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A B S T R A C T

A comprehensive understanding of the effects of agricultural management on climate–crop interactions has yet
to emerge. Using a novel wavelet–statistics conjunction approach, we analysed the synchronisation amongst
fluxes (net ecosystem exchange NEE, evapotranspiration and sensible heat flux) and seven environmental factors
(e.g., air temperature, soil water content) on 19 farm sites across Australia and New Zealand. Irrigation and
fertilisation practices improved positive coupling between net ecosystem productivity (NEP = −NEE) and
evapotranspiration, as hypothesised. Highly intense management tended to protect against heat stress, especially
for irrigated crops in dry climates. By contrast, stress avoidance in the vegetation of tropical and hot desert
climates was identified by reverse coupling between NEP and sensible heat flux (i.e., increases in NEP were
synchronised with decreases in sensible heat flux). Some environmental factors were found to be under man-
agement control, whereas others were fixed as constraints at a given location. Irrigated crops in dry climates
(e.g., maize, almonds) showed high predictability of fluxes given only knowledge of fluctuations in climate (R2

> 0.78), and fluxes were nearly as predictable across strongly energy- or water-limited environments (0.60 < R2

< 0.89). However, wavelet regression of environmental conditions on fluxes showed much smaller predict-
ability in response to precipitation pulses (0.15 < R2 < 0.55), where mowing or grazing affected crop phe-
nology (0.28 < R2 < 0.59), and where water and energy limitations were balanced (0.7 < net radiation ∕
precipitation < 1.3; 0.27 < R2 < 0.36). By incorporating a temporal component to regression, wavelet–-
statistics conjunction provides an important step forward for understanding direct ecosystem responses to
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environmental change, for modelling that understanding, and for quantifying nonstationary, nonlinear processes
such as precipitation pulses, which have previously defied quantitative analysis.

1. Introduction

With the required expansion of agriculture necessary for feeding
future populations, it is estimated that 109 ha of native and unmanaged
ecosystems will be transformed into agricultural uses (Khan and
Hanjra, 2009). The associated changes in land cover, land use, and thus
ecosystem characteristics have well-established effects on the parti-
tioning of energy and mass fluxes at the land surface. Shifts in albedo,
physiology and mass and energy balances can affect weather patterns
and regional climate as a result of changes in grazing, irrigation or
biomass burning (Beringer et al., 2015, 2011; Jeong et al., 2014;
Lara et al., 2017; Lynch et al., 2007; Mueller et al., 2017; Shao et al.,
2017; Yang et al., 2017). As a consequence, biogeochemical cycles will
likely be altered, including those of water, carbon, energy and nutrients
(Beringer et al., 2011; Foley et al., 2005; Lara et al., 2017). Therefore,
the transformation of unmanaged landscapes into managed agricultural
systems (or vice-versa, as is sometimes the case with reforestation of
previously cleared agricultural lands) will alter seasonal and annual
biogeochemical cycles from local to global scales (Beringer et al., 2011;
Cunningham et al., 2015).

Agricultural systems and yield are vulnerable to weather extremes
and climate change (He et al., 2014a, 2018; Jin et al., 2017; Luo et al.,
2018; Mallawaarachchi et al., 2017). Drought and heatwave present a
risk of crop failure, although damage can be ameliorated through irri-
gation and associated evaporative cooling (Adamson et al., 2017;
Dreccer et al., 2018; Ellis and Albrecht, 2017; Mueller et al., 2017;
Rashid et al., 2018). However, too much precipitation can also present
a great risk of crop failure, especially when extreme precipitation oc-
curs aseasonally (Ellis and Albrecht, 2017). Between these extremes of
droughts and flooding rains, mild water stress might not reduce pro-
ductivity and yield, depending upon the selection and performance of
drought-tolerant genotypes (Cai et al., 2017). Furthermore, climate
change can have contrasting effects on winter and summer crops
(Cammarano and Tian, 2018). There are strong regional differences in
the responses of crops and ecosystems to climate (Dreccer et al., 2018;
Hao et al., 2018; Raupach et al., 2013), particularly with respect to
water- versus energy-limited ecosystems (Akuraju et al., 2017). These
regional differences in environmental conditions inform the economic
basis of agricultural management decisions (Meier et al., 2017;
Regan et al., 2017). As such, there is an urgent need to identify how
management practices across regions might affect the response of bio-
geochemical fluxes to climate and other environmental factors.

Agricultural management is intended to ameliorate unfavourable
environmental conditions, thus management type and intensity can
have a substantive effect on water and carbon dynamics (e.g.,
Behtari et al., 2019; Chi et al., 2016; Davis et al., 2010;
Kirschbaum et al., 2017; Laubach et al., 2019; Moinet et al., 2019;
Orgill et al., 2017; Ratcliffe et al., 2019; Schipper et al., 2019;
Waters et al., 2017; Whitehead et al., 2018; Zeeman et al., 2010;
Zhou et al., 2017). Moreover, water and carbon cycles of agricultural
systems are complex, influenced heavily by location, soil type and
management practises such as cultivar selection, tillage, fertiliser ap-
plication, irrigation, crop rotation and management of residue and
wastewater (Drewniak et al., 2015; Thompson et al., 1999; Waldo et al.,
2016). Management practices affect soil carbon stocks in a multitude of
ways, including through changes to primary productivity, biomass re-
moval and decomposition (Kirschbaum et al., 2017; Whitehead et al.,
2018). Agricultural management practices such as irrigation and
grazing have direct and indirect effects on water-use efficiency (pro-
ductivity ∕ transpiration), evapotranspiration and CO2 emissions

(Kirschbaum et al., 2017; Tallec et al., 2013; Wagle et al., 2017a;
Wang et al., 2017). In this study, the effects of management practices on
productivity, evaporation and energy fluxes were investigated from
across the agricultural sectors of Australia and New Zealand, ranging
from grazed rangelands (low-intensity management) to irrigated/ferti-
lised croplands and high-density dairy farms (high-intensity manage-
ment).

Across Australia and New Zealand, ca. 52% of the landscape is
managed at varying intensity for food and fibre production
(Australian Bureau of Statistics, 2018; Statistics New Zealand, 2015).
Agricultural ecosystems in Australia and New Zealand cover a vast
range of climate and environmental conditions, from semiarid range-
lands to the humid oceanic climate of New Zealand. Continuous mea-
surements of fluxes and climate conditions across this range provides a
wealth of information, but a method of statistical inference has yet to
emerge which is not confounded by time-series measurements
(Hargrove and Pickering, 1992; Murphy et al., 2010). Recently, wa-
velet-conjunction analysis has laid a firm theoretical framework for
statistical inference of time series (Rhif et al., 2019); some examples are
wavelet eigenvalue regression (Abry and Didier, 2018), wavelet prin-
cipal components analysis (Cleverly et al., 2016a) and discrete wavelet
multiple linear regression (Guan et al., 2015; He and Guan, 2013;
He et al., 2014b). Building on this previous work, we used a novel
wavelet–statistics conjunction to evaluate multivariate linear regression
relationships between fluxes (net ecosystem exchange of carbon NEE,
evapotranspiration E and sensible heat flux H) and environmental
factors (e.g., air temperature Ta, specific humidity q, vapour pressure
deficit D, soil water content θ, net radiation Rn, soil temperature Ts and
ground heat flux G; see nomenclature for a list of factors and symbols).
These environmental factors are not independent, thus our approach
first included a wavelet–principal components analysis to identify de-
pendencies amongst environmental factors and account for those in-
teractions in subsequent regression analyses. Relationships between a
flux and a principal component can be associated with the full suite of
environmental conditions experienced at a site, as defined by the
principal component or components which together explain a majority
of the variability in a dataset. For example, if fluctuations in Ta and D
were synchronised and thus both had large loadings in the same prin-
cipal component, any relationship between a flux and that principal
component during subsequent regression analysis would then be asso-
ciated with coordinated fluctuations in both Ta and D, each in pro-
portion to its dependence on the other. This proportion would then be
related to each factor's relative, coordinated amplitude and phase (i.e.,
component loading in principal components analysis), the degree to
which their principal component is related to a flux (from regression
analysis), and the proportion of the variation which is explained by
their principal component (i.e., the eigenvalue of the principal com-
ponent). This study aims to synthesise the results from eddy covariance
measurements in agricultural ecosystems across the OzFlux research
network (http://ozflux.org.au; (Beringer et al., 2016)) of the Terrestrial
Ecosystem Research Network (Cleverly et al., 2019) and additional
independent sites to address the following research question:

How do fluxes under different types of management activities
(grazed rangelands, dryland farming, irrigated agriculture, and high
density grazing with large input requirements) differ in their responses
to environmental drivers?

