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Abstract

In this paper we extend previous work deriving dynamic equations governing infectious disease spread on networks. The
previous work has implicitly assumed that the disease is initialized by an infinitesimally small proportion of the population.
Our modifications allow us to account for an arbitrarily large initial proportion infected. This helps resolve an apparent
paradox in earlier work whereby the number of susceptible individuals could increase if too many individuals were initially
infected. It also helps explain an apparent small deviation that has been observed between simulation and theory. An
advantage of this modification is that it allows us to account for changes in the structure or behavior of the population
during the epidemic.
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Introduction

The mathematical study of infectious disease spread has

contributed significantly to our ability to design effective interven-

tions to reduce disease spread. Most of the earliest models were

based on the assumption that disease transmission occurs as a

Poisson process and each transmission reaches an individual

chosen randomly from the population. This implicitly assumes that

partnership duration is very brief. These models have been

modified to account for a number of different effects, such as

demographic groups [1].

More recently, attempts have been made to incorporate the

‘‘network’’ structure of the population (see, e.g., [2]). Typically

these focus on trying to understand the role played by ‘‘high-

degree’’ individuals (those individuals with many contacts), and

they come in one of two flavors: they either continue the

assumption of fleeting partnerships (the timescale of individual

transmissions is long compared to the timescale of individual

partnerships) [1,3–6], or they take the opposite limit in which the

partnership network is static (the timescale of the epidemic is short

compared to the timescale of individual partnerships) [7–14].

These two approaches do not address the intermediate regimes.

Recent work has shown that for susceptible-infectious-recovered

(SIR) models, it is possible to unify these two approaches with an

‘‘edge-based compartmental model’’ (EBCM) that allows partner-

ship duration to range continuously from zero to infinite [15–17]

[for susceptible-infectious-susceptible (SIS) models, the picture is

more complicated, see for example [18]]. The resulting models are

low-dimensional and contain many standard models as special

cases [17]. Unfortunately, these models are derived under the

assumption that the initial proportion infected is infinitesimally

small (while the absolute number infected is sufficiently large that

the dynamics are deterministic). It is assumed that by the time the

equations are used, any early transients have died away. A

consequence of this assumption is that the models break down if

R0v1 (that is, if the average number of infections caused by an

infected individual early in the epidemic is less than 1) or if the

initial proportion infected is not negligible.

The failure if the initial proportion infected is not negligible was

observed by [14]. This paper used an early (static network) version

of the equations of [15] from [7] and compared them with

simulation. A small discrepancy in final sizes was noted. This

discrepancy was not present for equations of [19], a system

requiring O(M) equations where M is the maximum degree, or

for another system introduced in [14] which required O(M2)
equations.

In the remainder of this paper, we generalize the EBCM

equations for the spread of infectious disease assuming a finite

proportion of the population is initially infected. We test the

resulting equations against simulations, analyze their predictions

for different disease scenarios, and investigate the cause of the

discrepancies found in previous work. For simplicity we focus on

the static network limit. The method we introduce is straightfor-

ward to adapt to dynamic networks.
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Analysis

We modify the approach of [15] which assumed an infinitesimal

initial proportion infected. We adapt the approach to consider a

wide range of possible initial conditions. We assume that the

dynamics of the epidemic may be treated as deterministic, which

means we assume the population is very large and the initial

number infected is large enough for the epidemic to behave

deterministically. The assumption that behavior is deterministic

may be understood qualitatively as equivalent to the claim that no

individual has a large enough effect to alter the dynamics of the

disease at the population-scale: the time (or even if) a single given

individual becomes infected has a negligible impact on the

proportion infected. If stochastic effects are still important but

R0w1, then these equations may become accurate at a later time

once sufficient numbers are infected.

We assume the population consists of N&1 individuals. Each is

assigned a degree k (independently of degrees of other individuals)

with probability P(k) where P defines a probability distribution on

the non-negative integers. The network is wired together using the

‘‘Configuration Model’’ (or ‘‘Molloy-Reed’’) approach [11,20]:

each individual is assigned a number of stubs (or half-edges) equal

to its degree. Pairs of stubs are then wired together to form edges/

partnerships. It is likely that this algorithm produces a handful of

self-loops or repeated edges, but although they may be present,

their density (i.e., the probability a given individual is involved in a

self-loop or repeated edge) goes to zero like 1=N.

