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Abstract. In this paper we explore the potential of the pairwise-type modelling approach to
be extended to weighted networks where nodal degree and weights are not independent. As a
baseline or null model for weighted networks, we consider undirected, heterogenous networks
where edge weights are randomly distributed. We show that the pairwise model successfully
captures the extra complexity of the network, but does this at the cost of limited analytical
tractability due the high number of equations. To circumvent this problem, we employ the
edge-based modelling approach to derive models corresponding to two different cases, namely
for degree-dependent and randomly distributed weights. These models are more amenable to
compute important epidemic descriptors, such as early growth rate and final epidemic size, and
produce similarly excellent agreement with simulation. Using a branching process approach we
compute the basic reproductive ratio for both models and discuss the implication of random
and correlated weight distributions on this as well as on the time evolution and final outcome of
epidemics. Finally, we illustrate that the two seemingly different modelling approaches, pairwise
and edge-based, operate on similar assumptions and it is possible to formally link the two.
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1. Introduction

The study of epidemic spread through contact networks has significantly improved our understanding
of how the structure of interactions influences the spread of an infectious disease. One of the most
recognised facts is that individuals with more contacts tend to become infected sooner and then spread
the disease more quickly than others. Thus, for a given average degree, epidemics tend to spread faster
if the population has a more heterogeneous degree distribution.

A number of models have been introduced to study the spread of an SIR (susceptible-infectious-
recovered) infectious disease through a class of random networks known as configuration model networks
[19]. The earliest models [16] were restricted to final size calculations, predicting how the total number
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infected depends on the transmission probability. More recently, models have been introduced which
attempt to predict the dynamics of an epidemic, with varying levels of success and degrees of complex-
ity. There are now several models available which can predict with high accuracy the population-scale
dynamics of an SIR epidemic spreading through a configuration model network [6, 9, 14,18,24].

However, these analyses assume that all interactions have the same strength. In fact some connections
are expected to transmit infection quicker than others as a result of the closeness of interaction of the
individuals. By itself, a heterogeneous distribution of contact weights would affect the dynamics of
an epidemic. However, we further expect that an individual’s contact-weights are likely to have some
dependence on the degree of the nodes that the edges/links connect. Previous studies have considered
and analysed different scenarios of weighted networks based on theoretical/synthetic network models
[5,15,20,22], as well as empirical networks reconstructed from real data (e.g. social mixing data [13] and
cattle movements between farms [17]). These studies have typically focused on specific models that either
gave information about (a) threshold quantities and final epidemic size, (b) mean-field type models for
describing the time evolution of infection or (c) simulation. Here, we will aim to cover as many of these
aspects as possible in one single body of work.

In this paper we develop and analyse models which allow us to incorporate edge-weights into the
epidemic dynamics and we explore this via pairwise and edge-based compartmental models, as well as
simulation. In particular, we focus on weighted networks where link or edge weights and node degree
are not independent, see for example [8, 21]. The aim of this study is twofold. First, we explore the
flexibility of the pairwise and edge-based compartmental modelling frameworks to account for this added
level of complexity, and second, to gain better understanding on the precise impact of different weight
distributions and of correlations between link-weight and degree on epidemic threshold, growth rate
and epidemic dynamics. The paper is organised as follows. Section 2 is dedicated to model derivation
starting with network construction and edge-weight distribution, including some null models, such as
where link-weights are randomly distributed and where all link weights are equal to some predetermined
average. In this same section, we derive and present the pairwise and edge-based models for random and
degree-dependent weights cases. Section 3 is dedicated to results, and it is divided into analytic, numeric
and model comparison parts. Finally, in section 4, we provide further aspects for discussion and future
directions.

2. Model derivation

The models are built in a bottom up approach. We first describe the construction of the networks we
study and how their edge-weights are assigned. We then describe the disease dynamics and simulation
model. We conclude this section with the formulation and derivation of the pairwise and edge-based
compartmental models for two distinct classes of weighted networks.

2.1. Network construction and simulation

Our focus here is the construction of our model networks and the simulation of an epidemic through
those networks. Our model networks use the configuration model framework [19] with each edge assigned
one of M possible weights. The two network types we consider differ in how those weights are assigned
to edges. We make standard assumptions about the disease spread, but we let the rate of transmission
along an edge depend on its weight.

2.1.1. Networks with randomly-distributed edge weights

In this case a two step approach is used to generate networks with randomly-distributed edge weights.
First, a network of N nodes with prescribed degree distribution P (k) is generated according to the
configuration model. This procedure leads to an undirected unweighted network where edge weights
can be now assigned at random according to a specified weight distribution Q(w). If Q(w) is defined
across weights wi, where Q(wi) = qi and i = 1, 2, . . . ,M , then in a homogenous random network (i.e. all
nodes have degree k), the distribution of edge-weights of various types is multinomial with parameters k
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- number of trials and qi - the probability of a link being of weight wi with i = 1, 2, . . . ,M . The average
weight in the network is given by 〈w〉random =

∑M
i=1 qiwi.

While this is a good baseline model it is unlikely that this scenario would be a true representation of
social interactions. For example, different weights could be interpreted as representing different social
interactions (e.g. household, workplace and casual) and this could suggest a model where each individual
has a certain number of links of different weights. Ignoring degree heterogeneity and considering individ-
uals to be equal can result in a weighted network with fixed edge-weights, e.g. each node has k links with
k1 being of household type and with k2 = k − k1 being of workplace type and thus of different weights,
say w1 and w2 [20].

2.1.2. Degree-dependent weighted networks

While many different edge-weight allocation scenarios are possible, we opt to investigate the case where
edge weights and node degrees are not independent. This is in contrast with the random edge weights case,
where the network topology and the edge weight distribution and allocation are totally uncoupled. In
particular, we wish to investigate an intuitively plausible idea which suggests that the weight or ‘strength’
of a link is negatively correlated to node-degree since individuals with many contacts are likely to afford
a limited time commitment per link, and thus less of an opportunity for the disease to transmit [8,21]. In
line with these studies, we propose a weighted network model where the link-weight between two nodes
of degree i and j, respectively, is given by w(i, j) = wij with some functional form such that link-weight
decreases as the degrees of nodes that it connects increase. Generating such a network is straightforward
and it requires that first a configuration network with given degree distribution (i.e. P (k)) is created.
This is followed by allocating weights to all links based on the degrees of the end nodes and according
some pre-specified function w(i, j), where i, j = kmin, . . . , kmax with kmin and kmax being the minimal
and maximal nodal degree in the network. In this case, the distribution of weights is such that Q(W =

w(i, j)) = NP (i)i jP (j)
〈k〉 /(〈k〉N/2) = 2ijP (i)P (j)

〈k〉2 and Q(W = w(i, i)) = NP (i)i iP (i)
〈k〉 /(〈k〉N) = i2P 2(i)

〈k〉2 ,
where W is the random variable corresponding to link-weights. Furthermore, discarding information
about the degrees of the nodes for a link and simply assigning a random variable W according to the
distribution Q provides another way to allocate weights of different types. This setup makes it possible
to construct at least two possible null-model-type weighted networks:

(i.) the first is a network that has the same topology and weight distribution but, with weights allocated
at random (i.e. ignoring degree-weight correlations) as prescribed by the random variable W and its
distribution Q, and

(ii.) the second is simply a weighted network where all link-weights are equal to the average weight computed
as

〈w〉dd =

∑kmax

i=kmin
NP (i)i iP (i)

〈k〉 wii + 2
∑kmax−1

i=kmin

∑kmax

j=i+1NP (i)i
jP (j)
〈k〉 wij

〈k〉N ,

where NP (i)i jP (j)
〈k〉 = ijNP (i)P (j)

〈k〉 stands for the actual expected number of links between nodes of

degree i and j, and 〈k〉 = ∑

kP (k) is the average nodal degree.

