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Soil Surface Roughness (SR) provides a representation of surface variability which can be an important factor in a
range ofmodelling applications such as surfacewaterflow and sediment/nutrient transport.Moreover, it is a cru-
cial parameter for interpreting backscatter characteristics of Synthetic Aperture Radar (SAR) for agricultural ap-
plication such as near-surface soil moisture retrieval. SR is typically estimated using manual profiles of height
variation along short transects (1 to 3 m). However, this approach can be very time consuming and often only
a small number of transects can be measured in this way, which may not be adequate to characterize the spatial
variability of SR across the landscape. This study investigated the feasibility of utilising airborne Light Detection
and Ranging (LiDAR) observations as an alternative formapping SR attributes across an agricultural environment
in New South Wales, Australia. To that end, SR attributes were extracted from airborne LiDAR observations and
compared with those extracted from an extensive ground survey of SR making use of manual pin-profilers.
Results show that LiDAR-estimates of soil profile surface heights Root Mean Square (RMS) are both accurate
(compared to manual profiles) and precise (repeatable stable estimates) for fields presenting bare or fallow
conditions and either presenting no row structure or as long as the orientation of the LiDAR scan line is perpen-
dicular to the row structure. In such cases results indicated a strong correlation between LiDAR-estimated and
ground-measured RMS estimates (R2 N 0.68, p b 0.05), with an RMSE better than 0.81 cm and bias smaller
than 0.48 cm from a 400 m flight altitude. Moreover, estimates produced from repeat pass LiDAR datasets
were consistent and highly correlated (R2 0.98) suggesting that the approach is precise and robust, provided
that key tillage parameters (i.e. presence of vegetative material and row direction) can be pre-classified. LiDAR
estimates of surface height RMS were shown to be accurate enough to allow the tracking of temporal changes
in surface roughness due to farming activities. In contrast, LiDAR-derived surface Correlation Length (CL)
estimates were not found to be a reliable proxy of the ground-measured CL.

Crown Copyright © 2013 Published by Elsevier Inc. All rights reserved.
1. Introduction

Surface roughness (SR) parameters are utilised in a range of applica-
tions including sediment and nutrient transport models, and surface
water flow (Govers, Takken, & Helming, 2000; Hollaus, Aubrecht,
Höfle, Steinnocher, & Wagner, 2011). They are also important when
interpreting the backscatter characteristics of Synthetic Aperture
Radar (SAR) as with increasing roughness, more of the incident energy
is scattered away from the specular direction, resulting in higher
backscattering coefficients (Ulaby, Moore, & Fung, 1986). Since this
effect competes with that of other variables of interest, such as near-
surface soil moisture and vegetation biomass, the knowledge of SR is
crucial for the estimation of such variables from SAR observations.
, PO Box 672, Carlton South, VIC
515.
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Soil geometry can be categorised into small, medium and large scale
parameters (Beadoin, Le Toan, & Gwyn, 1990). At a small scale, the
spatial arrangement of individual soil clods (or aggregated clumps) is
inherently random. The degree of random SR will vary depending on
factors such as the prevailing soil type, the initial cultivation intensity,
interaction with vegetation cover and progressive weathering from
rain and wind. Medium scale parameters pertain to periodic SR that
results from the mechanised and systematic tillage of the soil to create
row structure (or periodic pattern) and are usually characterized by
alternating raised beds and low furrows to improve the natural drainage
properties of the soil (Beadoin et al., 1990). SR in relatively flat
uncultivated soils tends to be isotropic, while tilled soils exhibit
anisotropic characteristics where SR is directionally dependent on row
structure. Small scale random SR can be found in all soils while medium
scale periodic SR is only present in cultivated fields. Large scale SR, on
the other hand, refers to terrain level characteristics such as slope,
elevation and aspect.
eserved.
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SR geometry is often defined by soil height profiles that are typically
expressed in terms of 3 parameters: RootMean Square (RMS) of surface
heights, profile Correlation Length (CL) and profile autocorrelation
function, under the assumption that SR can be represented by a
single-scale stationary process. These parameters are usually measured
using a range of manual techniques including spray boards, squared
boards (i.e., mesh board), 3D photogrammetric modelling, pin-
profilers or terrestrial laser line profilers (Blaes & Defourny, 2008;
Huang & Bradford, 1992; Merel & Farres, 1998; Zribi et al., 2000).
However, such methods are labour-intensive. Logistically it is also
problematic to cover the full range in soil profile variation across large
areas particularly when there is row structure (Blaes & Defourny,
2008). In particular, localised groundmeasurements of height variation
show little spatial dependency, meaning that parameters measured at
one position are generally poorly representative of their surroundings
(Álvarez-Mozos, Verhoest, Larrañaga, Casalí, & González-Audícana,
2009). The major problems associated with SR parameterization are
(1) its scale dependency and (2) its spatial variability (Verhoest et al.,
2008). Several studies making use of in-situ, photogrammetric and
ground-based LiDAR techniques observed elevated SR spatial variability
at the scale of agricultural fields. Álvarez-Mozos et al. (2009) observed
coefficients of variation for field-average RMS and CL of respectively
16 to 25% and 38 to 94% depending on the tillage state. Blaes and
Defourny (2008) showed that SR parameters calculated along short
transects can be highly variable even over small distances, with the
RMS and CL varying significantly, from 1.2 to 2.2 cm and from 10 to
70 cm respectively when 1 cm spaced profiles were shifted by 3.5 m
in ploughed surface. Similarly, Mattia, Toan, Souyris, et al. (1997)
observed values of RMS differing by as much as 4 cm within the same
tilled wheat field in southern Italy.

Another problem is related to the scale of observation. A number of
studies have shown that natural surfaces are often better described
using random fractals rather than stationary single scale processes
(Burrough, 1981; Davidson et al., 2000; Zhixiong, Nan, Perdok, &
Hoogmoed, 2005), in which case the values of the SR parameters are
highly dependent on the profile length used (Mattia et al., 2003;
Ogilvy, 1988; Oh & Kay, 1998). For example, Zhixiong et al. (2005)
reported an overall increase in RMS by a factor of 1.2 to 1.4 when
comparing data obtained from 5-m profiles with those derived from
0.5-m profiles. Oh and Kay (1998) showed that profiles of at least 40
times the CL are needed in order to obtain the RMS with a precision of
±10%. Such observation scales are obviously difficult to achieve using
ground-based methods. Several studies have reported measurements
of surface roughness by means of laser profilers, which measure the
distance between a horizontally positioned rail, on which the carriage
with the laser beam moves, and the soil surface (Davidson at al., 1998;
Davidson et al., 2000; Manninen, 2003; Mattia et al., 2003; Álvarez-
Mozos et al., 2009). However, only Mattia et al. (2003) compared the
SR parameters derived from the laser profiler with pin-profiler mea-
surements, reporting a good agreement (relative error less than 8%), be-
tween CL estimates derived from pin-profilers and laser profilers. For
surface height variances, the parameters estimated using a pin-profiler
lead to only a slight overestimation for relatively smooth soils. However,
ground laser profilers are characterized by a very fine sampling resolu-
tion, from 0.1 to 0.5 mm in the vertical direction and 0.1 and 2 mm in
the horizontal direction, therefore a reasonable match with pin-
profilers is expected.