We define a test individual u to be a random individual chosen at

time 0. Because we assume that the spread is deterministic, this

means that the probability u is in a given state is equal to the

proportion of the population in that state. So we focus on

calculating the probability u is susceptible, infected, or recovered.

We modify u so that it does not transmit to any of its partners if

ever infected. This assumption does not affect the probability u is

in any given state, but it does prevent a correlation between the

statuses of different partners which would be caused by infection

traveling through u. This allows us to treat the partners of u as

independent and so each partner of u may independently transmit

to u. It is important to note that this assumption has no impact on

the probability u is in any given state and therefore, it does not

affect our calculation of the proportion of the population in each

state. Further discussion of the test individual is in [21].

Variables and Parameters
We introduce our variables, our parameters, and their

definitions in table 2. The starting point is the test individual u.

The remaining variables and parameters can be broadly divided

into four groups.

N S, I , and R denote the proportion of the population in each

state, or equivalently the probability that the test individual u is

in each state.

N h, wS , wI , and wR give the probability a partner of u has a given

status and the probability the partner has transmitted to u: h is

the probability the partner has not transmitted to u and wS , wI ,

and wR give the probability the partner has not transmitted to

u and is susceptible, infected, or recovered respectively.

N P(k) tells us the probability a random individual has degree k,

while S(k,0) tells us the probability a random individual of

degree k is initially susceptible. The function y(x)~
P

S(k,0)

P(k)xk encodes P and S. We define SKT~
P

k kP(k) to be

the average degree.

N We have two disease parameters to consider: b, the

transmission rate, and c, the recovery rate.

Given our definitions, y(h(t)) is the probability u is susceptible

at time t. By noting that y(h(t))~S(t), we will be able to close our

system of equations.

The main distinction between this approach and the previous

EBCM approach [15] is that we use just the initially susceptible

individuals to define y while the earlier work took

y(x)~
P

P(k)xk, the probability generating function for the

degree distribution. The earlier work then assumed the disease had

already been spreading prior to time 0 and defined h to be the

probability that a partner has never transmitted [so h(0)v1]

whereas here we take h to be the probability that a partner has not

transmitted given that it had not prior to time 0 [so h(0)~1].

Equation Derivation
We will find a closed system of equations based on these

variables. We begin by looking at S(t). If the test individual u has

degree k and is susceptible at t~0, then the probability it is

susceptible at some later time is h(t)k. If we do not know k or

whether u is susceptible at t~0, then the probability u is

susceptible at time t is the sum over all k of the product of the

probability u is initially susceptible S(k,0) with the probability u is

still susceptible hk. We have S(t)~
P

k S(k,0)P(k)h(t)k~y(h(t)).

Thus we conclude

S(t)~y(h(t))

We know that R solves _RR~cI . We also have a conservation rule

that SzIzR~1, so I~1{S{R. Thus our equations are

S~y(h)

I~1{S{R

_RR~cI

Assuming h(t) is known, then this system with an initial

condition for R completely defines S, I , and R. This is shown in

the flow diagram in figure 1. Other formulations are possible, for

example S~y(h), _II~{y’(h) _hh{cI , _RR~cI . However we find

our system to be preferable because it minimizes the number of

differential equations.

In order to close this system of equations we need an equation

giving h. Recall that h(t) is the probability a partner v of u that had

not yet transmitted to u by time 0 has still not transmitted by time

t. This is broken into three disjoint sub-compartments

Figure 1. Flow diagram showing the flux of individuals
between the different compartments. Because we have an explicit
expression for S, if we know h we do not need to explicitly determine
the flux from S to I .
doi:10.1371/journal.pone.0101421.g001
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h~wSzwIzwR based on whether v has not transmitted and is

susceptible, infected, or recovered. Because wI is the probability v
has not transmitted and is infected, it is straightforward to see that
_hh~{bwI . So if we can find wI in terms of h, then we arrive at a

single equation for h, which can be used to provide h for the S, I ,

and R equations.