These two null models will be used as baseline models for comparison when looking to determine the
effect of degree-dependent weights on epidemic dynamics and other important indicators, such as R0 and
final epidemic size.

2.1.3. Epidemic model and simulation

In this paper, the simple SIR (susceptible-infective-recovered) epidemic model is considered. Disease
transmission is specified in terms of infection and recovery events. The rate of transmission over an edge
of weight 1 is denoted by τ and this is adjusted by the edge weight by assuming that transmission is
directly proportional to it, i.e. rate of transmission across an edge of weight w is τw. Infected individuals
recover independently of each other at rate γ. The simulation is implemented using the Gillespie algorithm
[2] with exponentially distributed (rate given by the total rate of change in the system) inter-event times,
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with the single event to be implemented at each step being chosen at random and proportionally to its
rate. All simulations start with a few infected nodes chosen at random with the remaining nodes being
susceptible.

2.2. Approximate ODE models

Markovian processes on networks, being disease, rumour, information, innovation transmission or firing
neurones result in an exact mathematical description in terms of Kolmogorov/master equations. Their
high dimensionality, even for small networks, renders them difficult to use and often these can only
be used to ascertain results of a theoretical nature but may offer less insight for specific applications.
Notably, for highly symmetric or regular networks, the exact equations can be used directly and this
is an area that has been well exploited and has been used to provide and illustrate linkages between
stochastic and approximate ODE models. However, for more general networks, the drawback of the
exact model remains. This has led to the development of a number of approaches and models that do an
excellent job in approximating results from explicit simulations on networks which correspond to what
would be regarded as the exact model. Examples include: (a) pairwise models [1, 11, 14, 18], (b) edge-
based compartmental models and in general approaches that require the use of probability generating
functions [6], (c) effective degree models [9,24], and other variations or combinations based around these.
In this paper, we will concentrate on pairwise and edge-based compartmental models and will assess their
flexibility and performance in accounting and approximating epidemic dynamics unfolding on two main
classes of weighted networks.

2.2.1. Pairwise models

The model extension that we propose is partly covered in Rattana et al. [20]. However, here we extend
this from homogenous to heterogeneous networks with random weights as well as to the case where
edge weights and node degree are not independent. Before writing down the two models, we refresh the
notation and counting procedures. In line with the notation used for pairwise models, the number of
singles remains unchanged, with [Ak] denoting the number of nodes across the whole network which have
degree k and are in state A. Pairs of type Ak −Bk′ , [AkBk′ ], are now further divided depending on edge
weights, i.e. [AkBk′ ]i represents the number of links of type Ak − Bk′ with the edge having weight wi,
where as before i = 1, 2, . . . ,M and A,B ∈ {S, I,R}. Edges are doubly counted (e.g. in both directions)
and thus the following relations hold: [AkBk′ ]m = [Bk′Ak]m and [AkAk]m is equal to twice the number
of uniquely counted links of weight wm with nodes at both ends in state A and having degree k. From
this extension it follows that

∑M
i=1[AkBk′ ]i = [AkBk′ ]. The same convention holds at the level of triples

where [AkBk′Cq]mn stands for the expected number of triples where a node in state B and of degree k′

connects a node in state A and of degree k and a node in state C and of degree q via links of weight wm

and wn, respectively. The weight of the edge impacts on the rate of transmission across that edge, and
this is achieved by using a link-specific transmission rate equal to τwi, where i = 1, 2, . . . ,M . In line
with the above, we construct two pairwise models, one for randomly distributed weights across edges
and one for the case where edge weights and node degrees are correlated.
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Figure 1. Flow diagram showing the evolution of pairs in the random weight case. The
only pairs which have the potential to eventually transmit are the [SS], [SI] and [IS]
pairs, and hence, these need to be tracked. Solid and dashed arrows denote transmission
within and from outside the pairs, respectively. We are able to find a closed system of
equations which does not require calculating the other terms.

Evolution equations for SIR dynamics on heterogenous networks with random weights

˙[Sk] = −τ∑M
n=1 wn[SkI]n,

˙[I] = τ
∑

k

∑M
n=1 wn[SkI]n − γ[I],

˙[SkSk′ ]m = −τ∑M
n=1 wn ([SkSk′I]mn + [Sk′SkI]mn) ,

˙[SkI]m = τ
(

∑

k′

∑M
n=1 wn[SkSk′I]mn −∑M

n=1 wn[ISkI]nm − wm[SkI]m

)

− γ[SkI]m,

(2.1)
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where k, k′ ∈ {kmin, kmin + 1, . . . , kmax} and m = 1, 2, 3, ...,M . Here, kmin and kmax stands for the
smallest and largest nodal degree in the network. We further note that the system above stems from a
reduction applied to a fuller version, see flow diagram in Fig. 1, where evolution equations for all [Ik] classes

are given (i.e. ˙[Ik] = τ
∑kmax

l=kmin

∑M
n=1 wn[SkIl]n − γ[Ik]). Summing this for k = kmin, kmin +1, . . . , kmax

gives the evolution equations for [I], as shown above. A similar notational procedure has been applied at

the level of triples where in general [AkBk′I]mn =
∑kmax

q=kmin
[AkBk′Iq]mn.

The above system of Eq. (2.1) is not closed. Singles depend on pairs, and pairs depend on triples.
Thus equations for triples are needed. This dependency on higher-order moments can be broken via
approximating triples in terms of singles and pairs [18]. The agreement of the results from the closed
system with simulation depends on how well the closure captures essential features of network structure
and the edge weight distribution. Following Eames [14], the following closure is applied,

[AmBnI] =
n− 1

n

[AmBn][BnI]

[Bn]
or [AmBnCp] =

n− 1

n

[AmBn][BnCp]

[Bn]
. (2.2)

It is worth noting that the equations only rely on triples for which the central individual is susceptible.
Thus individuals at the “ends” of a triple cannot affect one another’s status through the central node
until after they no longer affect the equations at the pair level.

Evolution equations for SIR dynamics on networks with degree-dependent weights

The focus now shifts to the case where we wish to incorporate some general correlation between edge
weights and nodal degree. This is done by assuming that transmission between a susceptible node of
degree k and an infected node of degree q happens at rate τwkq, where wkq = w(k, q) can accommodate
various dependencies of edge weight on nodal degree. The pairwise equations follow in the same way as
before and are given by

˙[Sk] = −τ∑q wkq[SkIq],

˙[Ik] = τ
∑

q wkq[SkIq]− γ[Ik],

˙[SkSk′ ] = −τ
∑

q(wk′q[SkSk′Iq] + wkq[Sk′SkIq]),

˙[SkIk′ ] = τ
∑

q(wk′q[SkSk′Iq]− wkq[Ik′SkIq])− τwkk′ [SkIk′ ]− γ[SkIk′ ],

(2.3)

where as before k, k′, q ∈ {kmin, kmin +1, . . . , kmax} and with wxy yet unspecified. A corresponding flow
diagram is given in Fig. 2. This system is closed in the same way as before using Eq. (2.2).

