ASP3012: Stars and Galaxies Stars Exercise Sheet 5

Q1. Consider stars on the Upper Main Sequence, where the mass-radius relation tells us that

$$
R \sim M^{0.6}
$$

and the mass-luminosity relation tells us that

$$
L \sim M^{3.5} .
$$

Assume the Upper Main Sequence starts at $1 M_{\odot}$. Estimate the luminosity and radius of a $2 M_{\odot}$ and a $5 M_{\odot}$ star.

Q2. A good approximation to the pressure gradient in a star is given by

$$
\frac{d P}{d r}=-\frac{4 \pi}{3} G \rho_{c}^{2} r e^{-x^{2}}
$$

for some scale-length a and central density ρ_{c}, and where $x=r / a$.
a) Show that $P(r)=P_{c} e^{-x^{2}}$ where $P_{c}=\frac{2 \pi}{3} G \rho_{c}^{2} a^{2}$ (you may assume that the stellar radius $R \gg a)$.
b) Show that $m(r)=\frac{4 \pi \rho_{c} a^{3}}{3} \Phi(x)$ where $\Phi^{2}(x)=6-3\left(x^{4}+2 x^{2}+2\right) e^{-x^{2}}$.
c) Show that $\rho(r)=\rho_{c} x^{3} e^{-x^{2}} / \Phi(x)$
d) Hence show that, near the centre, $\Phi(x) \simeq\left[x^{6}-\frac{3}{4} x^{8}+\ldots\right]^{1 / 2}$
e) Hence show that, near the centre, $\rho(r) \simeq \rho_{c}\left(1-\frac{5}{8} x^{2}+\ldots\right)$
f) And again near the centre, $T(r) \simeq T_{c}\left(1-\frac{3}{8} x^{2}+\ldots\right)$
g) Taking an energy generation formula of the form $\epsilon=\epsilon_{0} \rho X^{2} T^{n}$ show that

$$
L(r)=4 \pi a^{3} \epsilon_{0} \rho_{c}^{2} T_{c}^{n} X^{2}\left[\frac{x^{3}}{3}-\frac{(5+3 n) x^{5}}{40}+\ldots\right]
$$

h) Use this formula to estimate the luminosity of the Sun, assuming $n \simeq 3.5, a \simeq R_{\odot} / 5$, $T_{c} \simeq 1.5 \times 10^{7} \mathrm{~K}, \rho_{c} \simeq 150 \mathrm{~g} \mathrm{~cm}^{-3}$, and $\epsilon_{0} \simeq 4 \times 10^{-26}$. For X you should use the average of the surface value $X=0.7$ and the central value $X=0.4$, and integrate from $r=0$ to $r=0.1 R_{\odot}$.
i) Now use the formula to estimate the luminosity of a $10 M_{\odot}$ star. Here the energy generation is via the CN cycle, so we will use $n \simeq 18, a \simeq R_{\odot} / 5, T_{c} \simeq 3 \times 10^{7} \mathrm{~K}, \rho_{c} \simeq 100 \mathrm{~g}$ cm^{-3}, and $\epsilon_{0} \simeq 4 \times 10^{-130}$. For X you should use the value in the central convective core, say $X=0.5$. Energy generation in these stars is very centrally condensed, so integrate from $r=0$ to $r=0.05 R_{\odot}$.

Q3. Consider a red giant with a core showing a linear density distribution:

$$
\rho(r)=\rho_{c}(1-r / R) .
$$

a) Show that the core mass is given by

$$
M_{c} \simeq \frac{4 \pi r_{s}^{3}}{3} \rho_{c}
$$

where r_{s} is the position of the hydrogen shell (i.e. the edge of the core).
b) Show that the pressure in the core is

$$
P_{c}=P_{s}+\frac{2 \pi}{3} G \rho_{c}^{2} r_{s}^{2}
$$

c) Hence show that if $P_{c} \gg P_{s}$ then the temperature of the isothermal core is

$$
T_{c}=\frac{2 \pi G \mu}{3 \Re} r_{s}^{2} \rho_{c} .
$$

d) Hence show that

$$
\frac{r_{s}}{R_{\odot}} \simeq 0.11\left(\frac{M_{c}}{M_{\odot}}\right)^{1 / 3}\left(\frac{\rho_{c}}{1000}\right)^{-1 / 3}
$$

where ρ_{c} is measured in $\mathrm{g} / \mathrm{cm}^{3}$.
e) And finally, show that

$$
T_{c} \simeq 9.8 \times 10^{7} \mu\left(\frac{M_{c}}{M_{\odot}}\right)^{2 / 3}\left(\frac{\rho_{c}}{1000}\right)^{1 / 3} .
$$