To do this, we use the fact that wI~h{wS{wR and find wS and

wR in terms of h. We turn to figure 2. The recovery rate is c and

the transmission rate is b, so we have _wwR~{c _hh=b. We can

integrate this, and using the fact that h(0)~1 we find

wR~c(1{h)=bzwR(0). To find wS in terms of h, we note that

the probability u has an edge to a node that is susceptible at time

t~0 is wS(0). The probability the susceptible partner has degree k
is kP(k)S(k,0)=

P
kP(k)S(k,0), so the probability an initially

susceptible partner is susceptible at some later time isP
k k P(k)S(k,0)hk{1=

P
k k P(k)S(k,0)~y’(h)=y’(1). Thus

wS(t)~wS(0)y’(h(t))=y’(1). We arrive at

wI~h{wS(0)
y’(h)

y’(1)
{

c

b
(1{h){wR(0)

and _hh~{bwI becomes

_hh~{bhzbwS(0)
y’(h)

y’(1)
zc(1{h)zbwR(0)

with h(0)~1. This completes our system.

Our final closed system of equations is

_hh~{bhzbwS(0)
y’(h)

y’(1)
zc(1{h)zbwR(0) ð1Þ

_RR~cI , S~y(h) , I~1{S{R ð2Þ

where h(0)~1, and R(0) is given by the initial conditions. These

equations lead to earlier equations of [7,15,22] if R0w1 and

1{wS(0), wI (0), wR(0) and 1{h(0) are all infinitesimally small. If

R0v1, the error caused by the approximations wR(0)~0 and

wS(0)~1 is comparable to the actual number infected.

Final size relation. The final size relation assuming small

initial condition is well-known [11]. The final size relation for

larger initial conditions has recently been found [21] in a more

general case not assuming constant transmission and recovery

rates. It can be derived easily for this model by setting _hh~0. We

find

h(?)~

b wS(0)
y’(h(?))

y’(1)
zwR(0)

� �
zc

bzc
ð3Þ

R(?)~1{y(h(?)) ð4Þ

Model Validation
We now compare our model with simulations for populations

that satisfy the Configuration Model/Molloy-Reed model as-

sumptions. Although an earlier version of these equations was

found to have minor discrepancies [14], we show that once we

appropriately account for the initial condition, the calculation

becomes correct.

Final Size Comparison. To show that our new equations

accurately calculate the impact of the initial conditions, we first

consider epidemic spread in networks with the same degree

distribution as in [14] (table 1), but with varying numbers initially

infected and varying population sizes. We then consider the

impact of selecting high or low degree nodes as the earliest infected

individuals, using networks whose degree distributions more

clearly show the impact of biased selection of the initial

individuals.

We run a large number of simulations for each number of initial

infections. For each simulation we generate a new network. Our

simulation technique is similar to those recently described by

[8,19,23]. In the Configuration Model framework, each node is

assigned a degree, nodes are given stubs (or half-edges), and then

stubs are randomly paired together. In the simulations we use,

each node is assigned a degree, nodes are given stubs, and then the

disease begins to spread in the network before stubs are paired.

Each time the disease transmits along a stub that stub is joined to a

randomly selected as-yet-unpaired stub. If the partner is suscep-

tible, then it becomes infected. If not, nothing happens. Once stubs

are paired they remain in their edge. This approach is equivalent

to constructing the network in advance and then following the

disease, but it is more efficient computationally because it only

constructs those parts of the network the disease traces.

Randomly selected initial infections. We first consider

varying numbers of randomly chosen initial infected individuals.

In figure 3 we take the degree distribution from table 1.

We randomly select a proportion r of the population to initially

infect. We have S(k,0)~1{r for all k, so y(x)~(1{r)P
k P(k)xk. Similarly we have wS(0)~1{r. Because the

epidemic begins with no recovered individuals, we take wR(0)
ls0. We take b~0:1 and c~0:2 (though all that matters for the

final size is their ratio).

We take populations of 100, 1000, and 10000 and perform

many simulations. We compare the final sizes observed with the

final size relation of equations (3) and (4). The equations are

derived in the infinite population limit, but in figure 3 we see that

even with populations of only 100 they give a good prediction of

the observed behavior. As the population size increases, the

Figure 2. Flow diagram for the flux of partners through
different states. The top three boxes wS , wI , and wR make up h and
represent the different states the partner can be in if it has not
transmitted. The lower box 1{h is the probability the partner has
transmitted.
doi:10.1371/journal.pone.0101421.g002

Large Initial Conditions for Epidemics on Networks

PLOS ONE | www.plosone.org 3 July 2014 | Volume 9 | Issue 7 | e101421



distribution becomes narrower and the simulations collapse more

tightly around the prediction.