2.2.2. Edge-based compartmental models for weighted networks

We follow the derivation of Edge-based compartmental models (EBCM) of [4, 6, 7]. We assume that
the population is connected according to the configuration model. We assume that the population-
scale measures of infection (number infected, etc) are behaving deterministically. A consequence of this
assumption is that if we choose a random individual u, the random event of whether u is or is not infected
cannot have any impact on the population scale. So if we alter a single individual u so that u can become
infected but cannot transmit to its partners, this can have no population-scale impact.

We define a test individual as follows: u is a test individual if u is randomly selected from the
population and prevented from transmitting to its neighbours. Because the dynamics are deterministic
and u is selected randomly, the probability u is in a given state equals the proportion of the population in
that state. So to calculate the proportion infected, we can simply calculate the probability u is infected.
This depends on the probabilities that the partners of u are infected. Because we have prevented u from
causing any infections, the status of each partner of u is independent of any other partner, which will
simplify our calculations without altering the time of first infection of u. This is closely related to the
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Figure 2. Flow diagram showing the evolution of pairs in the degree-dependent weight
case. The only pairs which have the potential to eventually transmit are the [SS], [SI]
and [IS] pairs, and hence, these need to be tracked. Solid and dashed arrows denote
transmission within and from outside the pairs, respectively. Again we are able to find
a closed system of equations which only requires the [SS], [SI], and [IS] terms.

observation for the pairwise equations that the triples only appear in the pair equations if the central
individual is still susceptible.

EBCM Evolution equations for SIR dynamics on heterogeneous networks with random

weights

As before, let us assume that there is a weight distribution Q(w) assigned to the edges. We assume that
the transmission rate for an edge with a given w is simply τw for some parameter τ . We further assume
that; (a) infected individuals recover at rate γ, which is independent of how they were infected and that
(b) at the initial time t = t0, the probability an individual of degree k is susceptible is S(k, t0).
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θ

φS = φS(t0)
ψ′(θ)
ψ′(1)

φI,w φR,w

1 − θw

γφI,w

τwφI,w

Figure 3. Flow diagram for EBCM model of random weight case. The large, shaded
box contains all compartments, where transmission has not yet occurred.

Let us now consider a test individual u, and let v be a random neighbour of u. Let θ be the probability
that v has not transmitted to u given that at time t0 v had not yet transmitted to u. Then trivially,
θ =

∑

wQ(w)θw where θw is the probability a neighbour along a weight w edge has not transmitted to u
given that it had not yet transmitted at time t0. Note that θ(t0) = 1. These probabilities are not affected
by the degree of u, so the probability u is susceptible is

S(t) =
∑

k

P (k)S(k, t0)θ
k = ψ(θ).

Once we know S(t), we can find the probability that u is infected or recovered simply by noting that
Ṙ = γI and I = 1− S −R.

To complete the system, all the θw need to specified. Assuming that the edge connecting v to u
has weight w, we define φS,w to be the probability that v is still susceptible. We define φI,w to be the
probability v is infected but has not transmitted to u. We define φR,w to be the probability v has recovered
and did not transmit to u. Then θw = φS,w + φI,w + φR,w and 1 − θw is the probability transmission
has occurred (given that it had not occurred prior to t0). Note however, that φS,w is independent of w
because the weight of the edge from u to v does not influence the probability v has become infected. So
we can treat φS,w as simply φS .

To find φS(t), we assume its initial value φS(t0) is known. We need to find the probability that v has
degree k given that it was chosen as a neighbour of u and was susceptible at time t0. To do this, we
count all edges belonging to susceptible nodes of degree k at time t0 and divide by the number of all
edges belonging to susceptible nodes at time t0. This yields kP (k)S(k, t0)N/

∑

k′ k′P (k′)S(k′, t0)N =
kP (k)S(k, t0)/ψ

′(1). The probability that v is still susceptible if it started susceptible and has degree k
is θk−1. So φS(t) = φS(t0)ψ

′(θ)/ψ′(1). Note that this is independent of w.
We can find φR,w(t) in terms of θw. We assume that its initial value φR,w(t0) is known. By definition,

θw(t0) = 1. An infected neighbor along a weight-w edge transmits at rate τw and recovers at rate γ.
Thus it moves from being counted towards φI,w to being counted towards φR,w at rate γ and to being
counted towards 1− θw at rate τw. Thus the rate of increase of φR,w is γ/τw times the rate of increase
of 1− θw. Using this argument, we conclude that

φR,w =
γ

τw
(1− θw) + φR,w(t0).

The arguments above are summarised in Fig. 3.
Then, since φS + φI,w + φR,w = θw and we know φS and φR,w, we can compute φI,w. Summarising

the findings above leads to

θ̇w = −τwφI,w
65
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= −τw
(

θw − φS(0)
ψ′(θ)

ψ′(1)
− γ(1− θw)

τw
− φR,w(0)

)

,

So we end up with the system

θ̇w = −τwθw + τwφS(0)
ψ′(θ)

ψ′(1)
+ γ(1− θw) + τwφR,w(t0), (2.4)

θ =
∑

w

Q(w)θw, (2.5)

where as for the pairwise model w ∈ {w1, w2, . . . , wM}. The initial conditions on φS,w(t0) and φR,w(t0)
depend on how the epidemic is initialized. We have θw(t0) = 1. Noting that in ψ′(θ) it is θ, not θw, and
combining the above with

S = ψ(θ) , I = 1− S −R , Ṙ = γI,

completes the system.
In general starting by randomly selecting a proportion ρ of individuals yields S(k, t0) = φS(t0) = 1−ρ

and φR,w(t0) = R(t0) = 0. If instead the diseases starts with a very small number and set t0 when
enough infections are present to be deterministic, then the initial conditions are different, and depend
on the state of the population at this initial time [4]. In particular S(k, t0) may depend on k and not
match exactly with φS(t0).

EBCM evolution equations for SIR dynamics on networks with degree-dependent weights

The focus now shifts to the case when across each edge there is a weight wkk′ = w(k, k′) which depends
on the degrees k and k′ of the neighbouring nodes. Transmission happens at rate τwkk′ . We define θk to
be the probability a neighbour of a degree k test node has not transmitted to it (given that it had not at
time t0). Due to this being k dependent, the expression for ψ(θ) will be more complicated compared to
the random weights case. Instead, the probability the test node is susceptible is

S(t) =
∑

k

P (k)S(k, t0)θ
k
k = ψ(θkmin

, θkmin+1, . . . , θkmax
).

Assume the neighbor v has degree k′. We define θk,k′ to be the probability that v has not transmitted
given that it has degree k′, u has degree k, and v had not transmitted to u by time t0. Then v is in the same
states as before with probabilities φS,k,k′(t), φI,k,k′(t), and φR,k,k′(t). We find φS,k,k′(t) = φS,k,k′(t0)θ

k′−1
k′ .

We find that φR,k,k′ = γ(1− θk,k′)/τwkk′ + φR,k,k′(t0). The picture underlying this process of thought is
given in Fig. 4.