We hypothesised that: (i) coupling amongst fluxes was expected to
be similar across sites within a level of management intensity (low,
intermediate, high) because carbon and water fluxes will experience
greater physiological coupling if management plays a role in
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ameliorating crop stress; (ii) coupling amongst environmental factors
would be weakened by increasingly intense management, due to the
divergence of local and regional climate under highly intense man-
agement; and (iii) relationships between fluxes and environmental
factors would be similar within a level of management intensity (low,
intermediate, high) as a result of hypotheses (i) and (ii). In this work,
eddy covariance sites will be identified by their FLUXNET code (AU-
xxx, NZ-xxx).

2. Agricultural sites description

Nineteen sites in Australia and New Zealand with uninterrupted
time series of fluxes and environmental factors during at least one
complete growing season were identified for analysis (Table 1, Fig. 1).
Because uninterrupted time series are required for wavelet analysis, site
selection was restricted to those which contained few, small gaps
during the peak of the growing season. Agricultural ecosystems were
classified by management intensity: low, intermediate and high. Due to
restrictions on the distribution of eddy covariance sites, only one or two
datasets sometimes exist for a given management practice (e.g., dryland
food crops, n = 1), thus management intensity categories could not be
further divided by specific management practice without losing statis-
tical power and rigour. Management at low to negligible intensity in-
cluded only Australian grazed rangelands, which are stocked at very
low density and are absent of land clearing, irrigation and fertilisation.
At the other extreme, sites with highly intense management have been
cleared and levelled, although the regular receipt of irrigation and
fertilisation was used to define the high-intensity management class,
both for crops and for dairy pastures. Management practices at inter-
mediate-intensity sites often included land clearing and nursery support
(e.g., planting, initial but not continuing irrigation or fertilisation for
promoting establishment only). Sites with moderate-intensity manage-
ment included improved pasturelands and unirrigated (dryland) crops,
either for consumption by people (food crops) or as forage for livestock
(forage crops). Food crops are generally harvested at the end of the
growing season, whereas forage crops are typically harvested re-
peatedly throughout the growing season. These 19 sites represent
common agricultural activities across a wide range of regions and cli-
mates; see supplementary information S1 for a detailed description of
the agricultural land use at each site.

To constrain the large range of regional variation across Australia
and New Zealand, four sets of co-located sites were included in this
study. The paired grazed-rangeland sites AU-ASM and AU-TTE were co-
located on Pine Hill Cattle station in semiarid central Australia, where
grazing pressure ranges from small in the woodland at AU-ASM (Acacia
spp.) to negligible in the unpalatable hummock grasses of AU-TTE
(Triodia schinzii). Measurements of three "paired" irrigated broadacre
crops were co-located at relatively close proximity in the Coleambally
irrigation area (AU-Cm1, AU-Cm2), where irrigation intensity was
highest for rice (Oryza sativa), intermediate for summer-season maize
(Zea mays, also known as corn in some parts of the world), and smallest
for wheat (Triticum sativa) due to reduced evaporative demand in the
winter. In both sets of paired sites in New Zealand, highly intense
management in the form of irrigation and fertilisation was compared to
intermediate-intensity management for livestock, either as a rainfed
forage crop or an intermittently grazed pasture. One pair of sites was
located on Beacon Farm, where the comparison was between irrigated
and fertilised ryegrass (Lolium perenne) and clover (Trifolium repens)
pasture versus rainfed kale (Brassica oleracea) (NZ-BFm and NZ-BFu,
respectively; Laubach and Hunt, 2018). The second set of paired sites in
NZ was at Ashley Dene farm, where the comparison was between an
irrigated lucerne (Medicago sativa) crop (NZ-ADw), which is also known
as alfalfa in some parts of the world, and a rainfed lucerne crop (NZ-
ADn).

3. Methods

3.1. Measurements: eddy covariance and environmental conditions

Most of the eddy covariance sites across the OzFlux network use a
standard set of instruments, although there is some variation due to
site-specific limitations (Isaac et al., 2017). Detailed descriptions of
sites, flux tower installation and instrumentation can be found in the
references of Table 1. Each EC system was operated at a measurement
frequency of 10 or 20 Hz, and fluxes were computed from covariance
with vertical wind speed over a 30-min interval except at AU-Otw,
where fluxes were computed hourly. Flux data were processed fol-
lowing Isaac et al. (2017). NEE was assumed to be equal to net carbon
flux Fc, where NEE = Fc = w c , w is vertical wind speed, c represents
atmospheric carbon dioxide density, primes represent fluctuation

Nomenclature

Environmental factors

ϕ short-term dryness index (-)
ρv absolute humidity (g m−3)
θ soil water content (m3 m−3)
D vapour pressure deficit (kPa)
G ground heat flux (W m−2), (MJ m−2 d−1)
P precipitation (mm d−1)
q specific humidity (g−1)
Rn net radiation (W m−2), (MJ m−2 d−1)
Ta air temperature (°C)
Ts soil surface temperature (°C)

Turbulent fluxes

BR Bowen ratio (-)
E evapotranspiration (mm d−1)
H sensible heat flux (W m−2), (MJ m−2 d−1)
NEE net ecosystem exchange of carbon (μmol m−2 s−1), (gC

m−2 d−1)

−NEE net ecosystem productivity (μmol m−2 s−1), (gC m−2 d−1)

Wavelets

Ψ mother wavelet
amax timescale of peak coherence
CWT continuous wavelet transform
DWT discrete wavelet transform

Statistics

αi ith component loading
βi regression coefficient for the ith component
ε regression model error
λi ith eigenvalue
r2 squared correlation, coherence
R2 coefficient of determination
envPCi ith principal component for environmental factors
fluxPCi ith principal component for turbulent fluxes
wCCA wavelet canonical correlation analysis
wMLR wavelet multiple linear regression
wPCA wavelet principal components analysis
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around the mean, and the overbar represents a temporal average. Si-
milarly, H was determined as H = C w Ta p a , where ρa is air density
and Cp is the specific heat of air. E was measured as a mass flux

=E w /mass v w and converted to a 30-min depth equivalent (i.e.,
converted to units of mm 30-min−1), where ρv is absolute humidity and
ρw is the density of water. Latent heat flux (LE) was determined as the
product of Lv and Emass, where Lv is the latent heat of vaporisation and
was computed following Stull (1988) as a function of independently
measured air temperature (Isaac et al., 2017). See Isaac et al. (2017) for
a detailed description of quality control and post-processing procedures
used in TERN OzFlux.

Because wavelet analysis requires uninterrupted time series, the
potential for gapfilling bias is present. Biases introduced during gap
filling were minimised by (i) selecting a short analysis period which
avoids large gaps (61 days, see §3.2) and (ii) careful screening of each
dataset for obvious errors introduced during gapfilling (e.g., vapour
pressure deficit < 0). However, screening came with the potential ex-
pense of under-representing agricultural sites in areas of high farm
density (cf. Figs. 1 and S1). Gapfilled flux datasets were obtained from
http//data.ozflux.org or from individual sites. Local optimisation of
gapfilling procedures is essential for minimising bias (Isaac et al.,
2017), just as local site knowledge is key for providing confidence and
consistency in statistical findings (van Gorsel et al., 2018). Wavelet–-
statistics conjunction could provide a powerful tool for comparing
gapfilling approaches (e.g., Moffat et al., 2007), although a complete
evaluation of gapfilling procedures should not be limited to agricultural
sites and is beyond the scope of the current study.

Gaps in fluxes (NEE, E, H) were filled using either a self-organising
linear output (SOLO) model (Eamus et al., 2013; Isaac et al., 2017) or a
feed-forward artificial neural network in DINGO (Dynamic INtegrated
Gap-filling and partitioning for OzFlux; Beringer et al., 2017) following
Moffat et al. (2007). SOLO is an artificial neural network which
(Eamus et al., 2013; Hsu et al., 2002): (a) employs a linear statistical
kernel, resulting in minimal errors due to over-training; (b) provides ac-
cess to intermediate products (i.e., SOLO is not a black box type of arti-
ficial neural network); and (c) produces small root mean square errors
when used for gap filling. Gaps in meteorology were filled using a variety
of strategies depending on data availability and suitability, including:
SOLO trained on environmental drivers from a paired tower
(Cleverly et al., 2016c); linear interpolation for small gaps (≤ 60 min);
regressions from ancillary data of automatic weather stations operated by
the Bureau of Meteorology (in Australia); output from a numerical
weather prediction model known as the Australian community climate
Earth system simulator (ACCESS); output from the ERA-Interim reanalysis
product; or vegetation indices from the moderate resolution imaging
spectroradiometer (MODIS) satellite (Isaac et al., 2017). Eight of the da-
tasets used in this study contained no gaps in measurements of environ-
mental factors during the chosen analysis period. Gaps in environmental
factors amounted to 0.08 ± 0.04% of observations across all sites, ex-
clusive of the grazed rangeland AU-Stp where gaps in environmental
factors amounted to 35% of the data during the chosen analysis period.
Nonetheless, AU-Stp was retained in the analysis to maintain a minimum
sample size of three grazed rangeland sites for analysis in this study.