Biased initial infections. To show that the approach we

have derived can also be applied to cases where the initial infected

individuals are selectively chosen based on their degree, we use a

different degree distribution that helps highlight the effect. We take

P(1)~P(9)~1=2. We consider two options. In the first approach,

individuals with higher degree are preferentially selected. To do

the selection, we choose an individual with probability propor-

tional to the square if its degree, and infect it. We repeat this until

a proportion r of the population is infected. In the second

approach individuals are chosen with probability proportional to

the square of their inverse degree until a proportion r is infected.

We take b~0:1 and c~0:6.

Using these rules, we clearly see that S(k,0) is not uniform. Instead,

for the case where individuals are selected with probability

proportional to their squared degree, we find that S(k,0)~ak2

where

a solves
P

k P(k)ak2

~1{r: We find wS(0)~
P

kS(k,0)P(k)ak2

=P
k kP(k). In the case where individuals are selected with probability

inversely proportional to their squared degree, we find that

S(k,0)~a1=k2

where a solves
P

k P(k)a1=k2

~1{r, and wS(0)~P
k S(k,0)P(k)a1=k2

=
P

k k P(k).

We compare predictions and simulations in populations of 1000
individuals in figure 4. In the limit of a negligible initial proportion

infected, the final size of epidemics in these networks is about 4%.

As we increase the number of initially infected individuals, we

increase the final size because of these individuals and because of

the additional infections they lead to. At small amounts, increasing

the initial number of high degree nodes has a much larger impact

on the final size because they cause more additional infections.

However, as the amount of infection initially present is increased

this effect becomes less important: the high degree individuals

would become infected anyway. So the largest gain in final size

comes from infecting low degree individuals who would not

receive an infection from their partners. The ‘‘kinks’’ that occur

just above 50% initially infected are because effectively all

individuals of high (left) or low (right) degree are initially infected.

Dynamic Calculation. We now look at the performance of

the dynamic equations. The dynamic prediction is more easily

affected by noise than the final size prediction, so we use larger

population sizes. We again take the degree distribution of table 1.

We begin with 5% infected, either randomly chosen, or chosen as

before proportional to the square of the degree. A comparison of

individual simulations with theoretical predictions is in figure 5.

The theory accurately predicts the dynamics of epidemics in large

populations, but there is significant stochasticity in smaller

Table 1. The degree distribution used in simulations in [14].

k P(k)

1 18:118|10{3

2 72:536|10{3

3 145:222|10{3

4 194:589|10{3

5 195:962|10{3

6 156:857|10{3

7 105:280|10{3

8 59:713|10{3

9 30:066|10{3

10 21:657|10{3

doi:10.1371/journal.pone.0101421.t001

Table 2. The variables we need to calculate the epidemic dynamics. In all of these u is a test individual: randomly chosen from the
population and modified so that it cannot infect others, although it can become infected.

Variable/parameter Definition

Test Individual u A randomly member of the population chosen at time t~0 who is prevented
from transmitting to its partners.

S(t) The proportion of the entire population that is susceptible.

I(t) The proportion of the entire population that is infected.

R(t) The proportion of the entire population that is recovered.

h(t) The probability a random partner v of u that did not transmit to u by time 0 has
not transmitted to u by time t.

wS(t) The probability a random partner v that did not transmit to u by time 0 is
susceptible at time t.

wI (t) The probability a random partner v that did not transmit to u by time 0 is
infected at time t but has not transmitted to u.

wR(t) The probability a random partner v that did not transmit to u by time 0 is
recovered at time t and never transmitted to u.

P(k) The probability an individual has degree k.

SKT~
P

k kP(k) The average degree.

S(k,0) The probability an individual with degree k is initially susceptible.

y(h(t))~
P

k S(k,0)P(k)h(t)k The probability that the test individual u is susceptible at time t. In a large
population this should equal S(t).

b the per-edge transmission rate

c the per-individual recovery rate

doi:10.1371/journal.pone.0101421.t002
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populations. The theory is able to capture the impact of the biased

selection of initial infections.