The final equations are

θ̇k,k′ = −τwkk′θk,k′ + τwkk′φS,k,k′(t0)θ
k′−1
k′ + γ(1− θk,k′) + τwkk′φR,k,k′(t0), (2.6)

θk =
∑

k′

Pn(k, k
′)θk,k′ , (2.7)

Ṙ = γI , I = 1− S −R , S =
∑

k

P (k)S(k, t0)θ
k
k , (2.8)

where Pn(k, k
′) is the probability the neighbour of u has degree k′ given that it hadn’t transmitted to u

by time t0.
As before if we start by randomly selecting a proportion ρ of individuals at time t0, we have S(k, t0) =

φS,k,k′(t0) = 1 − ρ, and φR,k,k′(t0) = R(t0) = 0. In this case we get Pn(k, k
′) = k′P (k′)/

∑

k′′ k′′P (k′′).
Hence, if the initial infected proportion is a randomly chosen proportion ρ, then the initial conditions
are:

R(t0) = 0,
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θk,k′

φS,k,k′ =

φS,k,k′(t0)θ
k′−1
k′

φI,k,k′ φR,k,k′

1 − θk,k′

γφI,k,k′

τwkk′φI,k,k′

Figure 4. Flow diagram for the EBCM model with weights dependent on degree. The
large, shaded box contains all compartments, where transmission has not yet occurred.

φR,k,k′(t0) = 0,

S(k, t0) = 1− ρ,

φS,k,k′(t0) = 1− ρ,

θk,k′(t0) = 1,

and

Pn(k, k
′) =

k′P (k′)

〈k〉 .

If the disease has been spreading for some time, the considerations above will not hold. In many cases,
Pn(k, k

′) can be calculated rather than taken as an ‘initial condition’. If the infection has been spreading
for some time before t0, then the probability a neighbour has transmitted to u before t0 depends on the
degree of the neighbour. Since we define θ to be conditional on transmission to u never happening prior
to t0, this needs to be corrected for, and thus Pn(k, k

′) will be different.

3. Results

In this section we present analytical and numerical results from network simulations, pairwise and edge-
based representations of SIR dynamics. To compute the early growth rate and final epidemic size, we
first write out the edge-based system for the special case of a heterogeneous network with low (degree
l with probability P (l)) and high (degree h with probability P (h)) degree. This automatically induces
three weights w1 = wll, w2 = wlh = whl and w3 = whh. Moreover, for the degree-dependent weighted

network, the distribution of weights is given by: q1 = qll = l2P 2(l)
〈k〉2 , q2 = qlh = qhl = 2lhP (l)P (h)

〈k〉2 and

q3 = qhh = h2P 2(h)
〈k〉2 , where 〈k〉 = lP (l) + hP (h) is the average nodal degree, and q2 stands for the

proportion of uniquely counted links between l and h nodes.

3.1. Epidemic threshold and final epidemic size

While pairwise models can be used to compute R0 [18] and early growth rate [20], this is only practical
for special cases where the number of equations remains relatively low. Such calculations are possible for
homogenous unweighted networks [18] and even for homogenous networks with two different edge weight
types [12, 20]. In general and as we show, the edge-based compartmental models are more amenable to
such analysis due to their smaller dimensionality, see Table 1.
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Table 1. System complexity in terms of the number of differential equations needed to
fully describe the epidemic dynamics. As before, M is the number of different weight
types and K is the number of different nodal degrees, e.g. K = kmax−kmin+1 provided
that nodes of any degree between minimum and maximum degree exist.

Type of weighted network Pairwise model Edge-based model

full system: 2K + K(K+1)
2

M +K2M
randomly distributed weights

reduced-system : K + 1 + K(K+1)
2

M +KM
M + 1

degree-dependent weights 2K + K(K+1)
2

+K2 K2 + 1

3.1.1. Random edge weight distribution for heterogeneous networks

The three weights system leads to working with θw1
, θw2

and θw3
, where Q(w1) = q1, Q(w2) = q2 and

Q(w3) = 1− q1 − q2 = q3. Based on Eq. (2.4), the evolution equations for these are,

θ̇w1
= −τw1θw1

+ (1− ρ)τw1

ψ′
θw1

(θ)

ψ′
θw1

(1)
+ γ(1− θw1

), (3.1)

θ̇w2
= −τw2θw2

+ (1− ρ)τw2

ψ′
θw2

(θ)

ψ′
θw2

(1)
+ γ(1− θw2

), (3.2)

θ̇w3
= −τw3θw3

+ (1− ρ)τw3

ψ′
θw3

(θ)

ψ′
θw3

(1)
+ γ(1− θw3

). (3.3)

For a heterogenous network with N nodes where a node has degree l (e.g. low degree) with probability
P (l) or degree h (e.g. high degree) with probability P (h) = 1 − P (l), the proportion of susceptibles at
time t (based on Eq. (2.5)) is given by

S(t) = (1− ρ)(P (l)θl + P (h)θh) = ψ(θ),

where θ = q1θw1
+ q2θw2

+ q3θw3
.

Early growth rate

To compute the early growth rate, the assumption of an infinitesimally small initial infection must hold.
Hence, to satisfy this requirement, we modify Eqs. (3.1-3.3) by taking (1− ρ) → 1. This gives

θ̇w1
= −τw1θw1

+ τw1

[

Pe(l)θ
l−1 + Pe(h)θ

h−1
]

+ γ(1− θw1
),

θ̇w2
= −τw2θw2

+ τw2

[

Pe(l)θ
l−1 + Pe(h)θ

h−1
]

+ γ(1− θw2
),

θ̇w3
= −τw3θw3

+ τw3

[

Pe(l)θ
l−1 + Pe(h)θ

h−1
]

+ γ(1− θw3
),

where Pe(l) = lP (l)/〈k〉, Pe(h) = hP (h)/〈k〉 and 〈k〉 = lP (l) + hP (h). Here, Pe(k) represents the
probability of finding a node of degree k when picking an edge at random and considering either of the
nodes at its ends. We set θw1

= 1+ ε1, θw2
= 1+ ε2 and θw3

= 1+ ε3. We linearise about the equilibrium
and have the matrix equation





ε̇1
ε̇2
ε̇3



 =





−τw1 + τw1q1ζ − γ τw1q2ζ τw1q3ζ
τw2q1ζ −τw2 + τw2q2ζ − γ τw2q3ζ
τw3q1ζ τw3q2ζ −τw3 + τw3q3ζ − γ









ε1
ε2
ε3



 ,
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where
ζ = (l − 1)Pe(l) + (h− 1)Pe(h).

Thus, the eigenvalues are the solutions of a 3rd order equation given by λ3 + a1λ
2 + a2λ+ a3 = 0, where

a1 = u1 + u2 + u3 − v1 − v2 − v3,

a2 = u1u2 + u1u3 + u2u3 − u1(v2 + v3)− u2(v1 + v3)− u3(v1 + v2),

a3 = u1u2u3 − u1u2v3 − u1u3v2 − u2u3v1,

where, ui-s and vi-s are given by

ui = τwi + γ , vi = τwiqiζ for i = 1, 2, 3.

By considering the case of λ = 0, the critical point for change of stability, the third order equation yields
a3 = 0. This means that at the point at which the eigenvalue changes sign a3 = 0, and this gives a
relation between the system parameters which determines the threshold condition.

The basic reproduction number - R0

The basic reproduction number R0 can be computed in two different ways. First, by using an individual-
level view and average across nodes of different degrees that have become infected from the very initial
index case. By doing this, we average the expected number of infections in the second generation. This
approach yields,

Rrw
0 = (l − 1)Pe(l)(q1r1 + q2r2 + q3r3) + (h− 1)Pe(h)(q1r1 + q2r2 + q3r3),

where
ri =

τwi

τwi + γ
for i = 1, 2, 3.

