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a b s t r a c t

The crucial role of root-zone soil moisture is widely recognized in land–atmosphere interaction, with di-

rect practical use in hydrology, agriculture and meteorology. But it is difficult to estimate the root-zone soil

moisture accurately because of its space-time variability and its nonlinear relationship with surface soil mois-

ture. Typically, direct satellite observations at the surface are extended to estimate the root-zone soil mois-

ture through data assimilation. But the results suffer from low spatial resolution of the satellite observation.

While advances have been made recently to downscale the satellite soil moisture from Soil Moisture and

Ocean Salinity (SMOS) mission using methods such as the Disaggregation based on Physical And Theoretical

scale Change (DisPATCh), the assimilation of such data into high spatial resolution land surface models has

not been examined to estimate the root-zone soil moisture. Consequently, this study assimilates the 1-km

DisPATCh surface soil moisture into the Joint UK Land Environment Simulator (JULES) to better estimate the

root-zone soil moisture. The assimilation is demonstrated using the advanced Evolutionary Data Assimila-

tion (EDA) procedure for the Yanco area in south eastern Australia. When evaluated using in-situ OzNet soil

moisture, the open loop was found to be 95% as accurate as the updated output, with the updated estimate

improving the DisPATCh data by 14%, all based on the root mean square error (RMSE). Evaluation of the root-

zone soil moisture with in-situ OzNet data found the updated output to improve the open loop estimate by

34% for the 0–30 cm soil depth, 59% for the 30–60 cm soil depth, and 63% for the 60–90 cm soil depth, based

on RMSE. The increased performance of the updated output over the open loop estimate is associated with (i)

consistent estimation accuracy across the three soil depths for the updated output, and (ii) the deterioration

of the open loop output for deeper soil depths. Thus, the findings point to a combined positive impact from

the DisPATCh data and the EDA procedure, which together provide an improved soil moisture with consistent

accuracy both at the surface and at the root-zone.

Crown Copyright © 2015 Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Remotely sensed observations such as those from the Soil Mois-

ture and Ocean Salinity (SMOS) mission provide valuable soil mois-

ture information at the global scale. These soil moisture observations

provide large area estimates, about 40 km for SMOS Level 1 obser-

vations [26], and are limited to the top few centimeters, ∼5 cm of

the soil column [22,45]. Typically, analytical procedures such as dis-

aggregation methods [37,41], and data assimilation (DA) procedures

[16,18,19,44] along with land surface models can be employed to in-

terpolate the soil moisture observations to unsampled locations, im-

prove its spatial resolution, and extend the surface soil moisture to
∗ Corresponding author. Tel.: +61- 414- 273- 492.

E-mail address: dgiftman@hotmail.com, gift.dumedah@monash.edu

(G. Dumedah).

e

a

q

o

f

http://dx.doi.org/10.1016/j.advwatres.2015.07.021

0309-1708/Crown Copyright © 2015 Published by Elsevier Ltd. All rights reserved.
he root-zone. The Disaggregation based on Physical And Theoreti-

al scale Change (DisPATCh) method developed by Merlin et al. [37],

ownscales the 40-km SMOS observations using 1-km resolution

oil temperature data from Moderate Resolution Imaging Spectrora-

iometer (MODIS) to generate a high resolution 1-km soil moisture.

he DisPATch approach improves the spatial resolution of the SMOS

ata through its conversion of soil temperature fields into soil mois-

ure fields. However, the accuracy of these soil moisture estimates

s variable, and the method is unable to provide soil moisture at the

oot-zone.

Root-zone soil moisture is invaluable for initiating land surface

odels [1,47] and numerical weather forecasting models [7]. In gen-

ral, soil moisture has several practical uses for terrestrial water

nd weather monitoring [28,50], but these applications typically re-

uire soil moisture at the root-zone to make meaningful impact. In

ther words, the estimation of root-zone soil moisture from sur-

ace estimates [17,31,47] and its integration into hydrologic models is
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rucial to the overall impact on water and weather forecasting sys-

ems. Several studies have been undertaken to provide root-zone

oil moisture from field measurements [48–50], satellite observa-

ions [4,10,17,32,42], physically based analytical approaches and data

riven methods [27,31], and data assimilation [15,29,47,51]. Among

hese methods of estimating root-zone soil moisture, data assimila-

ion remains the most promising approach to combine satellite-based

oil moisture with those from land surface models. The data assimi-

ation approach has the capability to provide root-zone soil moisture

orward in time, while accounting for uncertainties in the observa-

ion data and the simulated output from the model. But current ap-

roaches of direct assimilation of SMOS data suffer from low spatial

esolution.