Other studies have addressed the use of airborne LiDAR (Light
Detection and Ranging) measurements for more rapid and cost-
effective ways of assessing soil surface structure at the landscape scale
(Davenport, Holden, & Gurney, 2004; Hollaus et al., 2011; Kurtz et al.,
2003). The commercial availability of airborne LiDAR technology offers
a strong potential to economically and efficiently characterize SR spatial
distribution over large areas. LiDAR provides a 3D cloud of point based
on measuring the return time of a laser pulse emitted from an aerial
platform toward the ground. In theory, if acquired at a sufficient
sampling density, it should be possible for Airborne Laser Scanners
(ALS) to characterize the spatial distribution of SR with high density,
high precision elevation measurements that can be rapidly collected
over large areas. Both Hollaus et al. (2011) and Kurtz et al. (2003)
made use of LiDAR data to estimate roughness of respectively forested
areas and sea ice. However, both studies were concerned with meso-
scale SR (i.e., spatial scale of decimetres tometres), including roughness
of the vegetation layer and ice topographic variation, larger than the
centimetre-scale roughness typical of agricultural fields, which is the
topic of the present study. Davenport et al. (2004) dealt with such
roughness scale in the context of a feasibility study conducted using a
helicopter-mounted ALS. It was shown that, although the absolute ver-
tical accuracy of airborne laser altimetry elevation measurement is of
the order of 20 cm, relative height measurements can be made with a
greater degree of accuracy than might be expected (Davenport et al.,
2004). For points collected at very small intervals (50 ms) the only
source of surface height uncertainty was the internal noise associated
with electronics and the inertial navigation system (INS) corrections.
This resulted in a relative surface height accuracy of 3.5 cm as opposed
to 20 cm (Davenport et al., 2004). The data density available was not
high enough to obtain a reliable figure below the 50 ms time lag.
Based on these observations, Davenport et al. (2004) estimated the
surface heights RMS at 26 sites distributed over 4 test fields character-
ized by different cultivation treatments (rolled, harrowed, ploughed
and potato-ridged with peak-trough height of respectively 1, 3, 5 and
20 cm). Although no quantitative comparison with ground measure-
ments was performed, results showed that LiDAR observations were
able to distinguish between rolled and harrowed fields correctly in
56.9% of the cases, between rolled sites and ploughed fields in 92.5% of
the cases, and that the potato-ridged field was distinguished correctly
from all other types in 100.0% of cases.

The objective of this study is to expand on the work of Davenport
et al. (2004) and quantitatively evaluate the accuracy of high precision
airborne LiDAR data (discrete return) to map multiple SR attributed
(including surface heights RMS and also CL) over several bare agricul-
tural soils with variable tillage conditions. The study focused on two
main questions:

• Can airborne LiDAR accurately retrieve key SR metrics over bare
surfaces?

• Are these estimates consistent (precise) in terms of repeat measure-
ments from multiple overpasses during the same mission (i.e. run
swath overlaps) and with temporal datasets (17 days apart)?

The studymakes use of two airborne surveys conductedwith a Riegl
LMS-Q560 full-waveform 2D laser scanner together with ground mea-
surements of surface profiles (3-m long) collected over 13 agricultural
fields in South-Eastern Australia. The results demonstrate the feasibility
of extracting accurate estimates of SR using airborne LiDAR with the
potential to implement larger and more cost-effective sampling pro-
grams in the future, once the LiDAR acquisition and processing costs
will decrease.

2. Study area

The Coleambally Irrigation Area (CIA) is an irrigated agricultural
zone in South-East Australia with principal summer crops of rice,
soybeans, and maize (corn), winter crops of wheat, oats and barley
and pasture for grazing. A 1965 ha study area with over 72 agricultural
fields (Fig. 1) was selected in an area of intensive irrigated cropping
approximately 45 km west of the town of Narrandera (NSW,
Australia). The site location (Latitude: −34° 43′, Longitude: 146°5′)
was considered to be representative of the local farming area with
mainly flat terrain, a mean elevation of 120 m, predominantly granodi-
orite soils and an annual rainfall of approximately 419 mm. A range of
crop types including wheat, canola and native pasture were present at
the time of ground and LiDAR datasets acquisition. The study area is



Fig. 1. (a) Map of Australia showing the location of the study area, and (b) a landcover stratification map with the location of the survey plot overlaid on LiDAR-derived elevation map
rasterized from point-cloud data.
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part of the 36 km × 38 km “Yanco” site which has been intensively
monitored for remote sensing purposes since 2001 (Merlin et al.,
2008; Panciera et al., 2008; Smith et al., 2012). All data used in this
study were collected in the context of the Soil Moisture Active Passive
Experiment 3 (SMAPEx-3, 5–23 September 2011, Panciera et al.,
2013), an airborne experiment for acquisition of active and passive
microwave data to support algorithm development of NASA's SMAP
mission.
3. Methodology

3.1. Field survey

An initial field inspectionwas undertaken to classify the condition of
the agricultural fields within the study area. Fields were classified into
various land cover classes based on vegetation cover type tillage state
and row structure (Fig. 1). Of the 72 agricultural paddocks present in
the area, the 13 used in this study were bare soils or fallow (i.e., sparse
stubble) for which ground measurements of SR and LiDAR coverage
were collected during the field campaign.

Within these 13 bare soil paddocks, a total of 20 survey plot locations
(hereby referred to as “plots”) were selected for characterizing SR attri-
butes. The plots were distributed to cover the range of tillage conditions
encountered in the area, with typically between 1–3 plots for each
paddock. Each plot was located using a handheld GPS receiver. The
accuracy of the handheld GPS geolocation was tested prior to data
acquisition against high precision differential GPS and found to be better
than 10 m (RMSE).

At each plot SR attributeswere estimated both qualitatively in terms
of row structure presence and direction and quantitatively by means of
a pin-profiler. This instrument consisted of a 1-m long frame with
0.5 cm spaced vertical pins (Fig. 2). Profile data along transects were
recorded using a digital camera. A special mount ensured that the
camera lens was always at a fixed distance (1.5 m) and orientation
(parallel to the profiler) from the profiler. Once the profiler was put
into place the pins were slowly released until they came into contact
with the soil surface. A photo of the pin positions was then captured
with the digital camera and subsequently an image post-processing
software was used to extract the profile from each photograph using
the upper red portion of the vertical pins as a reference. At each of the
20 plots profile measurements were repeated three times both along
and across row benches, or alternatively in the north–south/east–west
direction in the absence of a row structure. Prior to extracting SR
attributes, the surface heights measurements from each of the 3, 1-m
long profiles were referred to a common reference system, by
referencing each 1-m profile to the same horizontal reference plane
(i.e., de-trending for local topographic slope) and by eliminating any
vertical shift at the overlap between adjacent profiles. This resulted in
two perpendicular profiles, each of 3 m in length, equivalent to what
would be measured with a 3-m long pin-profiler.