Intervention Impact
We can use our equations to compare the impact of several

interventions. We consider an epidemic spreading in the

population, and at some intermediate time we introduce a change

in the disease or population. Because the system changes at a time

with a non-negligible amount of infection in the population, the

equations derived assuming a negligible proportion infected fail.

Consider a population in which P(4)~P(5)~P(6)~1=3.

Assume we initially infect a small, randomly chosen proportion

of the population, r at t~0. Thus we have

y(x)~(1{r)(x4zx5zx6)=3, wS(0)~1{r, wI (0)~r, and

wR(0)~0. We take b~1 and c~1=2.

We consider three interventions that may be introduced at time

t 1. All are aimed at ‘‘halving’’ the transmission rate, but they do

this in different ways. In mass-action based models, these would all

have the same effect. We can clearly identify differences using our

approach.

N An intervention that reduces b by a factor of 2.

N An intervention that reduces b so that per-contact transmission

probability b=(bzc) is reduced by a factor of 2.

N An intervention that eliminates half of the partnerships

randomly.

The distinction between the first two comes from the fact that

partnerships have duration, so reducing b by a factor of 2 does not

reduce the infection probability by a factor of 2. The expected

number of transmissions an individual sends to a given partner is

b=c, but once the partner is infected, the subsequent transmissions

are irrelevant. If we use mass action assumptions however, each

transmission is to a replacement partner. In each case, halving b
halves the total number of transmissions, but when partnerships

have nonzero duration, a larger proportion of transmissions have

no effect. The probability of transmitting at least once along a

static partnership is b=(bzc). So to reduce infection probability

by a given factor requires a larger reduction to b. Note that the

work of [24] suggests that in Configuration Model networks the

final size of our second and third intervention will be the same,

(but that in clustered networks it will be different).

We will demonstrate our approach in all three cases, restarting

the calculations when the intervention is put into place. In all

cases, this allows us to use the conditions at t 1 to predict the final

size. We take y0(x)~y(x), h0, wS,0, wI ,0, and wR,0 to correspond

to time less than t 1. We use a subscript of 1 for times after t 1. We

Figure 3. Results of simulations for N~100, 1000, and 10000 individuals. The solid curve gives our prediction for the final sizes of epidemic in
a large population. Colors are log scale giving probability of that particular epidemic size. Each simulation is for a new network generated using the
P(k) from table 1, with b~0:1 and c~0:2. We randomly select a proportion r of the population to initially infect and compare final size with the
prediction of theory. The number of simulations for each r for N~100, 1000, and 10000 was 50000, 11500, and 3000 respectively. To show that this is
sufficient to resolve the distribution, for :175vrv:225 there were 2000000, 50000 and 10000 simulations performed respectively for each N . This
only slightly improves the tails of the distribution. Note that when the initial number (not proportion) of infections is small, a large fraction of
simulations end without an epidemic.
doi:10.1371/journal.pone.0101421.g003

Figure 4. Epidemic final sizes in population of 1000 individuals with half having degree 9 and half with degree 1. The disease
parameters are b~0:1, c~0:6. Results of simulations having initial infections chosen with probability proportional to square of degree (left) or
inverse square of degree (right). For each initial number of infections, 22500 simulations were performed, each with a different network. For the range
0:175vrv0:225, 200000 simulations were performed to give insight into how well resolved the distribution is. Note that for small numbers of initial
infections, epidemics are less likely when the lower degree individuals are chosen.
doi:10.1371/journal.pone.0101421.g004
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solve the original equations, and then use the results to initialize

the second set of variables.

Case 1. We begin by reducing b by a factor of 2 at time t 1.

Until time t 1, we are solving the original equations. By solving the

original system until t 1 we have h0(t 1). The probability an

individual of degree k is susceptible at time t 1 is

S(k,t 1)~S(k,0)h0(t 1)k. So our new y(x) is y1(x)~
P

k P(k)

S(k,0)h0(t 1)kxk~y(h0(t 1)x). We take our new h1 to have

h1(t1)~1. The intervention we are doing has no impact on the

probability a partner is in any given state. wS , wI , and wR keep the

same proportion, but are scaled up to sum to 1 so each is scaled by

h0(t1). For example, wS,1(t1)~wS,0(t1)=h0(t1)~wS,0(0)y’0
(h0(t1))=y’0(1)h0(t1).