Traditionally, soil moisture assimilation studies integrate direct

atellite observations [10,32,43] and/or retrieved satellite soil mois-

ure [15,45] at the observed spatial resolution. But very few studies

25,36,39] have actually assimilated disaggregated satellite soil mois-

ure at high spatial resolution into land surface models to improve

he root-zone soil moisture estimation. Consequently, this study as-

imilates the 1-km DisPATCh surface soil moisture into the Joint UK

and and Environment Simulator (JULES) to extend the surface soil

oisture to the root-zone. The study employs the advanced evolu-

ionary data assimilation [9,15] to update the JULES model state tra-

ectories after which its root-zone soil moisture are archived and as-

essed against in-situ OzNet data [48] both at the surface and at the

oot-zone. The evolutionary data assimilation is appealing in its uni-

cation of multi-objective evolutionary strategy and traditional data

ssimilation, to simultaneously explore the internal dynamics of the

rediction model and temporally update its initial states with the po-

ential to improve upon model predictions. The unique capability of

he EDA approach has been demonstrated and compared against pop-

lar methods including the ensemble Kalman filter and particle filter

n [12,13,15]. For example, the EDA has been shown to provide better

onvergence in model decision space in comparison to the ensemble

alman filter [15].

. Materials and methods

.1. Study area, data sets, and the land surface model

The Yanco area shown in Fig. 1 is located in the western plains of

ew South Wales, Australia where the topography is flat with very

ew geological outcroppings. The soil texture is predominantly sandy

oams, scattered clays, red brown earths, transitional red brown

arth, sands over clay, and deep sands. Information from the Digi-

al Atlas of Australian Soils shows that the soil landscape is predom-

nantly characterized by plains with domes, lunettes, and swampy

epressions, and divided by continuous or discontinuous low river

idges associated with prior stream systems [34]. The area is tra-

ersed by stream valleys with layered soil or sedimentary materi-

ls common at fairly shallow depths: chief soils are hard alkaline red

oils, grey and brown cracking clays. The land cover is primarily rain-

ed cropping/pasture with scattered trees and grassland.

The land cover data used in this study is the Australian National

ynamic Land Cover Dataset (DLCD) [30]. The DLCD was generated

rom the 16-day Enhanced Vegetation Index composite collected at

50-m resolution from MODIS. The classification scheme used to de-

cribe land cover categories in the DLCD conforms to the 2007 Inter-

ational Standards Organization (ISO) Land Cover Standard (19144-

), previously referred to as the Food and Agriculture Organization

and Cover Classification [8]. The DLCD has land cover features clus-

ered into 34 ISO classes with descriptions for the structural charac-

er of vegetation, ranging from cultivated and managed land covers

crops and pastures) to natural land covers such as closed forest and

parse open grasslands.
The soils information is derived from the Digital Atlas of Australian

oils [34], which was obtained from the Australian Soil Resource In-

ormation System (ASRIS). ASRIS provides a digital map of soil types

nd their descriptions, typical ranges for soil properties for each soil

ype, morphology, and physical properties of soil profiles. The soil

lassification system was based on the widely applied Factual Key of

40] and later revised to the Australian Soil Classification [20,21] into

textural groups including sands, sandy loams, loams, clay loams,

ight clays. Soil properties in the Digital Atlas of Australian Soils in-

lude information on texture, clay content, bulk density, saturated

ydraulic conductivity, and soil layer thickness for horizons A and B

34,35].