At the end of the post-processing stage a number of key structural
parameterswere summarised for each plot including: (i) RMS of surface
heights, (ii) profile CL, and (iii) periodic structure direction. Moreover,
information on farming activities of tillage/ploughing that occurred at
each plot during the observation period was gathered through visual
observations and by a survey of the local farmers.

For the purpose of this analysis only plots with either completely
bare conditions or a limited amount of dead dry biomass were consid-
ered. A preliminary analysis showed that plots containing any other
type of vegetation (e.g. wheat, or pasture) exhibited poor correlations
with LiDAR estimates compared to plots that were either bare earth or
fallow (mostly bare). Normally, vegetative material does not present a
problem for manual pin-profilers as the operator can manoeuvre the
pins between stalks and leaves to measure the soil surface. However,
for an airborne LiDAR approach, such material is highly problematic as
LiDAR profiles will also contain crop debris in the point cloud data and
this can be hard to separate during the post-classification of return
points into ground and non-ground classes, particularly for vegetation
whose height is less than 50 cm. Moreover, crop vegetation and stubble
debris can also mask the soil surface and therefore adversely influence
the SR measurements (Blaes & Defourny, 2008). Table 1 summarises
the characteristics and the measured SR parameters of the plots used
in this study.
3.2. LiDAR data

Airborne LiDAR data were acquired on the 5th and 22nd of September
2011 using a Riegl LMS-Q560 full-waveform 2D laser scanner operated
by Flinders University's Airborne Research Australia (ARA), South
Australia. The fixed-wing research aircraft was flown at a ground speed
of approximately 40 m/s at a nominal altitude of 400 m above the
ground along parallel N–S-oriented lines 150 m apart. This resulted in a



Fig. 2. Photos of the pin-profiler used to characterize surface roughness (top left) and example photos of the plot sampled: (#1) Bare soil with periodic row structure, (#8) Sparse stubble
with periodic row structure and (#16) Isotropic surface. Refer to Table 1 for the plot #.
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swath width of 340 m with 50% overlap. The laser scanner was
configured at a rate of 240 KHz and a maximum scan angle of 22.5°.
According to the specifications of the Q560 LiDAR (Riegl, 2006) stating
a maximum laser beam divergence of b=0.5 mrad, this gave a mean
ground footprint with a diameter of approximately 20 cm. However, dis-
cussions with the manufacturer confirmed (Riegl, personal communica-
tion) that this is a worst case value and that the actual ground footprint
is probably closer to 12–15 cm. The point spacing was found to be ap-
proximately 20 cm (along-track) and 50 cm (across-track) which
means that there is only a marginal overlap between individual foot-
prints. Overall, this provided a mean point density of 6 pulses per square
metre in parallel scanning lines around 50 cm apart, and postings ap-
proximately 20 cm along each scan line. The mission was repeated on
the 22nd of September 2011 to check for temporal changes in surface con-
ditions across the area.

Although the flight-line direction (alternate north–south) remained
consistent for both missions the row direction within the fields varied
across the study area. Consequently, LiDAR scans were a mixture of
perpendicular (running across the benches), oblique (running across
the benches at an angle) or parallel (running along the benches either
on bench-tops or tractor wheel furrows). To address this issue, the
survey plots were grouped according to the relative orientation be-
tween LiDAR scan line and crop row direction (Table 1). The direction
of the LiDAR scan line was east–west (90° from north) for all runs.
Given the relatively low aircraft speed (40 m/s) and low flight altitude
(400 m) the aircraft heading was fairly stable, resulting in a minimal
standard deviation of scan line direction of ±3°.

Processed LiDAR point data was available in LAS file format with
each file representing a north–south strip of data (6.5 km × 340 m),
hereby referred to as a “run”. The data from each run was analysed
separately to avoid any potential geo-registration issues with over-
lapping swaths which could increase the vertical uncertainty.

3.3. Data processing

A preliminary inspection of the LiDAR point cloud data sets showed
subtle anomalies in geo-registration between adjacent runs (approxi-
mately 1–2 m in planimetric shift and 14 cm in vertical shift) which
could potentially be critical at the fine scale required for estimating SR
attributes. LiDAR scan overlaps were not manually adjusted to remove
any spatial matching errors particularly with elevation values at swath
edges. Rather than introduce additional human error by realigning
swath overlaps, run datasets were instead analysed individually over
each plot (i.e., extraction of SR parameters was done on data from indi-
vidual runs, without mixing data points from different runs). Given the
high swath overlap (40 to 50%), most plots were covered by 2 to 3 run
passes which enabled a comparison of SR estimates from repeat plot
scans in the same mission.

In order to calculate SR attributes from LiDAR data for each survey
plot, the following procedure was followed. Firstly, all LiDAR points
within a 30 m radius of each plotwere extracted and associated unique-
ly to the plot. At this stage points with extreme elevation anomalies
were removed from the dataset by calculating a mean point elevation
for each plot and deleting points higher than one metre above the
mean. This cleaning stage removed a range of high point anomalies
that were clearly not associated with the flat terrain such as birds, over-
hanging tree branches, and overhead power lines. A customised
MATLAB program was then used to extract surface profiles from each
scan line. Each profile was de-trended to eliminate local topographic
slope, which is known to affect the calculation of the roughness



Table 1
Summary of the plot characteristics and ground-measured surface roughness parameters. Where no periodic structure was present, the “Across” and “Along” roughness measurements
correspond to the North-South and East-West direction respectively. The “Tilled/ploughed” column indicate: “yes” that the field was either tilled or ploughed between LiDAR acquisition
dates; “no” that the field did not undergo any artificial change in surface conditions (by either tillage or ploughing) between LiDAR acquisition dates.

Plot # Surface type Row to scanline
angle (°)

Row spatial
period/depth [cm]

Tilled/ploughed Scan-to-row
orient.

