow).  These observations of subtle changes in the Earth’s gravity field through time are made by 
precisely monitoring the separation between two satellites in response to mass variations below as they 
orbit the Earth.  While this type of observation is not constrained by vegetation, these estimates are for 
very large areas, on order 1000km (Rodell and Famiglietti, 1999).  However, through assimilation of 
observed changes in terrestrial water storage at monthly timescales, the ability to improve soil 
moisture estimates for smaller areas has been demonstrated (Fig. 3).   

Latent and Sensible Heat Flux Remote Sensing 
A key assumption of the foregoing approaches is that a correct physical soil moisture content estimate 
for the land surface model will result in an improved flux estimate.  As most land surface models used 
by atmospheric models have historically used soil moisture as simply a tuning parameter rather than a 
physical quantity, improved flux prediction is not guaranteed when a soil moisture (particularly a 
physical soil moisture) observation is assimilated.  Since land surface fluxes can be estimated from 
thermal remote sensing (Savige et al., 2005), it is also possible to constrain model soil moisture and 
temperature predictions using these observations under cloud free conditions.  Research is underway 
to explore the impact from assimilating observed sensible and latent heat flux data into a land surface 
model, to correct the model’s prediction of latent and sensible heat flux by modifying the model’s 
prediction of soil moisture and temperature (Pipunic et al., 2004).  The impact of assimilation on these 
states can then be compared with observations.  This is an approach that has received little attention to 
date, with Schuurmans et al. (2003) representing one of the few published examples of this approach, 
which suffered from lack of an appropriate validation.   

Discussion 
Progress on land surface initialisation is being made on a number of fronts, each with their own 
inherent strengths and weaknesses.  Hence a combination of these approaches is required to yield the 
accurate flux and soil moisture predictions required for atmospheric prediction.  Additionally, the next 
major advances in land surface initialization for atmospheric prediction will not be realised until 
lessons learned from these off-line model simulations are actually incorporated with an atmospheric 
prediction model. 
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Fig. 2: Comparison of root zone soil moisture and runoff for an upper (top row), middle (middle row) and lower 
catchment (bottom row) with assimilation of streamflow at the outlet (left column), near-surface soil moisture in 
the lower catchment only (middle column), and both streamflow at the outlet and near-surface soil moisture in 
the middle catchment (right column).  True observations are shown in red, open loop simulation in green, and 
assimilated results in blue for soil moisture, and turquoise, burgundy and yellow for runoff, respectively (Rüdiger 
et al., 2005). 
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Fig. 3: Comparison of retrieved and true soil moisture estimates for catchments of the Murray Darling Basin from 
assimilation of monthly total terrestrial water storage for the entire Murray Darling Basin (Ellett et al., 2004). 