A more rigorous and widely applicable approach is to compute R0 as the leading eigenvalue of the next
generation matrix (NGM). In this case, we can consider the epidemic in terms of an embedded multi-type
branching process [3, 10], where the NGM = (mij)i,j=1,2,...,Nt

(Nt - number of different types) consists
of entries giving the expected number of offsprings of type i produced by a single individual of type i.
Once, the different types have been defined, then NGM can be constructed, and R0 will be equivalent to
the leading eigenvalue of the NGM. In this case, we have individuals of two different types (individuals
of low and high degree) and the NGM is given by,

NGM =





(l − 1)Pe(l)(q1r1 + q2r2 + q3r3) (h− 1)Pe(l)(q1r1 + q2r2 + q3r3)

(l − 1)Pe(h)(q1r1 + q2r2 + q3r3) (h− 1)Pe(h)(q1r1 + q2r2 + q3r3)



 ,

where, for example (h− 1)Pe(l)(q1r1 + q2r2 + q3r3) stands for the expected number of individuals of low
degree infected by a typical infected individual with high degree. Hence,

Rrw
0 =

(

(l − 1)Pe(l) + (h− 1)Pe(h)
)

(q1r1 + q2r2 + q3r3), (3.4)

and this is identical to the previously computed value. A further consistency check of our calculations
can be performed. Namely, the relation Rrw

0 = 1 ⇔ λ = 0 should hold. Indeed, using condition a3 = 0
leads to Rrw

0 = 1.

Final epidemic size

To compute the final epidemic size, we need to return to the original equations that account for the initial
conditions as given by Eqs. (3.1-3.3). By setting the derivatives to zero, it is possible to find asymptotic
values of θw1

, θw2
and θw3

, i.e. θw1
(∞), θw2

(∞) and θw3
(∞). Once these values are known the final
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epidemic size is given by R(∞) = 1 − ψ(θw1
(∞), θw2

(∞), θw3
(∞)), where θw1

(∞), θw2
(∞) and θw3

(∞)
are the solutions of the following system,

θw1
(∞) =

γ + (1− ρ)τw1

[

Pe(l) (θ(∞))
l−1

+ Pe(h) (θ(∞))
h−1

]

τw1 + γ
, (3.5)

θw2
(∞) =

γ + (1− ρ)τw2

[

Pe(l) (θ(∞))
l−1

+ Pe(h) (θ(∞))
h−1

]

τw2 + γ
, (3.6)

θw3
(∞) =

γ + (1− ρ)τw3

[

Pe(l) (θ(∞))
l−1

+ Pe(h) (θ(∞))
h−1

]

τw3 + γ
, (3.7)

where θ(∞) = q1θw1
(∞) + q2θw2

(∞) + q3θw3
(∞). By treating the above as a fixed point problem, it

can be shown that a numerical recursion will converge quickly to the true solution and we compare this
simulation results in the numerical analysis part.

3.1.2. Degree-dependent weights

For the same simplified scenario with a network with bimodal degree distribution and weights that
correlate with node-degree, Eqs. (2.6-2.8) yield

θ̇ll = −τwllθll + (1− ρ)τwllθ
l−1
l + γ(1− θll), (3.8)

θ̇lh = −τwlhθlh + (1− ρ)τwlhθ
h−1
h + γ(1− θlh), (3.9)

θ̇hl = −τwhlθhl + (1− ρ)τwhlθ
l−1
l + γ(1− θhl), (3.10)

θ̇hh = −τwhhθhh + (1− ρ)τwhhθ
h−1
h + γ(1− θhh). (3.11)

According to the model derivation θl and θh can be found as

θl = Pn(l, l)θll + Pn(l, h)θlh,

θh = Pn(h, l)θhl + Pn(h, h)θhh,

with Pn(k, k
′) = k′P (k′)/〈k〉. This complemented by

S(t) = (1− ρ)(P (l)θll + P (h)θhh),

gives the full system.

Early growth rate

As before, we note that for the correct calculation of the early growth rate, Eqs. (3.8-3.11) must be used
with (1 − ρ) → 1. By setting θll = 1 + ε1, θlh = 1 + ε2, θhl = 1 + ε3 and θhh = 1 + ε4, and linearising
around the disease-free steady state leads to the following Jacobian,

J =



















−τw1 + v1 − γ τw1(l − 1)Pn(l, h) 0 0

0 −τw2 − γ τw2(h− 1)Pn(h, l) τw2(h− 1)Pn(h, h)

τw2(l − 1)Pn(l, l) τw2(l − 1)Pn(l, h) −τw2 − γ 0

0 0 τw3(h− 1)Pn(h, l) −τw3 + v2 − γ



















,

where

v1 = τw1(l − 1)Pn(l, l) , v2 = τw3(h− 1)Pn(h, h).
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The eigenvalues will be the solution of det(J − λI) = 0, where I is the identity matrix. Thus, the
eigenvalues are the solutions of a 4th order equation given by λ4 + a1λ

3 + a2λ
2 + a3λ+ a4 = 0, where

a1 = u1(1−R1) + 2u2 + u3(1−R2),

a2 = 2u2

(

u1(1−R1) + u3(1−R2)
)

+ u22 + u1u3(1−R1)(1−R2)− v3,

a3 = 2u1u2u3(1−R1)(1−R2) + u22 (u1(1−R1) + u3(1−R2))− v3 (u1 + u3(1−R2))− v2v3,

a4 = u1u
2
2u3(1−R1)(1−R2)− u1u3v3(1−R2)− u1v2v3,

where

R1 = (l − 1)Pn(l, l)r1, R2 = (h− 1)Pn(h, h)r3, v3 = (τw2)
2(l − 1)Pn(h, l)(h− 1)Pn(l, h),

and where ui-s are given by
ui = τwi + γ for i = 1, 2, 3.

By considering the case of λ = 0, the critical point for change of stability, the fourth order equation
yields a4 = 0. This means that at the point at which the eigenvalue changes sign a4 = 0, and this gives
a threshold condition. As expected, it can be shown that a4 = 0 is equivalent to Rdd

0 = 1 (below). This
confirms that the calculations are consistent.

The basic reproduction number - R0

In this case, we calculate R0 only by using the next generation matrix approach, and R0 is the leading
eigenvalue of the next generation matrix. Before writing down the NGM we need to specify the choice
of individual types, and then the entries of the NGM = (mij)i,j=1,2,...,Nt

. For this case, the types will
be depend solely on the degree of the nodes, and thus, the NGM is given by,

NGM =





(l − 1)Pe(l)r1 (h− 1)Pe(l)r2

(l − 1)Pe(h)r2 (h− 1)Pe(h)r3



 .

For example, the expected number of low degree individuals produced by a single high degree individual
h, is given by (h− 1)Pe(l)r2. The leading eigenvalue of the above matrix, and thus R0 is given by

Rdd
0 =

R1 +R2 +
√

(R1 −R2)2 + 4F

2
,

where
R1 = (l − 1)Pe(l)r1, R2 = (h− 1)Pe(h)r3,

and
F = (l − 1)Pe(l)(h− 1)Pe(h)r

2
2.