Measured roughness parameters

Across rows Along rows

RMS[cm] CL [cm] RMS[cm] CL [cm]

1 Bare 80 (±3) 89/17 no Perpend. 6.3 16.8 3.5 31.4
2 Bare 80 (±3) 89/17 no Perpend. 7.0 18.8 2.0 11.5
3 Bare 80 (±3) 89/17 no Perpend. 6.9 18.8 1.6 8.9
4 Bare 80 (±3) 86/18 no Perpend. 7.0 17.5 1.6 6.7
5 Bare 70 (±3) 193/21 yes Perpend. 6.6 22.3 1.1 2.6
6 Bare 80 (±3) 193/21 no Perpend. 4.2 19.8 2.5 11.2
7 Sparse stubble 80 (±3) 184/13 yes Perpend. 5.7 22.5 1.7 5.7
8 Sparse stubble 80 (±3) 176/18 no Perpend. 4.6 13.5 2.3 10.0
9 Bare 50 (±3) 265/7 yes oblique 3.3 11.0 5.1 30.8
10 Sparse stubble 10 (±3) 182/19 yes Parallel 7.0 23.5 3.0 4.8
11 Sparse stubble 10 (±3) 182/19 yes Parallel 6.5 21.6 1.5 5.3
12 Sparse stubble 10 (±3) 182/19 yes Parallel 5.6 24.0 2.3 13.9
13 Sparse stubble 10 (±3) 224/29 yes Parallel 9.1 26.8 2.7 3.1
14 Bare 20 (±3) 196/20 no Parallel 7.6 23.6 1.5 10.8
15 Sparse stubble 0 (±3) 89/17 no Parallel 3.3 18.7 0.8 2.3
16 Sparse stubble none – yes Isotropic 1.2 15.6 0.5 9.9
17 Sparse stubble none – no Isotropic 2.7 9.7 1.5 8.8
18 Sparse stubble none – no Isotropic 5.0 30.3 4.2 11.3
19 Sparse stubble none – no Isotropic 4.1 34.0 4.2 17.4
20 Sparse stubble none – yes Isotropic 2.7 5.7 3.3 22.5
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parameters. Surface profiles were extracted from each scan line with a
length of 3 m to match the length of the ground manual profiles. Fur-
thermore all scan lines within 10 m of the plot centre were considered
to accommodate the expected positional error of the GPS coordinates as
well as the relative planimetric shift between adjacent LiDAR runs. The
surface heights RMS and the profile CL were then calculated for each
profile. This procedure ensured that SR parameters were calculated
using only relative LiDAR heights measured along the same LiDAR
scan line over a 3-m length. As shown by Davenport et al. (2004), over
time lags smaller than 50 ms the only source of surface height uncer-
tainty is the internal noise associated with electronics and the inertial
navigation system (INS) corrections. At the 240-KHz rate of the LiDAR
system available in this study, the time lag between subsequent LiDAR
points along a scan line was of 4 μs, which translated into a time lag be-
tween all the data points over a 3-m LiDAR profile not superior to
~50 μs. This is largely within the 50 ms figures indicated by
Davenport et al. (2004) to allow the detection of centimetre-scale
roughness.

A plot-average value and associated standard deviation of the RMS
and CL were finally assigned to each plot by averaging the RMS and CL
calculated for each individual scan line falling within 10 m from the lo-
cation of the pin-profiler. This procedure was chosen to characterize the
spatial variation of SR at the plot scale and also to compensate for plani-
metric errors in the geolocation of LiDAR points (1–2 m planimetric ac-
curacy) and survey plots (10 m planimetric accuracy). The number of
scan lines per plot varied greatly, between approximately 30 and 130
with an average of 80 scan lines per plot, with small values indicating
only partial plot coverage for the specific swath. In order to exclude
such cases from the analysis, a threshold on the minimum number of
LiDAR points was set at 75% of the average number of points per plot.
Swaths with the number of points below this value were removed
from the analysis of each plot.
3.4. Surface roughness parameters calculation

The computation of the surface heights RMS and profile CLwas done
using the same MATLAB routine applied to both the ground and LiDAR
profiles. Given a profile formed of a sequence of N data points with
surface height zi with respect to a reference plain, then RMS is defined
as:

RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

X
zi−μð Þ2

r
; ð1Þ

where μ is the average of zi over the profile length. For the calculation of
the CL, first the empirical autocorrelation function (ACF) was calculated
for each individual profile (each LiDAR scan line and each ground
profile). A mathematical function was then fitted to the empirical ACF.
For this task, three functions were considered which have been
commonly shown to fit well the ACF of agricultural surfaces: Expo-
nential, Gaussian and hybrid (fractal) (Baghdadi et al., 2004):

ρ xð Þ ¼ e‐
x
Lð Þ : Exponential ð2Þ

ρ xð Þ ¼ e‐
x
Lð Þ2 : Gaussian ð3Þ

ρ xð Þ ¼ e‐
x
Lð Þτ : fractal ð4Þ

where ρ(x) is the surface correlation function at the horizontal spatial
lag x and τ = −1.67 D + 3.67 is the fractal dimension, which is
approximately 1.4 for agricultural plots (Baghdadi et al., 2004). Thus,
the coefficient τ is approximately 1.33.

For each profile the most suitable ACF fitting function was selected
as the one providing the minimum root mean square error between
theoretical and empirical ACF (such automated procedure was neces-
sary since, due to the large number of LiDAR profiles, it was impractical
to visually fit each individual empirical ACF). In the case of the LiDAR-
derived profile, the exponential function was the best fit in 52% of the
cases, while the Gaussian and fractal where the best fit in respectively
the 38% and 10% of the cases. Conversely, for the ground profiles the
Gaussian functionwas the best fit in 50% of cases, followed by the expo-
nential (30%) and fractal (8%). This is a result of the coarser sampling
resolution of the LiDAR data (20 cm)with respect to the groundprofiles
(0.5 cm), which results in a more abrupt decrease in correlation for
small lags typical of the exponential function. A few examples of empir-
ical and fitted ACF can be found in Fig. 4.
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Once a suitable mathematical function is found to fit the empirical
ACF, the correlation length is calculated as the fitting parameter L in
Eq. ((2)–(4)), equivalent to spatial lag x at which the ACF is equal to
1/e. It should be noted that no frequency decompositionwas performed
on the surface profiles, i.e., the surface heights RMS and profile CL calcu-
lated include both high-frequency roughness variations due to soil clods
and surface irregularities as well as low-frequency variations due to
crop rows.

4. Results and discussion

Data analysis focused on four main areas:

1. Impact of the spatial sampling spacing on the calculation of SR
parameters;

2. A comparison between field survey and LiDAR SR estimates;
3. A comparison between LiDAR SR estimates from scan overlaps in the

same mission, and
4. A comparison between LiDAR SR estimates between dates (17 days

apart).

In the following sections the results for each main area listed above
are presented, followed by an overview of potential sources of error.