4. Analysis periods

Analysis periods of 61 days were chosen to span the peak of the
growing season, defined by consistently low (i.e., highly negative) va-
lues of daytime NEE, but also to minimise overlap with green-up or
senescence periods. Data records for some sites were restricted to a
single year, particularly for those from irrigated broadacre crops (AU-
Cm1, AU-Cm2), thus a single growing season was chosen for evaluation
of the 19 sites in the study. Measurements were collected in an anom-
alously wet year from AU-Cm1 and AU-Cm2, thus a growing season for
sites with multi-year records was chosen as the most productive year in
the record. Differences in climate across sites and years are important Ta
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confounding factors for comparisons across the network, and these is-
sues cannot be ignored. However, a survey of agricultural management
conducted from flux measurements collected simultaneously is im-
practical, thus we will interpret the results of this study under the
conditions observed during the growing season under analysis
(Table 2).

Many of the sites in this study provided a single season of flux data
(Table 2), and this was often during a highly productive year like
2010–2011 in Australia (Boening et al., 2012; Cleverly et al., 2016a;
Poulter et al., 2014; Xie et al., 2019). Thus to avoid confounding factors
of interannual fluctuations in stress and productivity, comparisons in
this study were made for each site during its most productive growing
season (i.e., the growing season with the lowest daytime NEE). Whereas
some sites were highly productive during wet conditions (e.g., irrigated
broadacre crops AU-Cm1, AU-Cm2; grazed rangelands AU-ASM, AU-
Stp), others were evaluated during drought, including the final year of
the Millennium Drought (2009; improved pasture AU-Otw, irrigated
almonds AU-Lox), ten years of hydrological drought which generated
hardships for irrigated agriculture (Mallawaarachchi et al., 2017;
van Dijk et al., 2013), and 2012–2013, the return of drought (improved
pasture in the Northern Territory, AU-Dap; rainfed crops and improved
pasture in Queensland, AU-Emr and AU-Sam). (Table 2). Climate has
continued to fluctuate between extremes of droughts, heatwaves and
flooding rains (Cleverly et al., 2016a, 2016c; Ma et al., 2016), creating
much uncertainty in the agricultural sector (Ellis and Albrecht, 2017).
The analysis period for AU-TTE was identified during the return of wet
conditions in the summer of 2016–2017, when precipitation in the two
months preceding the analysis window (546 mm, 17 Dec 2016–6 Feb-
ruary 2017) was similar to that which fell across the entire water year
2010–2011 at AU-TTE's paired site, AU-ASM (565 mm, 1 September
2010–31 August 2011; Cleverly et al., 2016c) (Table 2).

Intense grazing events in New Zealand can strongly increase NEE

through enhanced carbon emissions and removal of photosynthetic
biomass (Hunt et al., 2016). Thus, analysis periods for flux measure-
ments from New Zealand were either (i) around the peak of the growing
season, when high growth rates kept NEE low despite the occurrence of
defoliation episodes; or (ii) after conversion to forage crops such as kale
(e.g., NZ-BFu).

As an indication of the short-term balance between energy and
water limitations on NEE and E, an aridity index value (ϕ) was calcu-
lated as ϕ = Rn ∕ (ρw Lv P) over the analysis period, where ρw is the
density of water and P is precipitation. Caution is urged regarding the
interpretation of ϕ in this study as a short-term measure of ϕ cannot be
used to draw inferences of long-term aridity, hydrology or climatology,
contrary to the original definition and use of ϕ at an annual timescale
(Budyko, 1974). To further characterise site conditions, the Bowen ratio
(BR) was also determined as BR = H ∕ LE over the same period.

5. Data analysis

A wavelet–statistics conjunction approach was used for all in-
ferences in this study. Time series measurements are an extreme case of
the repeated measures experimental design, representing many multi-
ples of repeated observations on an individual experimental unit. This
restriction on random sampling creates the possibility of auto-correla-
tion between successive observations, and the presence of this auto-
correlation can generate spurious results during statistical inference
(Murphy et al., 2010). Such observations are not 'independent and
identically distributed' (i.i.d.), leading to misinterpretation of the
strength of evidence obtained in statistical analyses (Hargrove and
Pickering, 1992). When performing inference between two or more
time series, lagged cross-correlation interacts with each pattern of auto-
correlation, causing errors due to temporal pseudoreplication (i.e.,
observations in time which lack independent replication) that are not

Fig. 1. Locations of TERN OzFlux sites used in the analysis and regional Köppen–Geiger climate zones. Sites are categorised by management intensity (rangeland,
rainfed agriculture, irrigated agriculture).
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affected by measurement frequency or persistence of environmental
conditions. Thus, time series violate several fundamental assumptions
in statistics and probability theory (e.g., temporal pseudoreplication,
auto-correlation, lagged cross-correlation; Hargrove and
Pickering, 1992; Murphy et al., 2010). By contrast, the characteristics of
wavelet analysis (linearity, localisation in time, energy conservation)
make wavelets ideal for statistical inference of time series by inter-
preting variance in the time series instead of the observations them-
selves (He and Guan, 2013; He et al., 2014b). This approach invokes the
Central Limit Theorem by assuming that auto-correlation in variances is
negligible relative to auto-correlation in the observations. Wavelets are
finite, cyclic functions that are modulated to identify fluctuations in
time and timescale through dilation and translation of a mother wavelet
(Ψ). Thus, wavelets are ideal for analysis of data with intermittencies or
nonstationarities, such as fluxes (Stoy et al., 2005, 2013; van Gorsel
et al., 2013).

A multivariate version of wavelet multiple linear regression (wMLR)
was used to infer the relative importance of driving variables on the
turbulent fluxes (NEE, E and H). Seven variables were considered as
potential drivers of the three fluxes (Rn, Ta, θ, D, q, Ts and G). The
complete analysis was performed in three steps: 1) wavelet coherence
was used to determine the timescale of peak correlation (amax) between
fluxes and environmental factors, where amax was used in the following
two analyses; 2) wavelet principal components analysis (wPCA;
Cleverly et al., 2016a) was performed independently for each site to
identify dependencies (i.e., coupling) amongst (i) NEE, E and H

(fluxPCs) or (ii) environmental factors (envPCs); and 3) wPCA was
combined with wMLR to infer relationships between environmental
factors and fluxes (i.e., wavelet canonical correlation analysis, wCCA)
at a timescale of amax.

First (step 1), amax was identified using wavelet coherence analysis
to estimate the correlation between fluxes and environmental factors
(Grinsted et al., 2004; Shi et al., 2014; Torrence and Compo, 1998).
Fluxes and environmental factors were represented by their main
principal components (fluxPCs, envPCs), as described in step (2), except
PCs in this step were determined using details at all scales which were
supported by the length of a given time series. Coherence between two
variables represents the squared-correlation, r2, and wavelet coherence
analysis uses a continuous wavelet transformation (CWT) to estimate r2.
The Morlet wavelet was chosen as Ψ for its functional similarity to
turbulence (Cuxart et al., 2002) and its improved compositing
(Schaller et al., 2017). Analysis of timescales was limited to 10 scales
per octave. Significant coherence was determined using Monte Carlo
methods and a red noise auto-regressive null model. Two primary
modes of variability were identified, at daily and annual timescales,
despite minor differences in coherence across management intensities
(Fig. S2). Thus, analyses were performed at a daily timescale.

Next (step 2), dependencies amongst environmental factors were
identified using wPCA (Matlab R2013a, The MathWorks Inc., Natick
Massachusetts USA). In wPCA, the covariance matrix is populated from
the product of paired wavelet coefficients. wPCA is limited to the dis-
crete wavelet transformation (DWT) to simplify construction of the

Table 2
Sixty-one-day analysis period with average (range) of daily fluxes and key environmental conditions for each site during that period. NEE: net ecosystem exchange of
carbon; E: evapotranspiration; H: sensible heat flux; D: vapour pressure deficit; θ: soil water content; Rn: net radiation; BR: Bowen ratio (=∑[H] ∕ ∑[Lv E]; Lv E: latent
heat flux).