Meteorological forcing data including incoming short and long

ave radiations, air temperature, precipitation, wind speed, pressure,

nd specific humidity are obtained from the Australian Community

limate Earth-System Simulator-Australia (ACCESS-A), at an hourly

ime step with 12-km spatial resolution [3]. The ACCESS-A precipi-

ation data set has been bias corrected to 1-km using precipitation

rom the Australian Water Availability Project through the Bureau of

eteorology, herein denoted BAWAP [23,24]. The ACCESS-A precipi-

ation was bias corrected by matching the average precipitation from

CCESS-A to the average precipitation from the overlapping BAWAP

rid. The land cover and soils data are mapped to the 1-km model grid

hrough spatial overlap and subsequent determination of the propor-

ions of constituent land cover and soils classes within each grid. The

ourly forcing data together with the land cover and soils data are

ncorporated into JULES to simulate the temporal evolution of soil

oisture at hourly time step.

The chosen land surface model is the Joint UK Land Environment

imulator (JULES)—a widely used tiled model of sub-grid heterogene-

ty which simulates water and energy fluxes between a vertical pro-

le of variable soil layers, land surface, vegetation, and the atmo-

phere [2]. JULES uses meteorological forcing data, surface land cover

ata, soil data, and values for prognostic variables. The model initial-

zation is conducted for several variables including the temperatures

nd the liquid and frozen moisture contents of the soil layers; tem-

erature, density, and albedo of the snowpack if present; the temper-

ture and intercepted rain and snow on the vegetation canopy; the

emperature and depth of ponded water on the soil surface; and an

mpirical vegetation growth index. JULES accommodates the speci-

cation of several soil layers with variable thicknesses, and can sim-

late several land surface categories including broadleaf, needleleaf,

rass (temperate and tropical), shrub, urban, inland water, bare soil,

nd ice-covered surfaces.

The description for model parameters and forcing variables, and

heir associated intervals within which they are allowed to be mod-

fied or perturbed in the JULES model is presented in Table 1. The

arameters are modified using a relative percentage measure where

±5% uncertainty bound means that the specified parameter is mod-

fied to within a maximum of 5% and a minimum of −5% of its original

alue. It is noteworthy that perturbed values for parameters are also

estricted to within intervals acceptable to the JULES model. The orig-

nal values for model parameters are determined based on the soil,

and cover and meteorological forcing data such that they are physi-

ally meaningful for the JULES model in the context of the Yanco area.

The driving soil moisture used to correct the state trajectory of the

ULES model is the 1-km DisPATCh data set. DisPATCh is a downscaled

oil moisture from SMOS level-2 soil moisture product (version-4) us-

ng the reprocessed level 1C data, and the version-4 level-2 soil mois-

ure algorithm [37]. An updated version of the DisPATCh data set used

n this paper is the one applied to SMOS Level 3 soil moisture prod-

ct together with daily MODIS Terra/Aqua data. Detailed procedure

bout how the DisPTACh data set was generated can be found in [37].

The independent OzNet [48] validation data set (see Fig. 1) com-

rises 13 soil moisture profile stations in the Yanco area. Soil mois-

ure monitoring at all the stations in the Yanco area has been in
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Fig. 1. The experimental area—Yanco, showing the dominant land cover types, soil texture, the 1-km model grid and the ground OzNet soil moisture stations (data source: the

Australian Bureau of Meteorology).

Table 1

Description of model parameters and forcing data variables for the JULES model.

Parameter Description Interval (%)

Model parameters

b Exponent in soil hydraulic characteristics curve ±5

sathh Absolute value of the soil matric suction at saturation (m) ±5

hsatcon Hydraulic conductivity at saturation (kg m−2s−1) ±5

sm-sat Volumetric soil moisture content at saturation (m3 water per m3 soil) ±5

sm-crit Volumetric soil moisture content at critical point (m3 water per m3 soil) ±5

sm-wilt Volumetric soil moisture content at wilting point (m3 water per m3 soil) ±5

hcap Dry heat capacity (J m−3K−1) ±5

hcon Dry thermal conductivity (W m−1K−1) ±5

albsoil Soil albedo ±5

Meteorological forcing variables

SWR Downward component of shortwave radiation at the surface (Wm−2) ±5

LWR Downward component of longwave radiation at the surface (Wm−2) ±5

rain Rainfall (kgm−2s−1) ±5

tempr Atmospheric temperature (K) ±5

wind Wind speed (ms−1) ±5

press Surface pressure (Pa) ±5

spHum Atmospheric specific humidity (kg kg−1) ±5

Initial state variables

canopy Amount of intercepted water that is held on each tile (kg m−2) Updated

tstar-t Surface or skin temperature of each tile (K) Updated

t-soil Temperature of each soil layer (K) Updated

sthuf Soil wetness for each soil layer; mass of soil water expressed as a fraction of water content at saturation Updated