4.1. Impact of spatial sampling spacing on surface roughness parameters

The LiDAR and pin-profiler are different samplingmethods, generally
characterized by different spatial sampling spacing (20 cm and 0.5 cm
respectively in the case of this study) and different length of the profile
sampled. Since the objective of this paper is to cross-compare the SR
statistical parameters derived from the two sampling methods, it is
crucial to understand how the difference in sampling parameters
(spacing and profile length) between the two methods affects the
calculation of the SR parameters. Although generally the total length
of the profile sampled would be different between the two sampling
methods, in this study this was avoided by extracting LiDAR profiles
with the same length as the ground profiles (3 m). Therefore in this
sectionwe limit the analysis to the impact of different sampling spacing.
The surface heights RMS and CL estimated with the pin-profiler can be
thought of characterizing the micro- (e.g. millimetres to decimetres)
spatial scale. This is associated to surface irregularities such as soil
clods. Conversely, LiDAR-derived estimates are likely to capture the
meso- (e.g. decimetres to metres) spatial scale associated to local
topographic variations as well as periodic structures resulting from
man-made farming activities (see Fig. 4). As shown in Table 1, the
spatial periods of the periodic row structures were in the 89–224 cm
range, with depths varying from 7 to 20 cm. In order to understand
Fig. 3. Impact of profile sampling spacing on the retrieval of surface roughness parameter. Comp
by sub-sampling at 20 cm spacing original profiles at 0.5 cm sampling spacing. (c–d) Depende
original profiles. All vertical error bars represent the standard deviation of the error across the
the effect of the sampling spacing on the calculation of the SR parame-
ters, a synthetic analysis was conducted as follows: each 0.5 cm-spaced
profile measured with the pin-profiler at the plots listed in Table 1 was
segmented at the LiDAR sampling spacing (20 cm). In order to simulate
the integration of the energy distribution within LiDAR footprints, the
average pin-profiler reading within each 20 cm segment was then
taken. A sub-sampled profile was then constructed using such averages.
Up to 40 sub-sampled profileswere extracted fromeachoriginal profile,
each shifted of 0.5 cm. The surface roughness RMS and CL were
then calculated for all profiles as explained in Section 4.4. Such sub-
sampled profiles can be thought as close proxies of the profiles which
would be observed by the LiDAR sensor with a 20 cm footprint. How-
ever, they are not affected by the LiDAR measurement error, nor errors
associated to the co-geolocation of LiDAR and pin-profiler. Therefore
the comparison between the SR parameters calculated on the original
and sub-sampled profiles provide a direct insight into the effect of the
sampling spacing on the SR parameters. Fig. 3 shows such comparison.
For each profile, the average and standard deviation of the roughness
parameters (surface heights RMS and CL) calculated on the 40 sub-
sampled (20 cm spacing) profiles is compared with the roughness
parameters derived from the original (0.5 cm spacing) profile.

The main observation to be drawn from Fig. 3 is that the simu-
lated LiDAR estimates of surface heights RMS are strongly correlat-
ed with that of the original profile (r2 = 0.98). However, the
coarser sampling spacing introduced a small negative bias (underes-
timation) of −0.5 cm (±0.3 cm error standard deviation), fairly
uniform across the range of RMS and across surface types. This un-
derestimation is consistent with that observed in previous studies
(Ogilvy & Foster, 1989). Conversely, the retrieval of CL is more signif-
icantly affected by the coarser sampling spacing, and this is highly
dependent on the surface type. While the mean overestimation
error is fairly small for “perpendicular” (2.4 ± 0.7 cm) plots, it
rises to 7.4 ±2.3 cm for “parallel” and 7.7 ± 1.5 cm for “isotropic”
plots, with a maximum overestimation of 20 cm in some cases. This
is accompanied by a larger variation in CL extracted from the sub-
sampled profiles (vertical error bars in Fig. 3b). This is quite unex-
pected, since the spatial period and trench depths of the crop rows
are very similar for “parallel” and “perpendicular” plots (see Table 1),
and therefore one would expect the sampling spacing to have the
same impact on the CL calculation, regardless of the relative direction
between the crop rows and the LiDAR scan line.

To understand the reason for such a difference, in Fig. 4 examples of
surface profile and associated ACF are shown for each surface type. All
profiles present a high-frequency component (noise associated to
soil clods) superimposed to a low-frequency pattern (due to local topo-
graphic slope variation for the “parallel” and “isotropic” fields and to the
arison between surface heights RMS (a) and CL (b) derived from synthetic profiles created
nce of the average error in surface heights RMS (c) and CL (d) between sub-sampled and
synthetic profiles.



Fig. 4. (left panels) Examples of 0.5 cm-spaced surface profiles and 20 cm-spaced sub-sampled profiles and (right panels) empirical and fitted theoretical autocorrelation function (ACF)
for both profiles. In the right panels the correlation lengths derived from the theoretical ACF for the 0.5 cm-spaced profile (CL0.5cm) and 20 cm-spaced profile (CL20cm) are also shown. Plot
# cross-references to Table 1.
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periodic row structure for the “perpendicular” plots). In the case of the
“perpendicular” plots the experimental ACF from original and sub-
sampled profiles are very similar and capture the decorrelation compo-
nent associated to the low-frequency pattern, resulting in a goodmatch
of the CL calculated from original and sub-sampled profiles. Conversely,
for “parallel” and “isotropic” plots the ACF derived from 20 cm sub-
sampled profiles do not capture the decorrelation component at small
lags associated to the high-frequency noise, which is instead reflected
in the original ACF, resulting in a larger CL (i.e., flatter surface) for the
sub-sampled profiles and explaining the overestimation observed in
Fig. 3b. For completeness, in Fig. 3c and d the variation of surface heights
RMS and CL error (i.e., difference in RMS and CL relatively to a 0.5 cm-
spaced profile) with increasing sampling spacing are shown for spac-
ings up to 40 cm. The underestimation of RMS increased nearly linearly
with increasing sampling spacing, up to −1 cm for 40 cm spacing. The
error in CL exhibits a different behaviour depending on the surface type.
For “parallel” and “isotropic” type profiles, characterized by rather low
values of RMS and the absence of a periodic roughness component
associated to row structure, (see Fig. 4), the CL extracted from sub-
sampled profiles increasingly overestimates the CL extracted from
0.5 cm profiles as the spacing increases. Conversely, for surfaces
characterized by a periodic roughness component and elevated surface
heights RMS (“perpendicular” profiles), the difference in CL remains
small, increasing to only 2 cm, up to 20 cm sampling spacing (approxi-
mately 1/3 of the spatial periods for perpendicular surfaces, see Table 1),
after which the original CL is strongly underestimated.

The synthetic analysis has therefore shown that, despite the differ-
ence in sampling spacing, LiDAR observations at 20 cm spacing have
the potential to provide estimates of surface heights RMS matching
those derived from ground pin-profiler observations within a mean
error of 0.5 cm (±0.3 cm) for all surface types analysed. In terms of
CL, the coarser sampling spacing of the LiDAR is expected to introduce
negligible errors for surfaces presenting a periodic surface pattern
associated to crop rows when the surface is scanned by the LiDAR in
the direction perpendicular to the periodic structure. Conversely, for
plots without a periodic surface pattern (either isotropic plots or plots
scanned by the LiDAR in the direction approximately parallel to the
crop rows) CL could be overestimated between 10 and 20 cm due to
the LiDAR coarse sampling spacing. In the next section the comparison
between airborne LiDAR and ground pin-profiler roughness estimates
is performed.