Site Date range/Season NEE (g m−2 d-1) E (mm d−1) H (MJ m−2 d−1) D (kPa) θ (m3 m−3) Ta (°C) Rn (MJ m-2 d−1) BR (-)

AU-TTE a 15/1–17/3/2017
Summer–Autumn

−1.7
(−2.0–0.4)

3.1
(1.2–4.8)

4.7
(0.5–7.3)

2.40
(0.93–3.51)

0.047
(0.018–0.14)

28.4
(22.1–32.1)

15.2
(2.1–21.7)

0.7
(0.2–1.4)

AU-ASM a 15/1–17/3/2011
Summer–Autumn

−0.2
(−1.7–2.3)

2.8
(0.7–5.1)

5.5
(0.9–13.2)

1.75
(0.25–4.46)

0.092
(0.034–0.26)

27.3
(22.8–34.9)

15.0
(5.3–19.9)

1.3
(0.2–6.5)

AU-Stp 15/2–17/4/2011
Summer–Autumn

−1.9
(−4.4–−0.1)

4.0
(1.5–6.0)

2.4
(0.0–4.0)

0.98
(0.36–1.82)

0.22
(0.11–0.27)

25.9
(21.4–28.5)

11.9
(2.5–18.5)

0.2
(0.0–0.6)

AU-Otw 1/9–31/10/2009
Spring

−1.7
(−3.8–2.0)

1.4
(0.4–3.3)

0.2
(−3.0–2.1)

0.26
(0.00–0.7)

0.36
(0.22–0.42)

11.1
(7.7–21.2)

4.0
(0.2–7.5)

1.2
(0.2–3.2)

AU-DaP 31/12/2012–2/3/2013
Wet

−3.8
(−7.3–0.4)

4.5
(1.0–6.2)

0.7
(−1.5–3.9)

0.98
(0.34–1.65)

0.13
(0.061–0.18)

27.8
(24.0–31.1)

13.1
(1.4–17.8)

0.0
(−0.2–0.4)

NZ-Oxf 15/12/2006–14/2/2007
Summer

−0.1
(−5.7–4.6)

1.9
(0.03–7.7)

2.0
(−2.6–5.8)

0.43
(0.06–1.57)

0.50
(0.46–0.52)

13.5
(7.3–21.7)

8.4
(−0.4–18.0)

1.1
(−17.2–7.5)

AU-Rig 5/6–5/8/2014
Winter

−2.3
(−3.9–0.5)

1.0
(0.5–3.1)

−0.3
(−3.0–2.0)

0.20
(0.00–0.51)

0.49
(0.38–0.52)

8.6
(4.2–13.3)

2.4
(−0.8–5.8)

0.0
(−1.0–0.7)

AU-Gat 17/8–17/10/2015
Winter–Spring

−3.2
(−7.1–2.0)

1.2
(0.1–4.0)

1.0
(−3.3–6.2)

0.51
(0.09–2.38)

0.20
(0.10–0.28)

11.8
(5.9–23.2)

7.1
(1.4–13.0)

0.6
(−1.9–3.6)

AU-Emr 5/2–6/4/2012
Summer–Autumn

0.3
(−4.4–3.2)

1.8
(0.4–4.3)

5.0
(0.3–8.1)

1.37
(0.22–2.12)

0.13
(0.08–0.21)

25.3
(21.6–29.3)

12.7
(2.9–18.3)

1.7
(0.1–6.0)

AU-Sam 15/12/2011–14/2/2012
Summer

−2.2
(−4.9–2.4)

2.4
(1.1–4.3)

2.8
(0.3–5.5)

0.82
(0.24–2.41)

0.51
(0.39–0.58)

23.1
(18.8–28.0)

12.1
(3.8–20.1)

0.5
(0.1–1.0)

NZ-BFu b 19/1–21/3/2014
Summer–Autumn

−2.1
(−6.8–4.0)

2.3
(0.2–5.3)

2.7
(−4.8–8.2)

0.38
(0.01–1.60)

0.15
(0.11–0.21)

13.8
(7.8–20.7)

9.4
(−0.4–17.7)

0.5
(−1.7–1.8)

NZ-ADn c 22/1–24/3/2018
Summer–Autumn

−1.0
(−8.5–4.6)

2.4
(−0.1–6.5)

1.8
(−8.5–7.5)

0.50
(0.05–1.52)

0.22
(0.10–0.35)

16.3
(9.2–24.0)

10.1
(1.4–19.2)

0.3
(−4.8–1.5)

AU-Lox 11/11/2008–11/1/2009
Spring–Summer

−6.3
(−9.0–2.2)

6.5
(2.8–9.7)

−1.8
(−10.6–2.8)

1.35
(0.36–2.92)

0.11
(0.08–0.15)

20.0
(11.8–27.4)

17.3
(5.3–22.2)

−0.1
(−0.6–0.2)

AU-Cm1 d

(Maize)
4/12/2010–3/2/2011
Summer

−15.4
(−22.9–−1.2)

5.6
(2.6–8.0)

−0.3
(−6.9–3.9)

1.48
(0.46–3.45)

not measured 23.2
(13.9–32.1)

18.6
(3.9–23.7)

−0.02
(−0.4–0.3)

AU-Cm1 d

(Wheat)
8/8–8/10/2011
Winter–Spring

−4.9
(−8.8–0.9)

2.4
(0.9–5.1)

0.3
(−4.0–3.4)

0.76
(0.08–3.02)

not measured 16.0
(7.4–26.5)

7.1
(−0.8–12.2)

0.07
(−0.9–0.7)

AU-Cm2 d 15/12/2010–14/2/2011
Summer

−9.7
(−14.7–−1.8)

5.9
(3.3–9.5)

−1.9
(−6.7–1.9)

1.10
(0.12–2.64)

not measured 22.0
(13.4–29.1)

21.5
(6.1–27.7)

−0.1
(−0.4–0.2)

NZ-Sco 15/12/2008–14/2/2009
Summer

−2.8
(−7.0–7.3)

3.7
(1.1–5.9)

2.5
(−0.5–6.2)

0.64
(0.25–1.07)

0.42
(0.28–0.57)

17.6
(14.1–23.3)

14.8
(4.1–20.7)

0.3
(−0.1–1.3)

NZ-BFm b 15/12/2013–14/2/2014
Summer

−2.9
(−9.7–3.4)

3.4
(0.2–8.0)

0.5
(−6.2–5.4)

0.38
(0.00–1.54)

0.35
(0.22–0.51)

13.9
(10.0–20.5)

11.7
(1.2–18.7)

0.2
(−0.7–1.8)

NZ-ADw c 22/1–24/3/2018
Summer–Autumn

−0.7
(−6.4–5.2)

2.8
(0.0–8.3)

0.6
(−8.9–7.0)

0.45
(0.06–1.17)

0.22
(0.16–0.27)

16.5
(10.2–22.8)

10.1
(1.4–19.1)

−1.5
(−107–2.9)

a,b,c,d paired sites indicated with the same letter
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covariance matrix and for computational efficiency. Normalised data
were used to account for differences in units amongst environmental
factors (equivalent to the use of a correlation matrix as a basis for
computation of eigenvalues λi and associated eigenvectors). Time series
were padded to the next octave j (where the sample size is 2j) with
spectrally neutral values (i.e., the first or last value in the time series) to
minimise errors due to the cone of influence. A second-order symlet was
chosen for Ψ due to its improved localisation in the frequency domain
relative to a first-order 'Haar' wavelet and improved symmetry over the
second-order Daubechies wavelet upon which it is based. The resultant
linear combinations of environmental factors (Xp) are defined as:

= + +envPC X Xi i i p p,1 1 , (1)

where envPCi is the ith principal component, αi is the component
loading for envPCi and p is the number of environmental factors.
Similarly, wPCs of the fluxes (fluxPCi) were determined as
fluxPCi = αi,NEE NEE + αi,E E + αi,H H. Principal components are
defined to be orthogonal, meaning they are independent for the pur-
poses of multiple regression analysis (i.e., no colinearity). Principal
components with cumulative eigenvalues (λ1+⋯+λi) explaining 70%
or more of the total variability (∑λp) were included in following ana-
lyses. fluxPC1 was retained in favour of the original fluxes when its
eigenvalue exceeded 70% of the total variability in the fluxes. Variables
with a component loading of less than 10% of the total loadings were
considered to be independent (i.e., not colinear). wPCA included details
for scales 21–2x (number of 30-min periods) and approximations at a
scale of 2x, with x representing the highest integer scale below amax.

