ASP3012: Stars and Galaxies Stars Exercise Sheet 4

Q1. For the full PP chains, show that the equilibrium abundance of He^{3} is given by:

$$
\left(\mathrm{He}^{3}\right)_{e}=\frac{1}{2 \lambda_{33}}\left[-\lambda_{34} \mathrm{He}^{4}+\left[\lambda_{34}\left(\mathrm{He}^{4}\right)^{2}+2 \lambda_{p p} \lambda_{33} \mathrm{H}^{2}\right]^{1 / 2}\right] .
$$

Q2. Consider the PP reactions, with the usual notation.
a) Show that the rate of He^{4} production by the PPI chain, compared to the combined PPII and PPIII chains, is:

$$
\frac{\text { PPI }}{\text { PPII }+ \text { PPIII }}=\frac{r_{33}}{r_{34}},
$$

where the $\mathrm{He}^{3}\left(\mathrm{He}^{3}, 2 \mathrm{p}\right) \mathrm{He}^{4}$ rate is r_{33} and the $\mathrm{He}^{3}(\alpha, \gamma) \mathrm{Be}^{7}$ rate is r_{34}.
b) Defining

$$
\alpha=\frac{\lambda_{34}^{2}}{\lambda_{33} \lambda_{p p}}\left(\frac{\mathrm{He}^{4}}{\mathrm{H}}\right)^{2}
$$

show that

$$
\frac{\mathrm{PPI}}{\mathrm{PPII}+\mathrm{PPIII}}=\frac{\left(1+\frac{2}{\alpha}\right)^{1 / 2}-1}{4},
$$

once the He^{3} has come to equilibrium.
Q3. Lets look further at the full PP reactions.
a) Write down the differential equations for $\mathrm{H}, \mathrm{D}^{2}, \mathrm{He}^{3}, \mathrm{He}^{4}, \mathrm{Be}^{7}, \mathrm{Li}^{7}$, for the full PP chains.
b) By assuming that the sum $\left(\mathrm{Li}^{7}+\mathrm{Be}^{7}\right)$ is in equilibrium, show that

$$
\frac{d \mathrm{He}^{4}}{d t}=\lambda_{33} \frac{\left(\mathrm{He}^{3}\right)^{2}}{2}+\lambda_{34} \mathrm{He}^{3} \mathrm{He}^{4}
$$

c) It is convenient to write the He^{4} production rate for the PP chains as the value for the PPI chain multiplied by a correction factor which allows for the operation of the PPII and PPIII chains. Show that when both D^{2} and He^{3} are in equilibrium, as is the sum of $\left(\mathrm{Li}^{7}+\mathrm{Be}^{7}\right)$, then we find:

$$
\frac{d \mathrm{He}^{4}}{d t}=\frac{1}{2} \lambda_{p p} \frac{\mathrm{H}^{2}}{2}\left[1+\frac{2 \lambda_{34}\left(\mathrm{He}^{3}\right)_{e} \mathrm{He}^{4}}{\lambda_{p p} \mathrm{H}^{2}}\right]
$$

d) Hence show that

$$
\frac{d \mathrm{He}^{4}}{d t}=\frac{1}{2} \lambda_{p p} \frac{\mathrm{H}^{2}}{2} \Phi(\alpha)
$$

where

$$
\Phi(\alpha)=1-\alpha+\alpha\left(1+\frac{2}{\alpha}\right)^{1 / 2}
$$

Q4. Let $F_{P P I}$ be the fraction of He^{4} produced by the PPI reactions. Likewise for $F_{P P I I}$ and $F_{\text {PPIII }}$. The from Q1 we have:

$$
\frac{F_{P P I}}{F_{P P I I}+F_{P P I I I}}=\frac{\left(1+\frac{2}{\alpha}\right)^{1 / 2}-1}{4}
$$

Hence show that

$$
F_{P P I}=\left[\left(1+\frac{2}{\alpha}\right)^{1 / 2}-1\right]\left[\left(1+\frac{2}{\alpha}\right)^{1 / 2}+3\right]^{-1}
$$

Q5. We saw in lectures that the CN cycle could be written in matrix form as

$$
\frac{d \underset{\sim}{U}}{d t}=\Lambda \underset{\sim}{U}
$$

where

$$
\underset{\sim}{U}=\left[\begin{array}{c}
\mathrm{C}^{12} \\
\mathrm{C}^{13} \\
\mathrm{~N}^{14}
\end{array}\right] \quad \text { and } \quad \Lambda=\left[\begin{array}{ccc}
-\frac{1}{\tau_{12}} & 0 & \frac{1}{\tau_{14}} \\
\frac{1}{\tau_{12}} & -\frac{1}{\tau_{13}} & 0 \\
0 & \frac{1}{\tau_{13}} & -\frac{1}{\tau_{14}}
\end{array}\right] .
$$

The solution is

$$
\underset{\sim}{U}(t)=A e^{\lambda_{1} t}{\underset{\sim}{U}}_{1}+B e^{\lambda_{2} t}{\underset{\sim}{U}}_{2}+C e^{\lambda_{3} t}{\underset{\sim}{U}}_{3},
$$

where the λ_{i} are the eigenvalues and the ${\underset{\sim}{\sim}}_{i}$ the eigenvectors of Λ.
a) Show that $\lambda_{1}=0, \lambda_{2}=\frac{-\Sigma+\Delta}{2}$ and $\lambda_{3}=\frac{-\Sigma-\Delta}{2}$ where Δ and Σ are defined in the lecture notes.
b) Show that ${\underset{\sim}{U}}_{1}$ is proportional to $\left[\begin{array}{l}\tau_{12} \\ \tau_{13} \\ \tau_{14}\end{array}\right]$.

Q6. In discussing the CN cycle we derived the differential equation:

$$
\frac{d \mathrm{~N}^{13}}{d t}=\frac{\mathrm{C}^{12}}{\tau_{12}}-\frac{\mathrm{N}^{13}}{\tau_{\beta}(13)}
$$

for the number abundance of N^{13} as a function of time when $T<10^{8} \mathrm{~K}$. If the timescale of interest is short enough for both C^{12} and τ_{12} to be considered constant, show that

$$
\mathrm{N}^{13}(t)=\frac{\mathrm{C}^{12}}{\tau_{12}} \tau_{\beta}(13)\left[1-e^{-t / \tau_{\beta}(13)}\right],
$$

where we have assumed that $\mathrm{N}^{13}(0)=0$ (because it is an unstable isotope).
Q7. Helium burning occurs via the triple-alpha process:

$$
3 \mathrm{He}^{4} \rightarrow \mathrm{C}^{12} .
$$

Show that this releases about $1 / 10$ as much energy per unit mass (of fuel destroyed) as H burning.