We restart the solutions with these new values.

Case 2. The total probability of transmitting to a partner is

b=(bzc). For this intervention we change b so that b=(bzc) is

reduced by a factor of 2 at time t 1. This proceeds exactly as above

except that the new value of b must be smaller.

Case 3. When we delete half the edges at random, we do not

affect the probability that a random partner is in any given state.

So the w variables rescale in the same way as for changing b in the

previous cases. However, y undergoes a more significant change.

As a starting point, consider P1(k1), the probability an individual

has degree k1 after edges are deleted. This depends on P0(k0), the

probability of having k0 edges prior to deletion. The relation is

P1(k1)~
X
k0

P0(k0)
k0

k1

� �
1

2

� �k0

The probability the individual has degree k1 and is susceptible

at time t1 is

Q(k1)~
X
k0

P0(k0)S(k0,0)
k0

k1

� �
h0(t1)

2

� �k0

So if we restart the calculations at t~t 1 we have

S(k1,t1)~Q(k1)=P1(k1) and

y1(x)~
X
k1

S(k1,t1)P1(k1)xk1

~
X
k1

Q(k1)xk1

~
X
k1

X
k0

P0(k0)S(k0,0)
k0

k1

 !
h0(t1)

2

� �k0

xk1

~
X
k0

P0(k0)S(k0,0)h0(t1)k0
X
k1

k0

k1

 !
1

2

� �k0{k1 x

2

� �k1

~
X

P0(k0)S(k0,0)h0(t1)k0
xz1

2

� �k0

~y0 h0(t1)
1zx

2

� �� �

(in general if we delete edges with probability p and keep with

probability q~1{p, then the new function is y1(x)~
y0(½h0(t1)�½pzqx�)). Using this new y1(x), the same system of

equations holds.

Figure 6 compares these strategies. As anticipated, the final sizes

resulting from cases 2 and 3 are identical, regardless of the time of

intervention (indeed this is straightforward to show from the final

size relation). However, we see that the dynamics are significantly

different.

There are other ways we could capture these interventions

mathematically. We note that in both case 1 and case 2, we could

also capture the intervention by simply using a step change in b.

Case 3 could be captured by reducing wS , wI and wR each by half

and placing the other half into a new inactive compartment wX for

the deleted edges. However, each of these is ad hoc and dependent

on the precise details of the case. Using the approach presented

above, we have a standard approach that will apply across a wide

range of interventions.

Bifurcation analysis
We try to gain a better understanding of the epidemic threshold

and what happens to the final size as the initial proportion infected

is increased. Consider the final size relation found from

Figure 5. A comparison of the observed and predicted number of infections from simulations. Left: 5% initially infected, chosen
randomly from the population. Right: 5% initially infected, chosen with probability proportional to squared degree. Each simulation curve represents
a single simulation of the given size. As population size increases, the results converge to the theoretical prediction.
doi:10.1371/journal.pone.0101421.g005
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h~

b wS(0)
y’(h)

y’(1)
zwR(0)

� �
zc

bzc

If wS(0)zwR(0)~1, then we find that h~1 is a solution to these

equations. Biologically this states that if there is no infection

initially [wI (0)~0] there will be no infection later. To study what

happens when wI (0)w0 (but possibly arbitrarily small), we begin

by first analyzing the structure of the dynamical equation for h
under the assumption that wS(0)~1 and wR(0)~0, taking hv1.

These assumptions contradict our initial conditions, but under-

standing the bifurcation in this system first will lead to an easier

understanding of the full system with wI (0)w0.

If wS(0)~1 and wR(0)~0, the differential equation for h
becomes

_hh~{bhzb
y’(h)

y’(1)
zc(1{h)

which has _hh~0 whenever

h~

b
y’(h)

y’(1)
zc

bzc

Clearly h~1 is an equilibrium. Close to h~1, we write

h~1zm, so y’(h)=y’(1)~1zmy’’(1)=y’(1)zm2y’’’(1)=2y’(1)z

O(m3). The value of y’’(1)=y’(1) plays a key role in this analysis.