Time series of the principal components were constructed from
wPCA-derived loadings α1–αp (e.g., Eq. (1)) and normalised environ-
mental factors or fluxes. A CWT was performed on wPCs to provide
samples for wCCA. The Mexican hat wavelet is defined as the second
derivative of a Gaussian function (Collineau and Brunet, 1993), and it is
effective at locating nonstationarities precisely in time (Schaller et al.,
2017). Thus, coefficients from the Mexican hat wavelet represent di-
rectional variance by integrating information on timing (Percival and
Walden, 2000), validating the application of the Central Limit Theorem
and establishing that statistics based upon coefficients from the Mex-
ican hat wavelet represent direct functional responses in one variable to
perturbations in another. However, CWT is oversampled, erroneously
inflating sample size and degrees of freedom (Katul and
Parlange, 1995). Thus, daily-scale variance was computed as the sum of
each day's wavelet coefficients. For the Central Limit Theorem to apply,
a sample size of at least 30 is required, thus restricting our ability to
form rigorous inferences of inter-annual fluxes for sites with a data
record which is shorter than 30 years, and this is why daily fluctuations
were evaluated in this study.

Initially, the primary mode of variability in the fluxes (fluxPC1) was
regressed against (i) the k number of envPCs which explained a cu-
mulative 70% of the variability in those variables (envPC1–envPCk) and
(ii) any other environmental factors which contributed less than 10% of
the variability to any of envPC1–envPCk (Xa … Xn); for example:

+ + + + + +

+ × × +
+ +

+ +

fluxPC X X envPC envPC

X X
i i i a i n n i n i n k k

i n k a n

,0 ,1 , , 1 1 ,

, 1 (2)

where each β is a unique regression coefficient, the term with coeffi-
cient βn+k+1 is the interaction for Xn non-colinear environmental fac-
tors when n > 1, and ε is the regression error term.

Next, envPCs which were not significantly related to fluxPC1 were
removed and replaced by any variables which contributed to less than
10% of the variability in the remaining envPCs. In cases where multiple
variables were at risk of introducing colinearity in subsequent regres-
sion models, each variable which was introduced by removal of an
envPCi was evaluated individually. This is illustrated in the following
example, where (i) envPC2 of two envPCs was not significantly related
to fluxPC1, (ii) all X1–Xp contributed more than 10% to the combination
of envPC1 and envPC2, and (iii) three of X1–Xp contribute more than
10% of the variability in envPC2 but not in envPC1 (Xx, Xy, Xz):

+ + +fluxPC X envPCi i i x,0 ,1 2 1 (3a)

+ + +fluxPC X envPC andi i i y,0 ,1 2 1 (3b)

+ + +fluxPC X envPCi i i z,0 ,1 2 1 (3c)

The complete stepwise procedure was repeated for (i) fluxPC2 or (ii)
any of NEE, E or H which represented less than 10% of the loadings on
fluxPC1, wherever either was applicable. The linear importance of each
environmental factor for predicting fluxes was estimated from the
product of that factor's α in envPCi and the regression coefficient (β) for
that envPCi, but only if β were significantly different from zero. The
importance of each environmental factor for the prediction of fluxes
was estimated as ∑|βi,X| or ∑|αi,X βi,envPCi| for significant main effects
and envPCs, respectively.

All analyses were performed in Matlab R2018b (The Mathworks,
Inc., Natick, Massachusetts, USA), and inferences were based upon a
sample size of N = 61 days. The probability of a type I error was
presumed to be 0.05 (p < 0.05) in all hypothesis tests. Because of the
nature of wavelet transformation, the equivalent of a multivariate
analysis of variance could not be performed. We thus acknowledge that
lacking a single statistical model for all 19 sites increases the prob-
ability of an erroneous inference for a site. The coefficient of determi-
nation (R2) for wMLR and wCCA will be distinguished as a capital letter
in this study to avoid confusion with coherence or squared correlation,
r2. Negative statistical coefficients for NEE were taken to indicate in-
creasing values of NEP (NEP = −NEE).

All statistical outputs (including those of intermediate steps) and
data used in this study can be obtained from the TERN OzFlux data
portal (Cleverly, 2019). Example Matlab instructions for data analyses
can be found in the Supplementary Material S2.

6. Results

6.1. Management intensity and coupling amongst fluxes

Five combinations of dependencies amongst NEE, E and H were
identified across the 19 sites, based upon the sign of their component
loadings in wPCA (Table 3). Examples of Type 1 dependencies amongst
fluxes were found in every management intensity class, although Type
1 dominated in the highly intense management class (Fig. 2, Table S1).
Increases in NEP were synchronised with increasing E and H (Type 1) at

Table 3
Coupling amongst fluxes from wavelet Principal Components Analysis (wPCA). fluxPC1: principal component explaining the largest proportion of total variability
amongst the fluxes; α: Component loading for NEE (α1), E (α2) and H (α3), respectively. fluxPC1 term not shown for component loadings < 10% of total loadings.

Type fluxPC1 Productivity–E coupling Productivity–H coupling E–H coupling Explanation

Type 1 {−α1 NEE, +α2 E, +α3 H} coupled coupled coupled full physiological coupling, no heat stress
Type 2 {−α1 NEE, −α3 H} uncoupled reverse uncoupled heat stress, evaporative cooling
Type 3 {−α1 NEE, +α2 E, −α3 H} coupled reverse reverse heat stress, isohydric
Type 4 {−α1 NEE, −α2 E} reverse uncoupled uncoupled low D, no heat stress
Type 5 {−α1 NEE, −α2 E, +α3 H} reverse coupled reverse low D, energy limited
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nine locations (Table S1).
Only Type 1 and Type 2 dependencies were observed in the grazed

rangelands of this study. In Type 2 and Type 3 dependencies, decreasing
NEE (i.e., increasing NEP) was synchronised with decreasing H, in-
dicative of a negative heat stress response. For Type 2, variation in E
represented less than 10% of the total flux variability and was thus
considered to be uncoupled from fluctuations in NEE or H. Type 2 re-
lationships were observed at four rangeland and pasture sites (Fig. 2,
Table S1). Type 3 relationships in which NEP was positively correlated
to E and inversely correlated to H occurred on four of the 19 farms
(Table S1). Positive coupling with E on the highly managed Ashley
Dene Farm (NZ-ADw) was small in magnitude, comparable to that of
Type 2 dependencies on farms with intermediate-intensity management
(Table S1). Reverse coupling between NEP and E was uncommon, ob-
served at only one site for each of Type 4 and Type 5 dependencies.
Refer to Table S1 for individual results from each of the 19 sites.

6.2. Coupling amongst environmental factors

Complete wPCA results for the seven environmental factors are also
provided in Table S1. Interactions amongst environmental factors were
generally site specific, varying across sites in the identity and strength
of contributing variables and in the amount of variation explained by
envPCs (Fig. S3). Thus, dependencies amongst environmental factors
were evaluated in detail at the paired sites to minimise differences in-
troduced by the large distances between farms in this study (Fig. 3).

In grazed rangelands, Rn and G maintained similar relationships
across Pine Hill Station (AU-ASM, AU-TTE), whereas Ta, Ts, θ and q
showed a ca. 180° phase shift relative to the Rn–G axis across sites
(Fig. 3a, d). In the comparison of an irrigated and fertilised pasture (NZ-
BFu) versus a kale forage crop (NZ-BFm), fluctuations of Ts and θ dif-
fered across the two datasets; irrigation and fertilisation induced a shift
from coupling of Ts with Rn to coupling of Ts with Ta, and highly intense
management induced a shift in coupling for θ from D to q, representing
a release of θ from atmospheric water stress (Fig. 3b, e). In lucerne,
fluctuations in G and q differed between irrigated and unirrigated
paddocks on Ashley Dene farm, whereas relative coupling amongst Rn,
D, Ta and Ts were fixed (NZ-ADn, NZ-ADw; Fig. 3c, f). In irrigated
broadacre crops of the Coleambally Irrigation Area, fluctuations in Ts

and q were similarly correlated in winter (AU-Cm1 wheat) and summer
(AU-Cm1 maize, AU-Cm2 rice; Fig. 3g–i). With the exception of D,
heavy irrigation for the cultivation of rice created similar relationships
amongst environmental factors as irrigated cultivation of wheat during
the winter and spring, but Ta dominance in winter (Fig. 3g) was ex-
changed for Rn dominance in summertime irrigated rice (Fig. 3i).
Across all comparisons, some environmental factors maintained the
same contribution to total environmental variability at paired sites,
whereas other environmental factors were rotated relative to the fixed
factors, suggesting that management can influence some environmental
factors, but others are beyond management control.