4.2. Comparison between ground survey and LiDAR surface
roughness estimates

Fig. 5 shows the scatter plots between LiDAR- and field-derived
estimates of RMS and CL. The accuracy of the LiDAR estimates exhibited
a strong dependence to the relative direction between crop rows and
LiDAR scan direction. A good agreement between LiDAR and ground
estimates of RMS was observed for both plots with crop rows perpen-
dicular to the LiDAR scan line (RMSE 0.77 cm, bias 0.48 cm and R2

0.76) and for isotropic plots (RMSE 0.81 cm, bias 0.03 cm and R2

0.68), confirming the feasibility of estimating surface height RMS with
airborne LiDAR at least for bare fields having such surface conditions.
Conversely, the accuracy of LiDAR estimates of RMS decreased signifi-
cantly when the crop row direction was oblique or approximately
parallel to the LiDAR scan direction, with an increase in RMSE of up to
4.1 cm and a 3.8 cm positive bias (overestimation). The reason for
such higher estimates of surface heights RMS on “parallel” plots is
unclear. However, it was observed that the vertical range of LiDAR
heights recorded on such plots is consistent with the depth of the
benches (~20 cm, see Table 1). This suggests that, when LiDAR scan
lines and crop rows are approximately parallel, LiDAR footprints along
the scan line might be recording elevations of the bottom and top of
the row benches, probably due to unavoidable deviation of the crop
row from a straight line or the effect of the surface height variation



Fig. 5. Relationship between ground-based pin-profiler estimates of (a) RMS and (b) CL and those derived from airborne LiDAR for bare soil plots. Vertical error bars indicate±1 standard
deviation of the RMSderived from individual scan lineswithin 10 mof each plot. Data points and errormetrics in the tables are grouped by relative direction between crop rows and LiDAR
scan lines (see Table 1). ‘Parallel*’ indicate comparison between LiDAR scan line parallel to the crop rowdirectionwith pin-profilermeasurements perpendicular to the crop row direction.
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within the LiDAR footprints when these fall close to the edges of the
benches. Since the ground profile was instead accurately positioned
along the bottom or top of the benches, and perfectly parallel to the
crop rows, it will record a smaller surface heights RMS than the LiDAR.
If this is true, then the surface heights RMS derived from LiDAR over a
“parallel” plot should better match the RMS of the ground profile
measured in the direction perpendicular to the crop rows at the same
location, rather than parallel to the crop rows. This is confirmed in
Fig. 5 where the LiDAR-extracted RMS was plotted versus the pin-
profiler perpendicular to the crop rows. The RMSE in surface heights
RMS decreased significantly from 4.1 cm to 0.55 cm, the bias and corre-
lation improving accordingly, indicating that, evenwhen the LiDAR scan
lines are approximately parallel to the direction of the periodic struc-
tures, the LiDAR-derived RMS is a precise estimate of the RMS as mea-
sured across the crop rows.

LiDAR estimates of CL were generally poor and not correlated with
those estimated from ground profiles. CL was generally largely
underestimated by the LiDAR profiles, up to −11.6 cm bias in the
worst case of crop rows perpendicular to the LiDAR scan line. As for
the case of surface heights RMS estimates, on “parallel” plots the
LiDAR CL estimates were generally higher than for “perpendicular”,
“isotropic” or “oblique” plots, particularly for plots presenting small
values of CL for the ground profiles, and could overestimate the ground
profile CL by up to 15 cm. For such plots LiDAR CL estimates were also
highly variable in the surroundings of the ground profile (see large
vertical error bars in Fig. 5 for “parallel” crops). Such overestimation
is somewhat consistent with what was observed in Section 4.1 for
“parallel” plots, where an overestimation of up to 10–20 cm was
shown to be associated to the LiDAR coarse sampling spacing.

However, the general underestimation of CL seen in Fig. 5b for
“perpendicular”, “isotropic” and “parallel” plots at higher values of
ground profile CL does not reflect what is expected from the synthetic
analysis of Section 4.1. Other sources of error might be at play in this
case. The fact that a strong underestimation of CL is observed for larger
values of ground CL points to the fact that the sampled profiles (3 m)
might be too short to allow for a robust and stable estimate of the CL,
which would then remain largely affected by random errors, as
suggested byOhandKay (1998).Moreover, as noted in previous studies
(Álvarez-Mozos et al., 2009; Blaes & Defourny, 2008) CL exhibits higher
spatial variability than RMS at both the local (within metres) and
paddock scales, and this would undermine the representativeness of
the CL estimates derived from the single ground transect of the
surrounding 10 m area sampled by the LiDAR. Whether it is the insuffi-
cient length of the profile or the local spatial variability that determines
the large error bars observed in Fig. 5b is difficult to determine.
Although profiles longer than 3 m could be extracted from the LiDAR
scan lines, this would not be to the benefit of the comparison with the
ground profile as these were limited to 3 m in length.

It should be stressed that, due to the inherent sparse nature of the
ground-measured pin profiles, in this study the comparison had to be
done between a single ground profile and several (between 30 and
130) LiDAR-derived profiles measured within 10 m from the location
of the ground profile, averaged so as to compensate for errors in relative
geolocation between the two. Although in this study the groundprofiles
are considered the “truth” against which the LiDAR estimates were
assessed, the point nature of the ground measurements, together with
the known high spatial variability of SR attributed over short distances
poses doubts about the validity of such a perspective. It could be argued
that the LiDAR estimate, although affected bymeasurement error,might
provide a more reliable local estimate of SR because they characterize
the spatial variability in SR, as opposed to the highly localised nature
of the ground profile. This problem may be difficult to resolve and
ultimately it might be only relevant when related to the observations
scale of the phenomena which have to be modelled/analysed using
the SR attributes. For example, in SAR backscatter modelling, the
ensemble average profile over the SAR pixel (~10 m) is generally
used. In that regard, the validity of the present study is to demonstrate
that, at least in terms of RMS, the two estimates of SR attributes
(LiDAR and ground profiles) are highly correlated and only offset by a
modest amount (b0.48 cm).

4.3. Consistency of LiDAR scan overlaps

If airborne LiDAR is to provide a robust approach for SR estimation
then it is important to verify sampling precision in addition to the accu-
racy just demonstrated in the previous section. To demonstrate preci-
sion, repeated LiDAR scans over the same plot should yield similar SR
values. Because the LiDAR runs in this study were flown with up to
50% swath overlap, and most survey plots were covered by two to
three run passes, it was possible to compare LiDAR-derived RMS and
CL estimates from repeated plot scans.