Final epidemic size

Using the same approach as before and taking into account the initial condition in terms of ρ, the final
epidemic size is given by R(∞) = 1−ψ(θl(∞), θh(∞)) where θll(∞), θlh(∞), θhl(∞) and θhh(∞) are the
solutions of the following system,

θll(∞) =
γ + (1− ρ)τwllθ

l−1
l (∞)

τwll + γ
, (3.12)

θlh(∞) =
γ + (1− ρ)τwlhθ

h−1
h (∞)

τwlh + γ
, (3.13)

θhl(∞) =
γ + (1− ρ)τwhlθ

l−1
l (∞)

τwhl + γ
, (3.14)

θhh(∞) =
γ + (1− ρ)τwhhθ

h−1
h (∞)

τwhh + γ
. (3.15)
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3.1.3. Comparison of R0 and final epidemic size

Based on the analytic and semi-analytic calculations above, we provide a few examples where R0 and the
final epidemic size (Fig. 5) are compared for networks with heterogenous degree and weight distributions.
Namely, as indicated in section 2.1, we start from networks with degree-dependent weights and compare
R0 and final epidemic size corresponding to this against those from networks with the same topology and
same weight distribution but with weights assigned at random, and weighted networks where all weights
are equal to the average weight from the original network, 〈w〉dd = q1w1 + q2w2 + q3w3. Fig. 5 (top
panel) shows clearly that R0 is maximised when all weights are equal, and that networks with randomly
distributed weights allow for a larger R0 value compared to the case of networks where degrees and
weights are inversely correlated. This observation can be made rigorous. We start by noting that R0 for
the case of equal weights, based on Eq. (3.4), is given by,

Rav
0 = ((l − 1)Pe(l) + (h− 1)Pe(h))

τ〈w〉dd
τ〈w〉dd + γ

. (3.16)

Similarly, based on Eq. (3.4), the basic reproduction ratio is given by

Rrw
0 = ((l − 1)Pe(l) + (h− 1)Pe(h))

(

q1
τw1

τw1 + γ
+ q2

τw2

τw2 + γ
+ q3

τw3

τw3 + γ

)

.

First, we want to show that Rrw
0 ≤ Rav

0 . Noting that ϕ(w) = τw
τw+γ is a concave function on w ∈ [0,∞),

as ϕ
′′

< 0, then using Jensen’s inequality under the condition q1 + q2 + q3 = 1, yields

q1ϕ(w1) + q2ϕ(w2) + q3ϕ(w3) ≤ ϕ(q1w1 + q2w2 + q3w3),

q1
τw1

τw1 + γ
+ q2

τw2

τw2 + γ
+ q3

τw3

τw3 + γ
≤ τ(q1w1 + q2w2 + q3w3)

τ(q1w1 + q2w2 + q3w3) + γ
.

Hence, we can conclude that Rrw
0 ≤ Rav

0 , with equality when all weights are equal. Moreover, it is easy
to see that when w1 = w2 = w3 = w, we have

Rrw
0 = Rav

0 = ((l − 1)Pe(l) + (h− 1)Pe(h))
τw

τw + γ
.

In Appendix A, we also provide a rigorous proof for the observation that Rdd
0 ≤ Rrw

0 . Hence the following
inequality holds

Rdd
0 ≤ Rrw

0 ≤ Rav
0 . (3.17)

We note that while the proof of Rrw
0 ≤ Rav

0 does not rely on the negative correlation between degree
and weight, the proof of the second inequality, Rdd

0 ≤ Rrw
0 , makes use of this information. The final epi-

demic size can be computed semi-analytically using the approach developed in the context of edge-based
modelling. Namely, we use Eqs. (3.5 - 3.7) for the randomly-distributed and fixed weights case, and Eqs.
(3.12 - 3.15) for the degree-dependent weighted network case. In both situations, we treat the equations
as maps which we then numerically iterate to find their fixed points. The final epidemic size plots (see the
bottom panel of Fig. 5) show that for the same R0 value, the final epidemic size is largest on the original
network with degree-dependent weights. This is a direct consequence of the relation between the R0

values on the different networks, see Eq. (3.17). Namely, with all parameters being equal, R0 is smallest
on the original network. Hence, considering a fixed value of R0(= Rconst

0 ) across the different networks
requires a larger value of τ on the original network compared to the randomly distributed and fixed
weights cases. This higher value is required to compensate for the negative correlation between degree
and weights, which means that τ has to be disproportionately large to compensate for the smallest possi-
ble weights between highly connected nodes. This increase in τ has an automatic knock on effect of also
improving transmission between poorly connected nodes with an overall increase in final epidemic size.
It is worth noting the complete reversion of order between the top and bottom panel of Fig. 5. The same
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Figure 5. Basic reproductive ratio R0 and final epidemic size for heterogeneous weighted
networks. The parameters values are ρ = 0.0001, P (l) = 0.8, P (h) = 1−P (l), l = 3, h =
13 and γ = 1. Degree-dependent weighted networks (black line and (+)), networks with
random weight distribution (red line and (⋆)), and networks with all weights equal (blue
line and (◦)). All networks have the same average weight 〈w〉dd = q1wll+ q2wlh+ q3whh,
where the weight function is wij = 1/(i× j)1/2.
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figure shows that the random and uniform average weight cases lead to an identical functional relation
between final epidemic size and R0. In Appendix B, we provide a simple, formal proof for this observation.

Final epidemic size comparisons

To explore the potential of the various models to capture the final epidemic size, we compare outputs
from the semi-analytic approach with long-time results from simulations and the long-time solution of
the pairwise model. To stress test the robustness of the model, we use two additional weight functions,
namely wij = 1/(i+ j)1/2 and wij = 1/ ln(i+ j). Numerical results presented in Fig. 6 exhibit excellent
agreement across all models and for the three different weight functions. As opposed to Fig. 5, here we use
a higher number of initially infected nodes (I0 = 50 out of N = 1000) to avoid early stochastic extinction
in simulations. The plots in Fig. 6 show a similar trend with that observed in Fig. 5 (see middle panel).

A notable feature is the changeover in the size of the final epidemic size from being larger on networks
with randomly distributed weights (for smaller values of τ) to the epidemic affecting a higher fraction
of the population on networks with degree-dependent weights (for larger τ values). Intuitively this can
be explained as follows. For degree-dependent weights, the transmissibility amongst, from or to highly
connected nodes is penalised by small edge weights, with the smallest weights on high-to-high nodes
connections. However, nodes that are less well connected can receive and transmit the infection more
readily. We now discuss separately the cases of small and large τ :

1. For small values of τ , the random redistribution of weights will lead to links between, from or to
highly connected nodes to be more likely to transmit, and this will lead to a larger final epidemic size.
Transmission between poorly connected nodes will suffer but, infection involving highly connected
nodes dominates for small values of τ .

2. As the value of τ increases the effect of small weights is less significant (i.e. transmission rate is the
product of weight and the value of τ). Thus, disease spreads more readily across the whole network.
However, redistributing links at random will improve an already appropriate transmission between
highly-connected nodes (i.e. edge weights will always be greater or equal than for the degree-dependent
weight case) but, at the expense of seeing smaller weights between less well connected nodes that are
more abundant in the network.

The arguments above are confirmed by numerical simulations (not shown here), whereby the number
of poorly connected, susceptible nodes at large times is greater in the case of random weights. All
the effects above become less marked for the two additional weight functions. This is due to the two
additional weight functions giving rise to higher edge weights, and thus a more efficient transmission with
the epidemic affecting a large proportion of the network.