6.3. Management responses of fluxes to environmental factors

R2 from wCCA for the regression of fluctuations in NEE, E and H
against fluctuations in meteorological and edaphic conditions ranged
from 0.16 at AU-Emr to 0.88 at AU-Gat (Fig. 4). Values of R2 in Fig. 4
for NEE, E or H which were not different at a given site were obtained
from a single wCCA model, and only values of R2 which were sig-
nificantly different from zero are presented in Fig. 4. Representing
predictability of variations in fluxes, R2 did not show consistent pat-
terns across management intensity classes, but there were some general
trends. Grazed rangelands had small R2 as a group (0.34 ± 0.06), with
a range of values (0.17–0.54) which overlapped completely with the
range of R2 values from sites managed at intermediate intensity
(0.16–0.88, 0.55 ± 0.07). By contrast, the range of R2 for grazed
rangelands overlapped only slightly with the range of R2 from highly
intense management (0.42–0.84, 0.62 ± 0.07). Similar to the grazed
rangelands, the range of R2 values for sites with high-intensity man-
agement overlapped completely with the range of R2 values from in-
termediate-intensity management (Fig. 4). No relationships between R2

and ϕ were apparent in grazed rangelands (Fig. 4). At sites with in-
termediate-intensity management, the smallest values of R2 were ob-
served at intermediate ϕ (R2 = 0.28–0.35; NZ-ADn, AU-DaP, AU-Otw),
with the exception of low R2 for rainfed crops at AU-Emr (R2 = 0.16).
Amongst sites with highly intense management, R2 was highest in the
three irrigated farms with the highest ϕ (R2 = 0.78–0.84; AU-Lox al-
monds, AU-Cm1 maize, NZ-Sco dairy; Fig. 4).

In all except three cases, a single inference model was obtained,
with only envPCs and factors which were not co-linear with the envPCs
explaining fluctuations in NEE, E and H (Table S2, Fig. S3). This in-
dicates that fluxes generally responded to coupled environmental fac-
tors instead of individually to those environmental factors. One ex-
ception was in irrigated maize (AU-Cm1), where fluctuations in q were
co-linear with envPC2 and not envPC1, but fluctuations in q alone
(amongst the co-linear factors in envPC2) were significantly related to
variation in NEE, E and H (βq = −0.06 ± 0.01, p < 0.001) without
contributions from other co-linear factors in envPC2
(βenvPC2 = −0.06 ± 0.06, p = 0.35) (R2 = 0.79, p < 0.001; Fig. 5).
This site provides an example of a strong environment–flux relationship
due to both individual factors (q) and interacting environmental factors
(Rn and D; cf. Fig. 5, Table S1).

The improved pasture AU-Otw similarly showed fluctuations in D to
contribute to explaining fluctuations in NEE, E and H from outside of
envPC2, although strong nonlinearities were present which reduced the
strength of statistical inference for all environmental factors at this site
(R2 = 0.11–0.28, p=< 0.001–0.03; Table S2, Fig. 6). In this example,
the full model with envPC1 and envPC2, along with non-colinear Rn,
resulted in no values of βX which were significantly different from zero
(βRn, βenvPC1 and βenvPC2 of −0.009 ± 0.04, −0.15 ± 0.11 and
0.03 ± 0.11, respectively; Table S2) and a small R2 which was
nonetheless significantly different from zero (R2 = 0.11, p = 0.02).
This discrepancy was likely induced by nonlinearity in the residuals,
particularly near values of zero on the x-axis which represent a large
range of fluctuations in NEE, E and H under stable environmental
conditions (Fig. 6). D contributed little to envPC1 at this site, so removal

Fig. 2. The relative proportion of sites showing each of the wavelet PCA
component loading types for fluxes in each management class (low, inter-
mediate, high). Refer to Table 3 for a description of flux coupling types.
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of envPC2 from the regression permitted the inclusion of D as a main
effect. Doing so resolved the discrepancy between model and submodel
results, showing a weak linearity in fluxes with respect to fluctuations
in D without losing nonlinear effects near the y-axis (Fig. 6).

Strong nonlinearities were observed at many sites (Fig. S3), with an
example from grazed rangeland AU-ASM shown in Fig. 7. For fluxPC1,
the response was largely linear (R2 = 0.54), but with notable non-
linearities in the residuals. This suggests that environment–flux

relationships contain a linear portion and a nonlinear portion, the latter
due to lags in the cycles of perturbation and response (Fig. 7). Nonlinear
responses were dominant for E (R2 = 0.34; Fig. 7), suggesting that the
sensitivity of E to precipitation pulses is largely independent of climate
conditions in central Australia.

No single environmental factor accounted for fluctuations in NEE, E
and H, and there was much variability across sites within each man-
agement intensity class (Fig. 8). The most important factors for

Fig. 3. Wavelet PCA at the paired sites. Paired sites were grazed rangeland (a, d; AU-ASM, AU-TTE), irrigated/fertilised dairy pasture (b; NZ-BFm) versus uni-
rrigated/unfertilised forage crop kale (e; NZ-BFu), irrigated/fertilised versus unirrigated/unfertilised forage crop lucerne (c, f; NZ-ADw, NZ-ADn), and irrigated
broadacre crops (g, h, i; AU-Cm1 wheat, maize, AU-Cm2 rice).
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explaining linear responses of fluxes in grazed rangelands (importance
> 15%) were Ts, Ta and G (0.23 ± 0.11, 0.19 ± 0.09 and
0.17 ± 0.11, respectively; Fig. 8). In intermediate-intensity manage-
ment, most environmental factors were important for predicting fluxes:
Ta, Rn, G and D (0.15 ± 0.02, 0.12 ± 0.03, 0.25 ± 0.08 and
0.17 ± 0.06, respectively; Fig. 8). Environmental factor importance
was similar to intermediate-management in highly intense

management, except that Ta was replaced by θ: θ, Rn, G and D
(0.16 ± 0.05, 0.20 ± 0.04, 0.16 ± 0.03 and 0.27 ± 0.11, re-
spectively; Fig. 8).

7. Discussion

Simple regression of environmental factors alone has been pre-
viously found to fit measured fluxes better than the output of land-
surface models, although the reasons for this have not yet been iden-
tified (Best et al., 2015; Haughton et al., 2018b). Nonetheless, no
consensus has been reached regarding identification of the key en-
vironmental factors driving variations in surface fluxes, which is still an
active area of inquiry. Thus, a call has been issued for more studies to

Fig. 4. Heat map of coefficients of determination (R2) from wCCA. Sites are
arranged within a management-intensity class according to their short-term
aridity index (ϕ). Values of ϕ marked by an asterisk included farm-scale irri-
gation amounts.

Fig. 5. wCCA results for an example irrigated broadacre crop. See supple-
mentary material for details of regression statistics (Table S2, Fig. S1). Asterisks
represent factors with coefficients significantly different from zero.

Fig. 6. wCCA results for an example improved pasture. See supplementary
material for details of regression statistics (Table S2, Fig. S1). ‘PCs’ statistical
model: closed symbols, solid line and top abscissa axis; ‘D’ model: open circles,
dashed line and bottom abscissa. Asterisks represent factors with coefficients
significantly different from zero.

Fig. 7. wCCA results for an example and grazed rangeland. See supplementary
material for details of regression statistics (Table S2, Fig. S1). fluxPC1: closed
circles, solid line, bottom abscissa and left ordinate axes; ‘E’: open circles, da-
shed line, top abscissa and right ordinate. Asterisks represent factors with
coefficients significantly different from zero.
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evaluate climate and management effects using paired and multiple
towers (Mudge et al., 2011). In this study, we used a multivariate wa-
velet–statistics conjunction approach to evaluate management effects
on relationships between fluctuations in environmental factors and
synchronised fluctuations of carbon, water and heat fluxes (NEE, E and
H, respectively). Coupling amongst fluxes showed some key differences
across management intensity categories, providing partial but not
overwhelming support for hypothesis 1. By contrast, coupling amongst
environmental factors appeared to be strongly site-specific and showed
inconsistent effects of management in comparison of paired sites at a
single location, thus failing to support our hypothesis that increasingly
intense management would weaken integration of environmental fac-
tors (hypothesis 2). Despite site-specific coupling amongst environ-
mental factors, we found relationships between fluxes and environ-
mental factors to depend upon management intensity and the short-
term level of aridity within a management intensity class (Fig. 4),
providing support for hypothesis 3. However, no single environmental
factor was found which explained variability in fluctuations of NEE, E
or H, consistent with previous findings (Hao et al., 2018); for example,
enhanced vegetation index, photosynthetically active radiation and air
temperature were all found to be significantly correlated to E by
Wagle et al. (2017b). Instead, the way in which environmental factors
co-varied through time (i.e., their synchronised interaction) affected
variations in NEE, E and H, especially in water-limited landscapes
where precipitation pulses dominate the coordination of fluxes and
environmental factors (Cleverly et al., 2013).