2

F

s

E

e

s

o

[

operation since 2004 using Campbell Scientific water content reflec-

tometers (CS615, CS616) and the Stevens Hydraprobe for four soil lay-

ers: 0–5 cm, 0–30 cm, 30–60 cm and 60–90 cm [48]. The CS615 and

CS616 sensors are sensitive to soil temperature fluctuations [46], so

temperature sensors were installed to provide a continuous record of

soil temperature at the midpoint along the reflectometers. Calibra-

tion of the sensor observations showed that the average root mean

square error is 0.03 m3/m3 for both the Campbell Scientific [52] and

Hydraprobe [38] sensors. Additional information about the OzNet

data set can be found in [48].
.2. Data assimilation method

The evolutionary data assimilation (EDA) procedure, presented in

ig. 2, is a unified formulation combining computational evolutionary

trategy with temporal updating from data assimilation [9,15]. The

DA approach to data assimilation is unique in a way that its updated

stimates are inherently linked to values in model decision space, en-

uring that water and energy balance are preserved in the updated

utput. The EDA has been employed in assimilating soil moisture

10,11], brightness temperature [10], streamflow [12,14], and has been
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Fig. 2. Computational procedure for a sequential assimilation using the EDA method—combining evolutionary strategy with temporal model updates (updated from [9]).
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ompared against popular data assimilation methods such as particle

lter and ensemble Kalman filter [13]. Though the EDA is not limited

o a specific evolutionary algorithm, the one employed in this study

s the Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) which

as developed by Deb et al. [5,6].

In the EDA procedure, the initial step begins by generating a ran-

om population Pr of size 2n for ensemble members which com-

rise model parameters, initial states, and forcing data uncertainties

hown in Table 1. Each member of Pr is applied into JULES to deter-

ine the soil moisture prediction according to Eq. (1), where the forc-

ng data are perturbed by using Eq. (2). The soil moisture observation

s perturbed using Eq. (3) to generate a corresponding 2n members.

s,i = h[xi, zi, ui] (1)

here ys, i is the soil moisture prediction for population member i;

[.] is the system transition function (or the measurement model, i.e.

he JULES model); xi is initial state for population member i; zi is the

odel parameters for population member i; and ui is the forcing data

or population member i.

i = ut + γt , γt ∼ N(0, βu
t ) (2)

here ui is the forcing data for population member i; ut is the forcing

ata at time t; and γ t is the forcing data error with variance βu
t at

ach time step.

o,i = yt + εt , εt ∼ N(0, βy
t ) (3)

here yo, i is the perturbed observation for population member i; yt

s the observed data at time t; εt is the observation error with covari-

nce βy
t at time t.

Each of the 2n predictions is evaluated against the perturbed ob-

ervation using the absolute difference in Eq. (4) and the cost func-

ion in Eq. (5). The AbsDiff and J are minimized such that the fitter

embers have smaller values in at least one or both objectives. The

bsDiff ranks members high when their absolute residual between

he prediction and the perturbed observation is smallest, whereas J

nds fitter members as the ones which best represent the compro-

ise between the background value and the perturbed observation.

he background value is the average estimate for ensemble predic-

ions, which are determined by applying updated members of the

opulation from the previous assimilation time step into JULES to
ake a prediction for the current time step. The background value

or the initial assimilation time step is estimated from a randomly

enerated population of members.

bsDiff = |ys,i − yo,i| (4)

=
k∑

i=1

J(yi) =
k∑

i=1

{
(ys,i − yb,i)

2

σb
2

+ (ys,i − yo,i)
2

σo
2

}
(5)

here ys, i is the analysis (i.e., the searched) value for ith data point

hich minimizes J(yi). yb, i is the background value for ith data point.

o, i is the perturbed observed value for ith data point. σ 2
b

is the vari-

nce for background soil moisture error. σ 2
o is the variance for ob-

erved soil moisture error. k is the number of data points (k is set to 1

or sequential data assimilation).