Using LiDAR data from all the acquisition dates a total of 67 paired
run sets (i.e., same-day overpasses of the same location from different
runs) were identified across the existing survey plots. An initial analysis
based on all paired plots showed a very high correlation in LiDAR-
derived RMS estimates (R2 0.95, RMSE 0.74 cm). This correlation
improved further when the analysis was limited to only bare earth
plots (R2 0.98, RMSE 0.29 cm) as illustrated in Fig. 6. These results



Fig. 6. Comparison of airborne LiDAR-derived RMS (left) and CL (right) estimates of the same location from adjacent runs (bare soil plots only). Vertical error bars indicate ±1 standard
deviation of the RMS (and CL) of scan lines within 10 m of each plot. The equation of the regression line, correlation coefficient (R2) and Root Mean Square Error (RMSE, cm) are also
shown.
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demonstrate that LiDAR-derived RMS estimates are very stable between
subsequent overpasses. Moreover, such a good match between esti-
mates from adjacent overpasses indicates that the impact of the anom-
alies in LiDAR geo-registration discussed in Section 4.3 is negligible. This
consistency between runs suggests that the approach can provide pre-
cise and reliable estimates of the RMS.

The repeat pass results for CL estimateswere less consistent than the
RMS estimates and exhibited no correlation (R2 0.001). However, over-
all they provided very similar CL estimates (RMSE 2.6 cm), as shown in
Fig. 6. Again, these resultsmay be influenced by the inherently high spa-
tial variability of CLwithin the 10 mplots. Thismight be further compli-
cated by slightly different scan directions from repeat passes. The
calculation of CL was indeed found to be very sensitive to the relative
angle between LiDAR scan and the row direction (see Section 4.2).
This is particularly evident as the scan-line direction approaches the
row direction, as the LiDAR profile will measure low frequency fluctua-
tions resulting in a higher and more variable value for CL.

Results indicate that airborne LiDAR offers a stable and robust way to
estimate RMS values. This consistency between RMS estimates from dif-
ferent runs supports the case that LiDAR-derived RMS estimates are high-
ly stable between adjacent flight lines and that an individual run-based
approach is a valid method for analysing point data for SR attributes.
Fig. 7. Comparison of airborne LiDAR-derived (a) RMS and (b) CL estimates of the same location
are classified as “tilled” or “untilled” based on the occurrence of physical change in surface cond
indicate ±1 standard deviation of the RMS (and CL) of scan lines within 10 m of each plot.
4.4. Temporal consistency of LiDAR data

For this study, LiDAR was acquired on two mission dates (5th and
22nd of September 2011) and this provided an opportunity to assess
the consistency in LiDAR SR estimates at different times over the same
site. A preliminary analysis of the data showed a significant variation be-
tweenRMS estimates between the twodates. However, given the stabil-
ity of LiDAR RMS estimates observed for adjacent runs, it was suspected
thatmuch of this variationwas actually associatedwith physical change
in surface conditions from mechanical tillage/ploughing events be-
tween mission dates. A survey was conducted with local farmers to
identify which fields had undergone changes in surface conditions (till-
age or ploughing) during the monitoring period (see Table 1). Fig. 7
shows the comparison of LiDAR-derived RMS estimates from the two
acquisition dates separately for tilled and untilled plots.

Fig. 7 indicates that LiDAR-derived RMS and CL estimates for fields
where no change occurred (i.e. “untilled” fields) were very similar
between September 5th and 22nd (R2 0.99, RMSE 0.23 cm), while
those where change had occurred (i.e. “tilled” fields) showed consider-
able variation of RMS between the two sampling dates. Furthermore,
the majority of tilled plots showed a general reduction in RMS that is
consistent with the increasedmechanical breakdown of soil aggregates.
s from different missions (5th and 22nd of September 2011) for bare soil plots. Data points
itions frommechanical tillage/ploughing events betweenmission dates. Vertical error bars
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There are two important points to bemade regarding Fig. 7. First, the
graph demonstrates the need to separate tilled and untilled plots before
comparing LiDAR-derived RMS estimates. Secondly, it appears that var-
iation in LiDAR RMS estimates from temporal datasetsmay also provide
an objective means of tillage change detection. Hence, temporal LiDAR
data provides an opportunity to detect changes in tillage treatment
over time based on the degree of shift in LiDAR RMS estimates. This ob-
servation could provide an innovative and objective means of change
detection without the need for ground-based surveys.

Results confirm that LiDAR-derived RMS estimates are consis-
tent between missions over the same plots. Moreover, all bare
plots exhibited a very slight decrease in RMS between the 5th and
22nd of September which may have been associated with natural
weathering. Interestingly, the LiDAR-derived CL estimates in Fig. 7
also revealed a strong correlation (R2 0.98, RMSE 1.2 cm) for
untilled bare plots with perpendicular scan lines but with a more
marked decline in values over time. Again this may have been asso-
ciated with natural weathering.

4.5. Discussion of potential error sources in LiDAR SR estimates

Various sources of error may have had some degree of influence on
the accuracy of the results from this study. These factors include the
following:

• Spatial co-registration of ground survey and airborne LiDAR data needs
to be as accurate as possible to compare datasets over the same loca-
tion. Unfortunately, co-registration of soil profiles with laser profiles
can be problematic. Blaes and Defourny (2008) noted that some of
the variation between their terrestrial laser line profiles and photo-
grammetric DEM estimates was partially due to the difficulty in co-
registering their datasets. They state that it was difficult to perfectly
match the laser line positions and the soil DEM extracted profiles
even though theywere captured over the same plotwhichwas clearly
marked (via a taped boundary)in the field. In this study, the ground
pin-profilers were located using a handheld GPS with relatively low
planimetric accuracy (at best a 10 m horizontal accuracy in the x
and y plane). In contrast, the spatial accuracy of the airborne LiDAR
data was estimated to be within ±50 cm, although a planimetric
shift of ~1–2 m between subsequent scans indicate that the spatial
accuracy of LiDAR could be on that order of magnitude. Consequently
it was not possible to precisely relate the pin-profiler and LiDAR pro-
file datasets at the small scale. To allow for a potential positioning
error of ±5 m in the field plot, the LiDAR data were extracted for a
10 m radius around the plot centres in the hope that general trends
would appear for both small- andmedium-scale parameters. Unfortu-
nately, it was not possible to definitively demonstrate that themanual
profiles were actually representative of the larger plot area, although
the excellent correlation between ground-derived and LiDAR-based
average RMS values is a strong argument in that sense.

• Spatial resolution could also be a major source of error. Pin-profilers
and LiDAR profilers have different ways of sampling. A pin-profiler
can measure height variation in a 2D plane at 0.5 mm intervals, with
no sampling overlap along a 3 m transect in two directions (i.e. along
the bench and across the bench) and therefore sample points are
consistent at set intervals and spacing. In contrast, the airborne LiDAR
data in this case were collected within a 3D area with 12–15 cm circu-
lar to oblique footprints that are overlapping at inconsistent intervals
(approximately 20 cm apart) with variable scan orientation (including
perpendicular, oblique and parallel directions). These major differ-
ences in how height variation is measured are an obvious source of
potential error.

