Q1. For the full PP chains, show that the equilibrium abundance of He3 is given by:

$$(\text{He}^3)^e = \frac{1}{2\lambda_{33}} \left[-\lambda_{34}\text{He}^4 + [\lambda_{34}(\text{He}^4)^2 + 2\lambda_{pp}\lambda_{33}\text{H}^2]^{1/2} \right].$$

Q2. Consider the PP reactions, with the usual notation.

a) Show that the rate of He4 production by the PPI chain, compared to the combined PPII and PPIII chains, is:

$$\frac{\text{PPI}}{\text{PPII} + \text{PPIII}} = \frac{r_{33}}{r_{34}},$$

where the He3(He$^3, 2p$)He4 rate is r_{33} and the He$^3(\alpha, \gamma)$Be7 rate is r_{34}.

b) Defining

$$\alpha = \frac{\lambda_{34}^2}{\lambda_{33}\lambda_{pp}} \left(\frac{\text{He}^4}{\text{H}} \right)^2$$

show that

$$\frac{\text{PPI}}{\text{PPII} + \text{PPIII}} = \frac{(1 + \frac{2}{\alpha})^{1/2} - 1}{4},$$

once the He3 has come to equilibrium.

Q3. Let’s look further at the full PP reactions.

a) Write down the differential equations for H, D2, He3, He4, Be7, Li7, for the full PP chains.

b) By assuming that the sum (Li7 + Be7) is in equilibrium, show that

$$\frac{d\text{He}^4}{dt} = \lambda_{33} \frac{(\text{He}^3)^2}{2} + \lambda_{34}\text{He}^3\text{He}^4$$

c) It is convenient to write the He4 production rate for the PP chains as the value for the PPI chain multiplied by a correction factor which allows for the operation of the PPII and PPIII chains. Show that when both D2 and He3 are in equilibrium, as is the sum of (Li7 + Be7), then we find:

$$\frac{d\text{He}^4}{dt} = \frac{1}{2}\lambda_{pp} \frac{\text{H}^2}{2} \left[1 + \frac{2\lambda_{34}(\text{He}^3)^e\text{He}^4}{\lambda_{pp}\text{H}^2} \right]$$

d) Hence show that

$$\frac{d\text{He}^4}{dt} = \frac{1}{2}\lambda_{pp} \frac{\text{H}^2}{2} \Phi(\alpha)$$

where

$$\Phi(\alpha) = 1 - \alpha + \alpha \left(1 + \frac{2}{\alpha} \right)^{1/2}.$$
Q4. Let \(F_{PPI} \) be the fraction of \(\text{He}^4 \) produced by the PPI reactions. Likewise for \(F_{PPII} \) and \(F_{PPIII} \). The from Q1 we have:

\[
\frac{F_{PPI}}{F_{PPII} + F_{PPIII}} = \frac{(1 + \frac{2}{\alpha})^{1/2} - 1}{4}
\]

Hence show that

\[
F_{PPI} = \left[\left(1 + \frac{2}{\alpha} \right)^{1/2} - 1 \right] \left[\left(1 + \frac{2}{\alpha} \right)^{1/2} + 3 \right]^{-1}
\]

Q5. We saw in lectures that the CN cycle could be written in matrix form as

\[
\frac{dU}{dt} = \Lambda \bar{U}
\]

where

\[
\bar{U} = \begin{bmatrix} C_{12} \\ C_{13} \\ N_{14} \end{bmatrix} \quad \text{and} \quad \Lambda = \begin{bmatrix} -\frac{1}{\tau_{12}} & 0 & \frac{1}{\tau_{14}} \\ 0 & -\frac{1}{\tau_{13}} & 0 \\ \frac{1}{\tau_{12}} & \frac{1}{\tau_{13}} & -\frac{1}{\tau_{14}} \end{bmatrix}.
\]

The solution is

\[
\bar{U}(t) = A e^{\lambda_1 t} \bar{U}_1 + B e^{\lambda_2 t} \bar{U}_2 + C e^{\lambda_3 t} \bar{U}_3,
\]

where the \(\lambda_i \) are the eigenvalues and the \(\bar{U}_i \) the eigenvectors of \(\Lambda \).

a) Show that \(\lambda_1 = 0 \), \(\lambda_2 = -\frac{\Sigma + \Delta}{2} \) and \(\lambda_3 = -\frac{\Sigma - \Delta}{2} \) where \(\Delta \) and \(\Sigma \) are defined in the lecture notes.

b) Show that \(\bar{U}_1 \) is proportional to \(\begin{bmatrix} \tau_{12} \\ \tau_{13} \\ \tau_{14} \end{bmatrix} \).

Q6. In discussing the CN cycle we derived the differential equation:

\[
\frac{dN_{13}}{dt} = \frac{C_{12}}{\tau_{12}} - \frac{N_{13}}{\tau_{\beta}(13)}
\]

for the number abundance of \(N_{13} \) as a function of time when \(T < 10^8 \text{K} \). If the timescale of interest is short enough for both \(C_{12} \) and \(\tau_{12} \) to be considered constant, show that

\[
N_{13}(t) = \frac{C_{12}}{\tau_{12}} \tau_{\beta}(13) \left[1 - e^{-t/\tau_{\beta}(13)} \right],
\]

where we have assumed that \(N_{13}(0) = 0 \) (because it is an unstable isotope).

Q7. Helium burning occurs via the triple-alpha process:

\[
3\text{He}^4 \rightarrow \text{C}^{12}.
\]

Show that this releases about 1/10 as much energy per unit mass (of fuel destroyed) as H burning.

JCL: 10-September-2011