The population Pr is sorted using Pareto dominance to select n

tter members which in turn are varied and recombined to deter-

ine new members for the population Pr of size 2n. The evaluation

nd evolution procedures are repeated through several generations

here each generation attempts to increase the overall quality (or

tness) of members in Pr. The final n fitter members obtained at the

eferenced generation are archived into the population Pe where they

epresent the updated members for the current assimilation time

tep. The updated members represent a subset chosen from several

embers which are evaluated for the current assimilation time step.

The archived population Pe is applied into JULES to estimate n

umber of soil moisture predictions forward in time to t + 1, where

he average and its associated variance from the n members are used

s background information. The assimilation time step is then incre-

ented from t to t + 1 with Pe from t serving as a seed population

or t + 1, where it is varied and recombined to generate a new pop-

lation Pr of size 2n. The increment in assimilation time step and the

eed population represent the update step in the EDA procedure. The

eed population provides the new state for the prediction model and

he background information to penalize model outputs. The new Pr,

ith new members, again undergoes continuous evaluation and evo-

ution through several generations to determine the final n members

here they are archived into Pe. The Pe members are stored as up-

ated members for the current assimilation time step t + 1. For each

ssimilation time step, the above procedures are repeated to assess
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Fig. 3. Evaluation of the open loop and updated soil moisture against the observation DisPATCh data based on spatial plot of the overall absolute bias across all assimilation time

steps for the 1-km model grids.
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and evolve members through several generations, and to determine

the final n members as updated members.

2.3. Setup of model and data assimilation runs

The EDA procedure is applied to assimilate daily DisPATCh soil

moisture into the JULES model for dates when data are available. Soil

moisture was simulated in JULES for four different soil layers includ-

ing: 0–5 cm, 5–30 cm, 30–60 cm, and 60–90 cm, to approximately

correspond to the OzNet validation data set. The top 0–5 cm soil

moisture from JULES was compared to the DisPATCh data set during

the assimilation. The soil moisture observation error is based on the

standard deviation of the daily DisPATCh soil moisture error [37]—

this error accounts for only the downscaling and retrieval errors and

not the sensor error. The errors for model parameters and forcing data

uncertainties are presented in Table 1 as uncertainty interval values.

The soil moisture prediction error is time-variant and adaptive, and

is made up of the model error and the background error. The model

error is derived from the ensemble members which evolve between

and at each assimilation time step, whereas the background error is

determined from the seed population as outlined in Section 2.2. The

adaptive property of the model error is based on the evolution of the

forcing error applied to the original forcing data sets—the forcing er-

ror is distinct for each assimilation time step and variable across gen-

erations (i.e. during evolution).

The initial population is generated by using the model parame-

ter/variable bounds and the forcing data uncertainties as shown in

Table 1. According to the standard NSGA-II procedure, a crossover

probability of 0.8 and a mutation probability of 1/n (where n is the

number of variables) are used. The assimilation was run at a daily in-

terval from January to December 2010 with 200 ensemble members.

To evaluate 200 members, the EDA divides the ensemble size of 200

into smaller population of 40 members where it is evolved through 5

generations. A subset of 20 updated members is determined from the

final population for each assimilation time step, where it is archived

for evaluation.

3. Results and discussion

3.1. Evaluation of the updated soil moisture

An initial evaluation of the updated soil moisture from the

assimilation procedure is conducted by comparing it against the

observation DisPATCh data. An open loop estimate of soil moisture
 i
etermined from the JULES model was also compared to the obser-

ation DisPATCh data. Using absolute bias as the evaluation crite-

ion, the open loop and the updated estimates are compared against

he DisPATCh data in Fig. 3, showing a spatial plot of the estimated

bsolute bias values for each 1-km model grid across all assimila-

ion time steps (135). The results show that model grids with high

bsolute bias values from the open loop output also have corre-

ponding high absolute bias in the updated output. But the model

rids in the updated output are mostly associated with lower ab-

olute bias compared to the open loop estimate, which has several

odel grids with higher absolute bias values. Overall, the updated

oil moisture improved upon the accuracy of the open loop estimate

cross all the model grids. Specifically, the updated output has im-

roved the open loop estimate by 34% based on the absolute bias

riterion for all the model grids combined. This initial absolute bias

valuation is consistent with findings in several studies [15,32,33,45]

hich showed that the updated output improved upon the open loop

stimate.