• Natural weathering may have occurred between the date of LiDAR
acquisition and the ground survey. Although local meteorological
records indicate no recorded rain events between these dates, it is
possible that wind erosion may have reduced SR.
• Sensor error is always a possible source of uncertainty particularly for
estimating small scale SR parameters. Official specifications for the
Riegl LMS-Q560 (Riegl, 2006) suggest that at an 800 m height the
sensor can achieve 7 cm vertical and 19 cm horizontal at 1 sigma
(meaning ~68% of the data will fall within this limit). However,
these accuracies are based on the assumption that the target is per-
fectly flat, larger than the beam footprint, and perpendicular to the
angle of incidence, none of which hold true for this study. Further-
more, even though the sensor was flown at 400 m above the ground,
there is likely to be some unknown degree of vertical inaccuracy
which may influence RMS and CL estimates. For example, given the
specified range accuracy for the instrument (≤20 mm ±20 ppm),
at a distance of 400 m we would expect a range error of around
28 mm.

• Viewing geometry can be an important factorwhen interpreting LiDAR
accuracy. LiDAR sensors are not infinite point sampling instruments
because the beamwidth widens the farther it travels. Hence the foot-
print size and shape will vary according to ground elevation and
slope, aswell as scan angle in a complex interaction of the transmitted
pulse energy with the target. The return signal from a target surface
will be a function of the integrated energy distribution across the foot-
printweighted by the reflectivity profile of the terrainwithin the foot-
print. In general, non-uniform targets with differences in reflectivity
and slope across the footprint introduce uncertainty in the X, Y and
Z position. In our study, the nominal footprint size at ground level
was approximately 12–15 cm and in theory this means that a first
return could be triggered fromup to 7 cmaway from the beamcentre.
This could be an issue particularly at the edges of row benches where
height can vary by as much as 20 cmwithin a distance of 0.5 m. Scan
orientation is also an important factor in planning LiDAR acquisition
programs. Ideally LiDAR profiles should be extracted perpendicular
to the row direction to capture the undulation in row structure. How-
ever, since ALS is typically acquired in linear strips using fixed-winged
aircraft it is not always possible to achieve a consistent perpendicular
scan as different fields exhibit variable row directions. Moreover, row
direction can also vary within a field due to slight changes in to-
pography and the presence of physical obstacles (such as paddock
trees, rock outcrops, boggy areas, irrigation infrastructure). Conse-
quently, LiDAR soil scans will always contain a mix of optimum
and sub-optimum scan directions. Future work should focus on
the pre-classification of soil geometry to determine the spatial ori-
entation of rows relative to the viewing geometry of the LiDAR
profiles.

• Point classification involves the automated separation of ground
and non-ground points which can greatly influence the estimation
of ground SR parameters. The ability to classify ground from non-
ground points is very difficult in agricultural soils, particularly if a
periodic row structure is also present. Numerous studies have in-
vestigated techniques for filtering and classifying point cloud
data (see Meng, Currit, & Zhao, 2010 for a review). Meng et al.
(2010) highlighted three feature types for which current ground
filtering algorithms are suboptimal and future research is required:
surfaces with rough terrain or discontinuous slope, dense forest
areas that laser beams cannot penetrate, and regions with low veg-
etation that is often ignored by ground filters. Because our ap-
proach to estimating surface roughness is based on the analysis
of individual scan lines, future work should investigate the use of
linear neighbourhoods to classify ground points since some studies
have shown it to be sensitive to low vegetation (Meng, 2005).

5. Conclusions

The most common method for sampling surface geometry involves
labour-intensive field surveys. Airborne laser scanners provide an
unprecedented opportunity to efficiently characterize soil SR spatial
distribution over large areas. This paper provides the first quantitative
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assessment against conventional ground-based measurements of the
accuracy of airborne LiDAR estimates of surface roughness (surface
heights Root Mean Square - RMS, and Correlation Length - CL). The
study uses two airborne LiDAR surveys over 13 bare agricultural pad-
docks in South-Eastern Australia with coincident ground surveys. This
paper has demonstrated that despite potential errors from several
sources, airborne LiDAR-estimates of the surface height RMS are both
accurate (compared to field-derived measurements) and precise
(repeatable stable estimates). LiDAR- and field-derived RMS estimates
were shown to be highly correlated (R2 N 0.68 and up to 0.88) and accu-
rate (RMSE b 0.81 cm, bias b 0.48 cm). RMS estimates were also
shown to be very stable between subsequent overpasses within the
same flight mission (R2 0.98) confirming that the sampling technique
is consistent and reliable. The additional benefit of the approach used
is that it is independent of the need to manually adjust swath overlaps
which can be very time intensive and costly. The temporal change
analysis demonstrated that, at least for RMS estimates, airborne LiDAR
offers a stable and robust way to measure soil surface roughness over
time (i.e. 17 days) with results confirming a very high correlation (R2

0.99) in repeat RMS estimates across sites where no agricultural activi-
ties were recorded during the observation period. Moreover, LiDAR es-
timates of surface height RMS were shown to be accurate enough to
allow the tracking of temporal changes in surface roughness due to
farming activities, suggesting that it may be feasible to develop detec-
tion methods for the estimation of tillage changes based on shifts in
surface height RMS as a surrogate indicator.

This study has also highlighted some major limitations concerning
the retrieval of surface roughness parameters from LiDAR. In particular,
LiDAR-derived CL estimates were not found to be a reliable proxy of the
field-derived CL. The most accurate LiDAR-derived CL estimates,
obtained over plots with crop rows parallel to the LiDAR scan direction,
produced substantial errors compared to field-derived CL estimates
(RMSE 6.5 cm, bias 2.1 cm and R2 0.4), while for plots with crop row
direction perpendicular to the LiDAR scan direction the LiDAR esti-
mates were even more inaccurate (RMSE 12 cm, −11.6 cm bias
and R2 0.0). Such underestimation of the field estimate of CL by
the LiDAR could not be entirely explained by the effect of the coarse
sampling spacing of the LiDAR alone, as they were generally differ-
ent in sign than what was expected from the synthetic analysis
performed.

The main limitation for the routine application of LiDAR for estima-
tion of RMS is the requirement for information on crop row direction.
Therefore, a method to pre-classify the crop row direction is required
so that optimum fields and/or flight line direction can be determined.
This could be done using optical data or even through analysis of the
same LiDAR observations. However, if possible, LiDAR surveys should
be carried out at perpendicular bearings to avoid this problem. More-
over, the analysis presented had to be limited to bare surfaces. Sites
with vegetation or stubble debris cover would also require improved
point cloud classification models to better separate true ground points
from elevated noise.
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