Its biological interpretation comes from looking at a random

infected individual’s partner v early in the epidemic. If v is infected

by that random infected individual, then y’’(1)=y’(1) is the

expected number of additional partners v has (its excess degree).

Substituting into the equation for the equilibrium we have

1zm~1zmb
y’’(1)zmy’’’(1)=2zO(m2)

y’(1)(bzc)

which yields

m~0 or m&
2

y’’’(1)

y’(1)(bzc)

b
{y’’(1)

� �
ð5Þ

So there is a bifurcation as the bracketed term passes through

zero, when (bzc)=b~y’’(1)=y’(1). This is the well-known

epidemic threshold [11]. The bifurcation is transcritical and

corresponds to R0 increasing through 1. If y’’(1)=y’(1)v
(bzc)=b (that is R0v1) then m is positive and the corresponding

equilibrium has hw1 and is unstable, while the equilibrium at

h~1 is stable. In our case, we will not observe hw1 because h is a

probability. If however y’’(1)=y’(1)w(bzc)=b (that is R0w1),

then the corresponding equilibrium has hv1 and is stable while

the equilibrium at h~1 is unstable.

Previous studies found these approximate fixed points for h, and

used a slightly different definition for h such that h(0) was slightly

less than 1. So the biologically implausible prediction is that for

R0v1 the value of h increases towards the stable fixed point at 1.

For R0w1 the prediction is more meaningful: h decreases away

from the unstable fixed point at 1 to the lower, stable fixed point.

When we do a more careful analysis, we now have h(0)~1 and

wI (0)w0. The stable fixed point that was at 1 for R0v1 will be

slightly decreased to h0v1~h(0). So h will decrease to h0 when

R0v1. For R0w1 the unstable fixed point that was at h0~1 is

slightly increased, so h0w1~h(0). So h will decrease away from

h0. When the number of infections decays immediately (R0v1)

we care about a small error in the prediction caused by the fact

that the initial proportion infected is not exactly zero, while if the

number of infections grows (R0w1), the error caused by treating

the initial proportion infected as asymptotically 0 is insignificant.

We are now able to consider the effect of realistic initial

conditions. We keep wR(0)~0, but take wI (0) to be a small positive

number with h(0)~1 and wS(0)~1{wI (0). The bifurcation

diagram changes slightly. Compared to the equations assuming

wS(0)~1, this has the effect of decreasing _hh slightly, so the

equilibrium values shift as shown in figure 7. In fact, strictly

speaking, there is no bifurcation for wI (0)w0.

Below the bifurcation value of m, the equilibrium h~1 is slightly

reduced to a h0v1, but remains stable. The solution with initial

condition h~1 converges to this equilibrium. Above the

bifurcation, the h~1 equilibrium is slightly increased to a h0w1
and is unstable. The other equilibrium with smaller h is stable and

Figure 6. The impact of interventions. Epidemics begin at t~0 with 0:001 of the population infected. Left: epidemic curve without interventions,
and with each intervention introduced at time t 1~1:5. Right: horizontal axis is t 1 , showing final effectiveness if interventions introduced at different
times
doi:10.1371/journal.pone.0101421.g006
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its location is decreased slightly. Thus the solution with initial

condition h~1 decreases and converges to the stable solution.

Results and Discussion

In this paper we have extended previous mathematical methods

for epidemic spread in networks to allow for simple models that

can capture the impact of a non-negligible initial condition.

Our system of equations (1) and (2) are mathematically simple

and can be solved numerically with standard tools. Changes in the

population’s degree distribution affect y, but do not otherwise

alter the structure of the equations, and in particular, the

population can have arbitrarily large maximum degree without

requiring any increase in the number of equations.

Our modeling approach accurately predicts the size and

dynamics of simulated epidemics with arbitrary sized initial

conditions. The approach allows us to compare interventions

introduced during the epidemic. We further see that the

discrepancy found by [14] apparently results from the fact that

the initial proportion infected was nonnegligible.