Additional evaluation of the updated and open loop outputs is

ndertaken using the root mean square error (RMSE) criterion. The

omparison of the open loop and the updated estimates against the

isPATCh data is presented in Fig. 4, showing a spatial plot of the esti-

ated RMSE values for each 1-km model grid across all assimilation

ime steps (135). Again, the results show that the model grids with

igher RMSE values from the open loop estimate have correspond-

ng higher RMSE values in the updated output. In contrast with the

bsolute bias evaluation, the number of model grids associated with

igher RMSE values is similar in both open loop and updated out-

uts, but with much lower RMSE values represented in the updated

utput. Overall, the open loop estimate is slightly inferior to the up-

ated estimate based on the RMSE values across all the model grids.

he accuracy improvement of the updated output over the open loop

stimate is 2% based on the RMSE criteria for all the model grids

ombined.

It is noted that the finding from the RMSE evaluation is not over-

helmingly consistent with the absolute bias evaluation and those

rom several studies including [15,32,33,45]. Ideally, it is expected

hat the updated output show a stronger agreement with the ob-

ervation, and to improve upon the open loop estimate, because the

bservation DisPATCh was used to drive the assimilation procedure.

owever, the temporal updating in the simulation model (JULES, in

his case) usually modifies the model trajectory from those found in

he open loop. The modified model trajectory in the updated output,

n this case, does not provide an overwhelming improvement over the



G. Dumedah et al. / Advances in Water Resources 84 (2015) 14–22 19

Fig. 4. Evaluation of the open loop and updated soil moisture against the observation DisPATCh data based on spatial plot of root mean square error (RMSE) across all assimilation

time steps for the 1-km model grids.

Fig. 5. Evaluation (based on RMSE and bias both in m3/m3) of the DisPATCh data, the open loop estimate, and the updated estimate against in-situ OzNet soil moisture at 0–5 cm

soil depth, for all 13 stations with available data which overlap the assimilation time periods.
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pen loop estimate for all the model grids. It is noted that for some

odel grids, the agreement with the observation DisPATCh data and

he estimated soil moisture is similar for both open loop and updated

utputs, but the updated estimate has better RMSE values with all the

odel grids combined.

Further assessment of the estimated soil moisture is undertaken

sing in-situ OzNet [48] soil moisture. The updated and the open loop

stimates together with the DisPATCh data are evaluated by compar-

ng them against the in-situ OzNet surface (0-5 cm) soil moisture in

ig. 5. This comparison uses all the 13 OzNet stations for all time peri-

ds which overlap the assimilation time periods. The rationale to in-

lude the comparison of DisPATCh data against the in-situ soil mois-

ure is to examine its impact, whether positive or negative, on the

ssimilation procedure. The DisPATCh comparison is also aimed to

ecognize the differences that currently exist between the observa-

ion DisPATCh data and the in-situ OzNet soil moisture. The compar-

sons show that the soil moisture errors (based on RMSE and bias)

n the updated estimate are not worse than those that exist in the

isPATCh data. Also, the updated soil moisture is slightly better than

he open loop estimate based on both RMSE and bias estimates. That

s, the increasing order of accuracy for the estimated soil moisture is

isPATCh data, open loop output and updated estimate. Combining

he outputs presented in Figs. 3–5, it is found that the simulated soil

oisture from the JULES model is moderately in agreement with the

n-situ soil moisture, and that the assimilation of the DisPATCh data

nto the JULES model has a positive impact on the soil moisture esti-

ation accuracy.
.2. Evaluation of the updated root-zone soil moisture

The improved estimate of surface soil moisture is important, but

or practical applications in agriculture, water resource management,

nd weather forecasting, the root-zone soil moisture is critically im-

ortant. Again using the in-situ OzNet soil moisture but at the root-

one for the three soil depths of 0–30 cm, 30–60 cm, and 60–90 cm,

he open loop and updated outputs are evaluated using both RMSE

nd bias. It is noted that since the DisPATCh data is limited to only

he surface soil moisture, it is not included here for the root-zone

valuation. The open loop and updated estimates of the root-zone

oil moisture are compared to the in-situ OzNet root-zone soil mois-

ure in Fig. 6 for the three soil depths at 0–30 cm, 30–60 cm, and

0–90 cm. Again, these evaluations used all the 13 OzNet stations for

ll time periods which overlap the assimilation time periods.