3.2. Numerical analysis of pairwise- and edge-based models

The numerical analysis part focuses around comparisons between the ‘original’ degree-dependent weighted
networks and the two null models. Namely, we consider the network with the same weight distribution
but with the weights distributed at random, and the case of all weights equal to the average weight. For all
cases we use a network where nodes can be of either a low or high degree, i.e. degrees of two types only. In
Fig. 7, we present time evolution plots for the prevalence. There are several important observations that
can be made. Firstly, the agreement between the pairwise, edge-based and simulation model is excellent
for different parameter values and weight function combinations. Secondly, the distribution of weights
has a significant impact on the time evolution of the epidemic with the homogenous/equal link-weight
case giving rise to the fastest growing epidemic (see top panel of Fig. 7 for the strongest effect) . The
difference between the randomly distributed and equal weights cases is not significant, and both lead to
fast epidemics compared to the original network model, where the epidemic is slower but lasts longer. All
the features above become less pronounced if either the transmission rate, τ , increases (see the bottom
panel of Fig. 7) or if the weights are of different magnitude. Both wij = 1/(i+j)1/2 and wij = 1/ ln(i+j)
produce weights that have higher values when compared to the original wij = 1/(i × j)1/2 case. This
explains the smaller differences in the middle and bottom panel of Fig. 7.
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Figure 6. Final epidemic size for heterogeneous weighted networks with different weight
functions: wij = 1/ ln(i + j) (blue), wij = 1/(i + j)1/2 (green) and wij = 1/(i × j)1/2

(black) (or top to bottom in each figure). The dash lines correspond to R(∞) = 1 −
ψ(θ(∞)) with ρ = 0.05 (equivalent to I0 = 50 out of N = 1000 in simulations) , ψ(θ(∞))
corresponds to Eqs. (3.5-3.7) and Eqs. (3.12-3.15) from top to middle panel, respectively.
The markers correspond to τ = 0.5, 1.0, ..., 4 for simulation (◦), pairwise (⋄) and edge-
based (•). All numerical tests use N = 1000, P (l) = 0.8, P (h) = 1 − P (l), I0 = 50,
l = 3, h = 13 and γ = 1, and simulations are averaged over 50 different network
realisations and 50 simulations on each of these. The top and middle panel represent
degree-dependent networks and networks with random weight distribution but with the
same average weight as in the degree-dependent case 〈w〉dd = q1wll + q2wlh + q3whh,
respectively. The bottom panel is simply the superposition of the top and middle panel,
with continuous and dashed lines for degree-dependent and random weights, respectively.
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The marked difference in the time evolution of the epidemics can be explained intuitively by noting
that on networks with degree-dependent weights, and especially when weights and degrees are inversely
correlated, the important role played by highly connected nodes is negated by small link weights which
makes transmission less likely. The slow initial growth in prevalence shows that the epidemic is ‘struggling’
to infect the highly connected nodes of the network, where link weights are the lowest. The transmission
process is mainly capturing nodes that are less well connected with this process being favoured by larger
link-weights. This effect fades away as the value of τ increases.

3.3. The principle of formally proving model equivalence

Our numerical results show remarkable agreement between the pairwise and the EBCM models, see Figs.
5-7. A careful analysis (is in a separate publication [25]) shows that while the two models appear to
make different assumptions, they are in fact equivalent. We will give some insight into why this occurs.
The central observation is that with both models, we will show that when considering two neighbours u
and v, in our calculation of whether v has infected u it is rigorously possible to ignore whether any other
neighbours have previously infected u.

The EBCM approach proceeds by starting with the initial problem of calculating the proportion of
the population that is in each state. By assuming that the population-scale dynamics are deterministic,
we can conclude that this must equal the probability that a random individual is in each state. So we
transition to the equivalent problem of choosing a random individual u and calculating its probability of
being in a given state. We seek to calculate the probability that a random neighbor v of u has transmitted
infection to u. This is complicated by the fact that u might first transmit to v. However, we note that
preventing u from transmitting to v after infection of u does not alter the probability that u is susceptible,
infected, or recovered. Thus we find another equivalent problem: to calculate the probability that u is in
each state given that it is prevented from transmitting to its partners. This sequence of arguments means
that as we calculate whether v has transmitted to u, we can ignore whether or not another neighbor has
already transmitted to u.

In the pairwise model, we look at the equations for the rates of change of [SkSk′ ], [SkIk′ ], and [SkRk′ ]
in Eq. (2.3). In each equation, there is a term on the right hand side which represents infection of the
Sk individual by a partner other than the k′ individual. After substituting our closure relation, each of
these terms looks like −[SkSk′ ]f , −[SkIk′ ]f , and −[SkRk′ ]f where

f = −τ k − 1

k

wkq

∑

q[IqSk]

[Sk]
=
k − 1

k

˙[Sk]

[Sk]
.

So each of equations is of the form ẋ = −xf + y where the y terms represent other effects. By moving
the xf term to the left hand side, we can use an integrating factor which yields a differential equation
for the new variable xeF where Ḟ = f . The y terms remain in the equation, multiplied by eF , but the
term that represented infection of the Sk individual by a partner other than the k′ individual has been
eliminated. If we follow this change of variables and perform a few more simplifications, it is possible to
arrive at the EBCM equations.

4. Discussion

In this paper we have shown that the pairwise and edge-based compartmental models can be successfully
extended to specific cases of weighted networks and studied the non-trivial case of non-independence be-
tween weights and nodal degrees. In particular, we assumed that the link weight is inversely proportional
to the degrees of the nodes that it connects. This model has been compared to two null models where
for both the network topology remains the same and only the distribution of weights changes. First, we
considered the case when the original weights are ‘lifted of’ the edges and redistributed at random, thus
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Figure 7. The infection prevalence (I/N) from heterogeneous weighted networks (sim-
ulation: dashed line, pairwise: (◦), and edge-based: (⋆)). All numerical tests use
N = 1000, P (l) = 0.8, P (h) = 1 − P (l), I0 = 50, l = 3, h = 13, γ = 1, and simu-
lations are averaged over 50 different network realisations and 50 simulations on each of
these. Degree-dependent weighted networks (black), networks with randomly distributed
weights (red) and networks with equal weights (blue). All networks have the same av-
erage weight 〈w〉dd = q1wll + q2wlh + q3whh. From top to bottom: wij = 1/(i × j)1/2,

wij = 1/(i + j)1/2 and wij = 1/ ln(i + j), and left and right with τ = 2 and τ = 4,
respectively.
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making weights and nodal degrees independent , and secondly, the networks with all weights equal has
been considered.

The results show that the negative correlation between weights and nodal degrees can negate the
important role played by highly connected nodes in standard epidemic models on non-weighted graphs,
and that weight heterogeneity but with the same overall average or total weight, reduce the value of R0.
The relation between final epidemic size and R0, as expected, is determined by the model structure and,
in this case, the same R0 value leads to the biggest final epidemic size on degree-dependent weighted
networks.