We are able to investigate the dynamical structure of the

equilibria found in the equations, showing how the epidemic

threshold is modified when a non-negligible proportion of the

population is infected. This helps resolve the apparent contradic-

tion in earlier work in which h, a measure of the probability of

having escaped transmission, could increase in time. On biological

grounds h must be monotonically decreasing. The mathematical

inconsistency resulted from the assumption of a small initial

condition. For R0v1, in the small initial condition limit, there is

an attracting equilibrium value where the cumulative amount of

infection is very small. For a reduced initial infection, the

equilibrium moves, going to no infection in the limit. The

previous analyses effectively froze this equilibrium at its asymptotic

limit and then considered a small, but nonzero initial amount of

infection. So the initial condition was on the wrong side of the

equilibrium and the mathematical model attempts to return to its

frozen equilibrium of no cumulative infection rather than

approaching the true equilibrium with a small number of

recovered individuals. When R0w1, this effect does not matter

because the frozen equilibrium is repelling and still on the correct

side of the initial condition.

One of the most obvious applications of these results is to the

understanding of the impact of an intervention that begins after a

disease has established itself. This has been a weakness of network

models for some time: the earliest low-dimensional models could

only calculate static quantities such as the final size of epidemics

assuming no intervention, while more recent approaches that

calculate the dynamics [7,15,22] have been restricted to the

assumption of asymptotically small initial conditions, again with no

change in the population behavior. Because we now have a low-

dimensional model that can account for large initial conditions, we

can use this to restart our calculations when an intervention is to

be implemented, or we can use the final size relation to quickly

compare intervention effectiveness.

We have analyzed the bifurcation structure of the final size

relation, and used this to explain an apparent discrepancy in

earlier work if R0v1. The previous models that assumed small

initial condition also implicitly assume that R0w1. This resulted

in a disturbing prediction for R0v1 that transmissions could be

reversed as time progresses, and infected individuals are uninfect-

ed. Once we correctly account for the initial condition this

apparent discrepancy disappears.

If variance is large enough, then there may be a small number

of very high degree individuals who have a macroscopic effect on

the dynamics. Usually, increasing the population size will ‘‘drown

out’’ the effects of individuals. However, when the variance is

sufficiently large increasing the population size results in a small

number of much higher degree individuals. These again have a

macroscopic effect on the dynamics. Deterministic predictions will

not be accurate: for example, how long the highest degree

individual remains infected will influence the final size. The work

of [8] rigorously studied the equations using small initial

conditions, and showed that if all moments up to the fifth moment

were finite, then these equations are accurate in the limit of a large

network. More recently [25] has shown that the equations remain

valid with much weaker assumptions. The equations will fail if the

degree distribution is too broad exactly because these very rare

individuals are able to have a population-scale impact on the

dynamics, so the specific time and duration of their infections

matter.

We expect to be able to recover from this challenge however.

After the epidemic has run for a short period of time in a

Configuration Model network, all of these high degree individuals

have been infected and recovered. The remaining population will

have significantly reduced moments. At this point, the stochastic

effects are ‘‘frozen in’’: the dynamics are now deterministic. We

Figure 7. Bifurcation diagram with wR(0)~0, wS(0)~1{wI(0), and wI (0) as given. The figure on right zooms in on the bifurcation point.
Disease parameters are b~1 and c~1:5. In each all members of the population have degree either 3 or 4, with the proportions chosen so that
y’’(1)=y’(1) takes the values on the horizontal axis. The dashed curves denote unstable equilibria and the solid curves stable equilibria. Approximate
curves (dotted) come from equation (5). Only the equilibria with mv0 are biologically meaningful.
doi:10.1371/journal.pone.0101421.g007
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can use the observed conditions at this time to initialize our new

system of equations.

There are some assumptions implicit in our derivation that

deserve further attention. The model fails if h(0), wS(0), wI (0), or

wR(0) depend on degree of u. So if for example, we select high

degree individuals and then infect their partners (leaving the high

degree individuals uninfected), the model will not account for the

fact that higher degree individuals are more likely to have infected

partners at t~0. The approach will fail. This is discussed in more

detail in [26].

To be clear, the model does not fail if the initial individuals

infected have higher (or lower) degree. This simply affects the

initial conditions. Indeed, we expect that if the infection is initially

spreading stochastically in the population, and we set t~0 to be

when enough cases are infected to have deterministic behavior, we

will see that at t~0 a disproportionate number of higher degree

individuals have been infected. So wI and wR may initially be

larger than I and R.

We finally note that in [15,16], a number of generalizations of

the EBCM equations were considered. The basic approach we

have used here can be applied to any of those generalizations.
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