The results show that the updated output has increased the soil

oisture estimation accuracy at the root-zone in comparison to the

pen loop output. For all the three soil depths, the updated root-zone

oil moisture is consistently superior to the open loop root-zone es-

imate based on both RMSE and bias values. The comparisons show

hat the updated output has increased the open loop accuracy, based

n RMSE, by 34% for the 0–30 cm data, 59% for the 30–60 cm data, and

3% for the 60–90 cm data. Statistical tests using significance levels

f 0.05 and 0.1 for open loop and updated outputs found that both

stimates for all three soil layers come from populations with un-

qual means. Additionally, the correlation coefficient (r) for the up-

ated output was found to be 0.70, 0.89, and 0.84 respectively for
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Fig. 6. Evaluation (based on RMSE and bias both in m3/m3) of the open loop and up-

dated estimates against in-situ OzNet soil moisture at deeper soil depths of 0–30 cm,

30–60 cm, and 60–90 cm, for all 13 stations with available data which overlap the as-

similation time periods.
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0–30 cm, 30–60 cm, and 60–90 cm soil layers with p-value of zero in

all three cases. In the case of the open loop output the r (and p) val-

ues were found to be 0.2(0.0), 0.1(0.08), and 0.1(0.01) respectively for

0–30 cm, 30–60 cm, and 60–90 cm soil layers.

The increasing accuracy of the updated output over the open loop

estimate for deeper soil depths is not due to increased improvement

in the updated estimate for deeper soil layers, but that the open loop

estimation deteriorates for deeper soil depths. That is, the agreement

between the in-situ OzNet soil moisture and the estimate from the

updated output is similar across the three soil depths, in a way that

there is no significant increase or decline in soil moisture estimation

accuracy. Whereas in the open loop output, the agreement between

the in-situ OzNet data and the estimated root-zone soil moisture is

weak at the shallower soil depth of 0–30 cm, weaker at 30–60 cm

soil depth, and weakest at the deeper soil depth of 60–90 cm. This is

mainly because in the open loop output, the temporal consistency for

dry and wet soil moisture conditions have poor matchings (or agree-

ment) in comparison with those from the in-situ OzNet data. This is

supported by a time series evaluation of the open loop and updated

outputs against the in-situ OzNet data at station Y4 for the three soil
epths presented in Fig. 7. The consistent performance of the updated

utput demonstrates the positive impact of the observation DisPATCh

ata and the assimilation procedure on root-zone soil moisture esti-

ation.

The improved estimation accuracy at the root-zone for the up-

ated output points to an important implication for soil moisture

ata assimilation. It is notable that the accuracy difference between

he open loop and the updated estimate is almost negligible for the

urface soil moisture in terms of RMSE. As shown, the surface is

ot much different in terms of RMSE but the temporal evolution

s improved leading to an improved correlation. Thus, the improve-

ent at the root-zone for the updated output is primarily due to:

i) the observation DisPATCh data, and (ii) the EDA approach. The

ajor role of the DisPATCh data is its soil moisture signature which

as suitably adapted by the EDA method into the JULES model tra-

ectory. In other words, the soil moisture signature from the Dis-

ATCh data at the surface corresponds well with the deeper soil

oisture. This is an important feature of the DisPATCh data which

as not been previously noted, and for that matter a unique prop-

rty which needs to be assessed for all surface soil moisture prod-

cts. The EDA approach is also credited for its characterization of the

ULES model in response to the DisPATCh soil moisture signature.

unique feature of the EDA approach is its identification of stable

arameter values in model decision space through several assimila-

ion time steps. The evolutionary feature of the EDA also means that

oil moisture memory is properly maintained between assimilation

ime steps.