An important by-product of our analysis is the issue around model equivalence. This aspect emerged
from the numerical evaluation and comparison of pairwise, edge-based and simulation models. The
excellent agreement between all three, but especially, the agreement between pairwise and the edge-based
model lead us to consider whether the two models are indeed equivalent. While, here we only present
the basic idea of a formal proof, in [25] we will present detailed arguments to show the relationship
between these models and other models for SIR epidemics on networks. We believe that in a model ‘rich’
environment, this part of our study and future work , as well as of others in the community [23], are
important in trying to reconcile as much as possible different modelling approaches and to identify model
hierarchies, as well as to pinpoint model efficiencies in terms of generating analytical or semi-analytical
results.
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Appendix A: Proof of Rdd

0 ≤ R
rw

0

We wish to provide a formal proof that Rdd
0 ≤ Rrw

0 . This amounts to showing that

Rdd
0 =

R1 +R2 +
√

(R1 −R2)2 + 4F

2
≤ ((l − 1)Pe(l) + (h− 1)Pe(h)) (q1r1 + q2r2 + q3r3) = Rrw

0 .

We introduce the following notation: x = Pe(h), y = Pe(l). Then y = 1− x (with both x, y ∈ [0, 1]) and

q1 = y2, q2 = 2xy, q3 = x2, a = (h− 1)xr3, b = (l − 1)yr1, d = 1− r22
r1r3

.

We will make use of the following straightforward inequalities:

1. r3 ≤ r2 ≤ r1,
2. d ≤ 0 ↔ r1r3 ≤ r22,
3. (h− 1)r3 ≥ (l − 1)r1.

We also note that r3 ≤ r2 implies that (h−1)r2 ≥ (h−1)r3 ≥ (l−1)r1. These can be simply checked and
formally proven by plugging in the corresponding expressions and performing some standard algebraic
manipulation to reach some equivalent inequalities that trivially hold.

The l.h.s. of the inequality is the positive root of the quadratic polynomial

λ2 − λ(a+ b) + abd = 0,
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where abd ≤ 0, since d is negative while a and b are positive. Hence, the roots of this polynomial are
denoted by λ2 < 0 < λ1. Then the following has to be proved,

λ1 ≤ [(h− 1)x+ (l − 1)y](x2r3 + 2xyr2 + y2r1).

First we give an upper estimate of λ1. Using the formula for λ1 and the inequality
√
1 + x ≤ 1 + x/2,

one obtains

λ1 =
a+ b+

√

(a+ b)2 − 4abd

2
=
a+ b+ (a+ b)

√

1− 4abd/(a+ b)2

2
≤ a+ b− abd

a+ b
.

It is also easy to show that a + b ≥ (l − 1)r1. This can be done by considering a + b = (h − 1)r3x +
(l − 1)(1 − x)r1 = [(h − 1)r3 − (l − 1)r1]x + (l − 1)r1 as a function of x. Due to (h − 1)r3 ≥ (l − 1)r1,
the function above is monotone increasing, and since x ∈ [0, 1], the function will attain its minimum at
x = 0, and the minimum is (l − 1)r1. Using this in the inequality for λ1 yields

λ1 ≤ a+ b− abd

a+ b
≤ a+ b− abd

(l − 1)r1
.

Thus it is enough to prove that

a+ b− abd

(l − 1)r1
≤ [(h− 1)x+ (l − 1)y](x2r3 + 2xyr2 + y2r1).

Let the difference of the l.h.s and the r.h.s be

f(x) = [(h− 1)x+ (l − 1)y](x2r3 + 2xyr2 + y2r1)− (h− 1)xr3 − (l − 1)yr1 + d(h− 1)r3xy.

Then it is enough to prove that for all x ∈ [0, 1] we have f(x) ≥ 0. Since y = 1 − x, it is easy to see
that f(x) is a cubic polynomial and f(0) = 0, f(1) = 0. Hence, it is enough to prove that f ′(0) > 0 and
f ′(1) < 0. Simple algebra shows that

r1f
′(0) = (r1 − r2){r1(h− l) + [(h− 1)r2 − (l − 1)r1]} ≥ 0,

based on that r1 ≥ r2, l ≤ h and (h− 1)r2 ≥ (l − 1)r1. The inequality f ′(1) develops as follows,

r1f
′(1) = (l− 1)r1(r1 − r3) + (h− 1)(r22 − 2r2r1 + r1r3) ≤ (h− 1)r3(r1 − r3) + (h− 1)(r22 − 2r2r1 + r1r3),

and this can be rearranged to give

r1f
′(1) ≤ (h− 1)(r2 − r3)(r2 + r3 − 2r1) ≤ 0,

since r3 ≤ r2 ≤ r1. Thus the original inequality holds.

Appendix B : Proof of the invariance of the final size and R0 relation

First, let us consider the final epidemic size corresponding to networks with random weight distribution

Rrw(∞) = 1− (1− ρ)(P (l)θlrw(∞) + P (h)θhrw(∞)), (B.1)

where θrw(∞) = q1θw1
(∞) + q2θw2

(∞) + q3θw3
(∞). Substituting Eqs. (3.5-3.7) into θrw(∞) and using

Eq. (3.4), we have

θrw(∞) = q1
γ + (1− ρ)τrw w1

[

Pe(l)θ
l−1
rw (∞) + Pe(h)θ

h−1
rw (∞)

]

τrww1 + γ
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+ q2
γ + (1− ρ)τrww2

[

Pe(l)θ
l−1
rw (∞) + Pe(h)θ

h−1
rw (∞)

]

τrww2 + γ

+ q3
γ + (1− ρ)τrww3

[

Pe(l)θ
l−1
rw (∞) + Pe(h)θ

h−1
rw (∞)

]

τrww3 + γ

=
ζ −Rrw

0

ζ
+
Rrw

0

ζ
(1− ρ)

[

Pe(l)θ
l−1
rw (∞) + Pe(h)θ

h−1
rw (∞)

]

. (B.2)

Next, the final epidemic size corresponding to networks with all weights equal to the average weight is

Rav(∞) = 1− (1− ρ)(P (l)θlav(∞) + P (h)θhav(∞)). (B.3)

Similarly, based on Eqs. (2.4-2.5) and Eq. (3.16), and using that the average weight wav = 〈w〉dd =
q1w1 + q2w2 + q3w3, θav(∞) can be writhen as,

θav(∞) =
γ + (1− ρ)τav(q1w1 + q2w2 + q3w3)

[

Pe(l)θ
l−1
av (∞) + Pe(h)θ

h−1
av (∞)

]

τav(q1w1 + q2w2 + q3w3) + γ

=
ζ −Rav

0

ζ
+
Rav

0

ζ
(1− ρ)

[

Pe(l)θ
l−1
av (∞) + Pe(h)θ

h−1
av (∞)

]

. (B.4)

Now, we start by assuming that Rrw(∞) = Rav(∞), then Eqs. (B.1) & (B.3) lead to

θrw(∞) = θav(∞) = θ (B.5)

due to the function f(x) = axl + bxh being strictly monotonically increasing on our domain of interest
x ∈ [0, 1], and beyond. Using Eq. (B.5) and Eqs. (B.2) & (B.4) yields

ζ −Rav
0

ζ
+
Rav

0

ζ
(1− ρ)

[

Pe(l)θ
l−1 + Pe(h)θ

h−1
]

=
ζ −Rrw

0

ζ
+
Rrw

0

ζ
(1− ρ)

[

Pe(l)θ
l−1 + Pe(h)θ

h−1
]

,

(Rav
0 −Rrw

0 )
(

1− (1− ρ)
[

Pe(l)θ
l−1 + Pe(h)θ

h−1
])

= 0,

Rav
0 = Rrw

0 .
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