7.1. Coupling of carbon, water and energy cycles

The largest effect of management identified in this study was upon
the relationship amongst fluxes. Even though examples of full, positive
coupling between NEP, E and H (Type 1, {−NEE, +E, +H}) were
found for each management intensity class in our study (on nine farms),
the proportion of sites showing such full coupling increased with in-
creasingly intense management (Fig. 2). Intense management practices

like irrigation and fertilisation are intended to minimise the impact of
detrimental environmental conditions and maximise yield, thus gen-
erating synchronisation amongst carbon, water and energy fluxes.
There can be regional variation in the response of crops to heat and
water stress (Dreccer et al., 2018), although managing for heat stress
can be as simple as converting from dryland agriculture or pasture to
irrigated agriculture, if enough water is available. Because many irri-
gated broadacre cropping and arboreal horticultural systems exist in
water-limited climates with high evaporative demand and the potential
for plant stress (Stokes et al., 2008; Williams et al., 2002), as they do in
the Australian examples of this study, they can require substantial vo-
lumes of irrigation water to return a profitable yield. Irrigated almonds
in this study (AU-Lox) did not show any apparent stress, with coupling
of NEP, E and H. Irrigation can protect against physiological stress and
stress-induced crop failure by ameliorating heat extremes through
evaporative cooling (Chen et al., 2017; Cleverly et al., 2016b, 2015;
Stevens et al., 2012), in addition to supporting high productivity at high
Ta or D and lengthening the growing season over which NEE is below
zero (Mueller et al., 2017; Wagle et al., 2017a).

Decoupling between NEP and E has been proposed for vegetation
experiencing heat stress, when photosynthetic assimilation declines
whilst transpiration is maintained for cooling of the leaf (De Kauwe
et al., 2019). Reverse coupling between H and NEP implies a negative
response to heat, as has been observed during heatwaves (van Gorsel
et al., 2016; van Heerwaarden and Teuling, 2014). We found that re-
verse coupling between H and NEP (i.e., NEP was increasing when H
was declining) occurred at another eight sites in the current study, with
locations where E was decoupled from NEP and H (Type 2) tending to
be more common in hot, minimally managed environments, and where
NEP and E were both reverse coupled to H (Type 3) on colder, more
highly managed farms (Fig. 2). The first and primary role of manage-
ment in Australia and New Zealand was thus identified as supporting
positive coupling amongst NEP, E and H and thereby managing crop
stress, whether that stress originated from lack of water or abundance
of heat.

7.2. Season, energy limitation and aridity

Year-round growing conditions across much of Australia and New
Zealand favour a strong wintertime net carbon sink (i.e., NEE < 0),
when low temperature limits respiration and heat stress
(Campbell et al., 2014; Cleverly et al., 2013; Hutley et al., 2005;
Renchon et al., 2018). For example, heavy irrigation was required in
the summer for rice to obtain similar relationships amongst environ-
mental factors as were seen in irrigated wheat during winter and spring
months (Fig. 3g, i). However, wintertime cropping comes at a cost of
supporting about half of the productivity as that of summer cropping,
thus only three out of 19 locations in this study were evaluated during
winter. Furthermore, productivity of winter pasture can be reverse-
coupled to turbulent heating (e.g., AU-Otw), suggesting that some
grasslands in Australia can be susceptible to heat stress, even during
winter. Seasonal differences in evaporative fraction (LE ∕ Rn) exist
between irrigated wheat and maize (0.83 and 0.57, respectively;
Lei and Yang, 2010), reflecting smaller potential energy limitations
during wintertime than during summer. Similarly, we found that en-
vironmental factors responded most strongly to fluctuations in Rn for
maize (and rice), but that they responded to fluctuations in Ta for wheat
(i.e., they had the largest α coefficient value in envPC1).

The response of vegetation to changes in environmental factors
critically depends upon whether productivity and E in a given eco-
system are energy or water limited (Donohue et al., 2009; Restrepo-
Coupe et al., 2016). In energy-limited ecosystems, water is plentiful, but
cloud cover restricts Rn (Hutley et al., 2005; Kanniah et al., 2013;
Whitley et al., 2011). Rn and D both drive variations of E in energy-
limited regions (Zhang et al., 2017), where they are strongly coherent
(Peng et al., 2018). Consistent with previous observations, Rn and D

Fig. 8. Proportional importance (± standard error) of environmental factors in
wCCA for each management intensity class (low, intermediate, high).
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were strongly and negatively coherent in this study for energy-limited
regions and in areas where irrigation released water limitations, except
for winter wheat, in which Ta was strongly coherent with D instead due
to seasonal limitations on Rn (Fig. 3). In water-limited environments,
the relationship of θ and q shifted from the woody rangeland (AU-ASM)
to the grass-dominated rangeland (AU-TTE). θ is typically only related
to E in water-limited environments when θ is above the wilting point
(Akuraju et al., 2017), explaining the variable levels of θ coupling at
AU-ASM and AU-TTE. Vegetation at AU-ASM is suspected to have an
effect on surface θ via hydraulic redistribution (Cleverly et al., 2016b),
thus reducing the dependence of fluxes on θ and providing an alter-
native explanation for the lack of correlation with θ near the surface at
AU-ASM. Regardless of variations in the importance of individual en-
vironmental factors, interactions amongst all environmental factors
were generally strong across our study, as has been previously inferred
at AU-ASM using boundary analysis (Cleverly et al., 2013; Eamus et al.,
2016).

The 19 sites in this study showed a large range of energy versus
water limitations as indicated by ϕ, in which energy limitation was
defined by values below unity (i.e., Rn ∕ [ρw Lv] > P) and degree of
water limitation by values above unity (i.e., Rn ∕ [ρw Lv] > P; Fig. 4).
The Canterbury Plains in New Zealand (NZ-Oxf, NZ-ADn, NZ-ADw, NZ-
BFu, NZ-BFm) are generally energy limited, although a lack of pre-
cipitation during the late summer commonly pushes ϕ above unity
(Graham et al., 2016), and this was when large NEP was identified for
analysis in the current study (Table 2). Values of ϕ near unity are likely
to reflect co-limitations by energy and water (Cleverly et al., 2013;
Ryu et al., 2008). Currently, a general shift from energy limitations to
water limitations appears to be occurring in the climate system
(Babst et al., 2019), making an understanding of crop responses to this
transition critical. By increasing θ, irrigation can tip a crop back to an
energy-limited state, although irrigation ultimately depends upon
heavy precipitation to replenish water supplies in Australia's drylands,
providing only opportunistic access to irrigation in regions where irri-
gated agricultural production might not be sustainable over the long
term (Garnaut, 2008; Khan and Hanjra, 2009; Vote et al., 2015).

7.3. Predictability, phenology and nonlinearities

Controls on fluxes in warmer, drier climates such as those of tropical
Australia can be site specific, making fluxes more unpredictable and
difficult to represent without local parameterisation in land surface
models (Haughton et al., 2018a). As a consequence, we found that
predictability as inferred from R2 was low on the five northern farms in
our study (AU-DaP, AU-Stp, AU-ASM, AU-TTE, AU-Emr; R2 < 0.55, cf.
Figs. 1 and 4). Nonlinearities in regressions for these sites are consistent
with the presence of time-lagged perturbations to fluxes after en-
vironmental conditions have returned to normal (i.e., as with pulse-
response dynamics), thus acting to desynchronise environmental con-
ditions and ecosystem responses (Huxman et al., 2004). In the woody
central Australian rangeland site (AU-ASM), E responded exclusively to
precipitation pulses, with equal sensitivity to large and small fluctua-
tions in environmental factors (Fig. 7). This variability in sensitivity to
climate during precipitation pulses of varying intensity thus forms the
basis for variable responses of water-use efficiency (WUE = NEP ∕ E)
observed at this location (Eamus et al., 2013; Tarin et al., 2020). Pulse
behaviour during the summer of 2010/2011 was produced by heavy
precipitation (Boening et al., 2012; Fasullo et al., 2013; Poulter et al.,
2014) in widespread, organised weather patterns which imposed cycles
of strong energy limitations (Cleverly et al., 2013, 2016a). Thus, simi-
larities in the responses of irrigated rice and grazed rangeland were
associated with similar weather patterns during the growing season at
AU-ASM and AU-Cm2, despite contrasting water requirements for the
rice crop at AU-Cm2 and for forage plants AU-ASM. Wavelet transfor-
mation of environmental factors and fluxes can provide the first
quantitative framework for evaluating sensitivity to precipitation

pulses, for which further study is merited.
Outside of the five northern sites (AU-DaP, AU-Stp, AU-ASM, AU-