. Implication of findings and conclusions

This study has demonstrated improved estimation of root-zone

oil moisture through the assimilation of the 1-km DisPATCh sur-

ace soil moisture into the JULES land surface model. The assimila-

ion was undertaken using the advanced evolutionary data assimila-

ion, a promising framework combining computational evolutionary

trategy with temporal updating from traditional data assimilation.

he DisPATCh assimilation using the EDA procedure was conducted

or the Yanco area in south eastern Australia, where the open loop

nd updated outputs were evaluated using in-situ OzNet soil mois-

ure data both at the surface and at the root-zone.

Evaluation of the outputs for the surface soil moisture showed

hat the updated estimate is superior to the open loop output based

n both RMSE and bias. Although the updated output has better es-

imation accuracy measures (RMSE and bias) than the open loop, its

stimated soil moisture is not significantly different in comparison

o the open loop estimate. That is, when evaluated using the in-situ

zNet surface soil moisture for RMSE criterion, the open loop output

as found to be 95% as accurate as the updated output, with the up-

ated estimate improving the DisPATCh soil moisture by about 14%.

t was found that the DisPATCh data has a positive impact on the as-

imilation, because the soil moisture estimation error obtained from

he updated output is not worse than those that exist in both the Dis-

ATCh data and the open loop output.

Furthermore, the open loop and the updated outputs were evalu-

ted using the in-situ OzNet root-zone soil moisture at soil depths of

–30 cm, 30–60 cm and 60–90 cm. The evaluations showed that the

oot-zone soil moisture estimation accuracy in the updated output

emained stable across the three soil layers, and that the estimation

ccuracy was found to be independent of the depth of soil. In contrast,

he open loop estimate was found to deteriorate with increasing soil

epth, in a way that the shallower soil depth has a relatively moder-

te accuracy, with the deeper soil depth having the worst estimation

ccuracy. Based on evaluation with in-situ OzNet data, the updated

oot-zone soil moisture was found to be consistently better than the

pen loop output across all the three soil depths. Also, the evalua-

ion based on the RMSE criterion showed that the updated output
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Fig. 7. A time series evaluation of the open loop and updated estimates against in-situ OzNet soil moisture for station Y4 at deeper soil depths of 0–30 cm, 30–60 cm, and 60–90 cm.
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ncreased the open loop estimate by 34% for the 0–30 cm data, 59%

or the 30–60 cm data, and 63% for the 60–90 cm data, resulting in an

verall accuracy increment of 52%.

These findings point to a combined positive impact from the Dis-

ATCh data and the EDA procedure, which together have provided an

mproved soil moisture with consistent accuracy both at the surface

nd at the root-zone. The soil moisture estimations and their subse-

uent evaluations showed a limited positive impact from the assim-

lation on the surface soil moisture in comparison to the open loop

utput, yet having significant impact at the root-zone level. In other

ords, the updated soil moisture estimation accuracy was found to

emain similar both at the surface and root-zone, but the deteriora-

ion of the open loop estimate at deeper soil layers partly contribute

o the demonstrated greater impact of the assimilation at the root-

one. These findings are subject to the limited modeling time pe-

iod, mainly due to the scarcity of consistent forcing and observa-

ion data sets. But the key finding is the provision of root-zone soil

oisture based on capability from the EDA approach and the
isPATCh data set. d
The implications of these findings on soil moisture estimation are

mportant. The findings highlight the need to assess the signature

f surface soil moisture products and their impact on root-zone soil

oisture. The study has shown results which validate the soil mois-

ure signature of the downscaled DisPATCh data to support root-zone

oil moisture estimation. Given the strong impact of the DisPATCh

ata on root-zone soil moisture, there is potential to provide high res-

lution root-zone soil moisture at the global scale from downscaled

MOS data.

The findings demonstrated in this study also point to additional

uestions for future investigation. Soil moisture assimilation studies

ave been conducted in the past to integrate direct satellite observa-

ions and retrieved satellite soil moisture. This study has added dis-

ggregated satellite soil moisture with particular focus on root-zone

oil moisture estimation. It is important for future studies to com-

are and contrast these independent soil moisture assimilation pro-

edures to determine which data set provides the most improvement

o root-zone soil moisture estimation, and under what conditions the

ifferent data sets perform favorably.
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