TTE, AU-Emr), R2 followed two patterns relative to aridity, depending
upon management intensity. For intermediate-intensity management,
R2 was small at locations where water and energy limitations were
balanced (0.8 ≤ ϕ ≤ 1.2; NZ-ADn, AU-Otw; R2 = 0.28–0.29, cf. Figs. 1
and 4). This suggests that water limitations and energy limitations can
counteract one another over time, resulting in no observed net effect of
environmental factors on fluxes. This situation can potentially create a
conundrum for land surface models, where a small imbalance between
compensating environmental factors can bias the output
(Haughton et al., 2018b). Intra-seasonal shifts in phenology, for ex-
ample due to grazing or harvesting, can also degrade the predictability
of NEE, E and H from environmental factors. Examples of phenological
control of fluxes, instead of environmental control, were found at NZ-
ADw, NZ-ADn and NZ-BFm, all of which were exposed to 2–3 defolia-
tion events during the analysis period. During regrowth, NEE and E
were constrained by low leaf area index instead of energy or water
limitations. To account for phenological effects, one could integrate
data regarding vegetation structure (e.g., leaf area index, vegetation
indices), but these data would need to be measured at an equivalent
frequency to that of fluxes and environmental factors. Altogether for
intermediate-intensity management, we found three factors that re-
duced the innate predictability of fluxes: (i) nonlinear effects of pre-
cipitation pulses; (ii) complementarity amongst coupled environmental
factors in their effects on fluxes, as when water and energy limitations
are in temporal balance within a single season; and (iii) by un-
documented shifts in phenology.

In contrast to patterns of predictability for intermediate-intensity
management, those for highly intense management fell into two cate-
gories depending upon aridity: irrigation in more water-limiting con-
ditions (ϕ > 2, AU-Lox almonds, AU-Cm1 maize and NZ-Sco dairy
pasture) resulted in high flux predictability (R2 > 0.75, Fig. 4), whereas
moderate flux predictability (R2 = 0.62 ± 0.07) was found for sites
with low values of ϕ (ϕ ≤ 2, AU-Cm1 wheat, AU-Cm2 rice, and NZ-BFm
dairy farm and NZ-ADw irrigated lucerne). Even though there are en-
vironmental factors beyond the control of irrigation, irrigation practices
are finely attuned to affect the environmental factors which are related
to productivity, water use and heat flux, and these effects are magnified
in regions where there is a large difference between on-farm and ad-
jacent natural conditions. The most extreme example is from irrigated
almonds during the final year of the Millennium Drought, where in-
tense sensible heat advection onto the irrigated orchard from sur-
rounding semi-arid lands pushed H to as low as −500 W m−2 (i.e., an
input of energy into the orchard; Stevens et al., 2012). Termed "the
oasis effect," horizontal transport of energy across steep environmental
gradients created by differential irrigation and evaporative cooling re-
sults in coherent variation in fluxes and scalars across the landscape
(Brakke et al., 1978; Brunet et al., 1994; Cooper et al., 2003;
Hanks et al., 1971). As a consequence, irrigation in Australia can lead to
very high daily values of NEP in crops, both in this study (NEE ca.
−23 g m−2 d−1 at a minimum for AU-Cm1 maize) and in previous
research on rice, maize and sugarcane, which reached productivity
rates of NEE = −40 μmol m−2 s−1 during the peak of the summer
growing season (Vote et al., 2015; Webb et al., 2018).

This survey of environmental drivers for fluctuations in NEE, E and
H leaves open a number of limitations and uncertainties which merit
further investigation. These can be characterised as (i) incomplete in-
formation on carbon budgets; (ii) lack of information for relating pro-
ductivity and water use to yield; and (iii) the inherent challenge of
resolving reasonable relationships from nonlinear systems undergoing
high levels of variability. For (i), one missing component in this study is
an accounting of net biome production (NBP), which can show very
different contributions to the total carbon budget from NEE. For ex-
ample, a crop might be assessed as a carbon sink from NEE alone,
whereas accounting for export of carbon via harvest as NBP can shift
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the carbon budget to a net source (Buysse et al., 2017). Even in the
absence of such a shift from carbon sink to source, failing to account for
export of dissolved organic carbon from crops can result in a very large
overestimation of carbon sink strength by NEE relative to NBP
(Kindler et al., 2011; Webb et al., 2018). Second (ii), there are strong
relationships between biomass and yield in Australian agriculture
(Donohue et al., 2018), implying a close relationship between NEE (or
NBP) and yield. Peak-season carbon fluxes are the most predictive for
annual carbon budgets (Zscheischler et al., 2016), thus the results of
our study would be particularly informative for parameterising agri-
cultural yield models like APSIM (e.g., Donohue et al., 2018; He et al.,
2014a; Luo et al., 2018; Ummenhofer et al., 2015). Third (iii), varia-
bility in precipitation is an important yet often overlooked constraint on
vegetative productivity in pastures and rangelands, and this variability
also affects grazing strategies in Australia (Sloat et al., 2018). Ecohy-
drological processes are often strongly nonlinear, amplifying inter-
mittency and unpredictability when precipitation variability is high
(Porporato et al., 2015). We found evidence for the presence of three
types of nonlinearity: (a) organisation of fluxes and environmental
factors around intermittent precipitation pulses; (b) over-riding control
of crop phenology by mowing or grazing; and (c) compensatory effects
of one or more environmental factors which ameliorated the effects of
other factors. These types of nonlinearities are due to abrupt changes in
biotic or environmental conditions, which are not captured well by
land-surface models or analytical methods that require stationarity
(e.g., auto-regression; De Keersmaecker et al., 2015). We present for the
first time an analytical framework for quantifying pulse–response sen-
sitivities on a single scale by using a wavelet–statistics conjunction
approach which can incorporate information on the timing of fluctua-
tions in addition to simple lagged averages, a necessity for land surface
modelling which has recently been elucidated by
Haughton et al. (2018b).

8. Conclusions

In this survey of agricultural ecosystems across Australia and New
Zealand, we developed a novel statistical framework through wave-
let–statistics conjunction to incorporate information on temporal syn-
chronisation between variations in turbulent fluxes (NEE, E and H) and
environmental factors (Rn, q, Ta, Ts, D, G and θ). Using this approach to
test hypotheses about the effects of management on environment–flux
relationships, we found that:

1 Coordination amongst NEE, E and H was strongly affected by
management practices as hypothesised. Full coupling of NEE, E and
H was more frequently achieved through irrigation and fertilisation
practices than in minimally grazed rangelands and pastures.
Decoupling of NEP and E was observed at drier sites, some of which
also showed reverse coupling to H, illustrating the decoupling of
carbon and water fluxes in response to conditions conducive of heat
stress (De Kauwe et al., 2019).

2 We could not fully support our second hypothesis that coordination
amongst environmental factors would be related to management.
Large-scale differences in relationships amongst environmental
factors were observed across the 19 sites of this study, suggesting
that environmental conditions are largely site-specific and outside of
management control. Comparison of paired sites across manage-
ment intensity categories, seasons and crop types identified some
environmental factors which had fixed effects across paired sites,
whereas dependencies with other environmental factors differed
amongst sites. This suggests that a subset of environmental factors
are under management control at a given location, whereas other
environmental factors represent constraints on the agricultural
system.

3 The combination of management practices which promote positive
coupling of carbon and water budgets (i.e., point 1) with site-

specific variability of coupling amongst environmental factors (i.e.,
point 2) generated various patterns in the predictability of fluxes
from environmental factors. Predictability was small in northern
Australian agriculture as hypothesised by Haughton et al. (2018a),
with low R2 due to nonlinear responses of fluxes and environmental
factors, including those due to precipitation pulses in hot climate
zones. Predictability (as a function of R2) was also low for farms
where (i) complementarity between energy and water limitations
was apparent (0.8 ≤ ϕ ≤ 1.2) and (ii) management activities such
as grazing or harvesting induced a phenological response and re-
lease from environmental constraints. Conversely, irrigation in
water-limited environments resulted in very high predictability of
variations in fluxes from knowledge of environmental factors.

By incorporating timing and temporal variability into a statistical
framework, wavelet–regression conjunction modelling has the cap-
ability of transforming our understanding of how ecosystems respond to
fluctuations in climate, to the occurrence of nonstationarities such as
precipitation pulses and extreme weather events, and to climate change
by helping to analytically separate the effects of fluctuations, non-
stationarities and trends. Several potential applications arise from this
work, including analysis of longer-term phenological trends char-
acterised by satellite imagery, development of a better understanding of
drought impacts on crops, comparison of crops with differing phy-
siognomy, and analysis of greenup/brown-down dynamics.
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