ASP3012: Stars and Galaxies Stars Exercise Sheet 2

Q1. Consider a gas composed of $80 \% \mathrm{H}_{2}$ and 20% He by mass. After deciding on the level of ionization, calculate the mean molecular weight μ.

Q2. For a perfect monatomic gas undergoing adiabatic changes show that

$$
\frac{d P}{P}+\gamma \frac{d V}{V}=0 \quad \text { and } \quad \frac{d P}{P}+\frac{\gamma}{1-\gamma} \frac{d T}{T}=0
$$

Q3. Consider a perfect monatomic gas with radiation pressure, so that the total pressure is

$$
P=P_{g}+P_{r}=\frac{\rho \Re T}{\mu}+\frac{1}{3} a T^{4}
$$

and the internal energy per gram is

$$
U=U_{g}+U_{r}=c_{V} T+\frac{a T^{4}}{\rho}=\frac{1}{\gamma-1} \frac{\Re T}{\mu}+\frac{a T^{4}}{\rho}
$$

Hence show that:
a) $\frac{d P}{P}+\Gamma_{1} \frac{d V}{V}=0$
b) $\frac{d P}{P}+\frac{\Gamma_{2}}{1-\Gamma_{2}} \frac{d T}{T}=0$
c) $\frac{d T}{T}+\left(\Gamma_{3}-1\right) \frac{d V}{V}=0$
where: $\Gamma_{1}=\frac{32-24 \beta-3 \beta^{2}}{24-21 \beta} \quad \Gamma_{2}=\frac{32-24 \beta-3 \beta^{2}}{24-18 \beta-3 \beta^{2}} \quad \Gamma_{3}=\frac{32-27 \beta}{24-21 \beta}$

Q4. Using the results of Q 3 show that $\frac{\Gamma_{1}}{\Gamma_{3}-1}=\frac{\Gamma_{2}}{\Gamma_{2}-1}$.
Q5. Plot the variation of the generalised gammas (defined in Q1) as a function of β. Note how they all reduce to $5 / 3$ when $P_{r} \rightarrow 0$, but reduce to $4 / 3$ when $P_{g} \rightarrow 0$.

Q6. A very important quantity is the "adiabatic temperature gradient", $\nabla_{a d}$, defined by

$$
\nabla_{a d}=\left(\frac{d \ln T}{d \ln P}\right)_{e n t r o p y}
$$

a) For a perfect monatomic gas show that: $\quad \nabla_{a d}=\frac{\gamma-1}{\gamma}=\frac{2}{5}$.
b) By adding radiation pressure show that: $\quad \nabla_{a d}=\frac{\Gamma_{2}-1}{\Gamma_{2}}$.

Q7. Show that, for a perfect monatomic gas with radiation pressure:

$$
P=\left[\left(\frac{\Re}{\mu}\right)^{4} \frac{3}{a} \frac{1-\beta}{\beta^{4}}\right]^{1 / 3} \rho^{4 / 3}
$$

Q8. a) From the first law of thermodynamics show that

$$
\begin{aligned}
& \left(\frac{\partial S}{\partial V}\right)_{T}=\frac{1}{T}\left[\left(\frac{\partial U}{\partial V}\right)_{T}+P\right] \\
& \left(\frac{\partial S}{\partial T}\right)_{V}=\frac{1}{T}\left(\frac{\partial U}{\partial T}\right)_{V}
\end{aligned}
$$

b) Hence show that: $\quad\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial P}{\partial T}\right)_{V}-P$.

Q9. Recall the definition of the specific heat for some thermodynamic quantity A held constant:

$$
c_{A}=\left(\frac{d Q}{d T}\right)_{A}
$$

Hence show that

$$
c_{P}-c_{V}=T\left(\frac{\partial V}{\partial T}\right)_{P}\left(\frac{\partial P}{\partial T}\right)_{V}
$$

(You will need the result of the previous question.)
Q10. Define α and δ by

$$
\alpha=\left(\frac{\partial \ln \rho}{\partial \ln P}\right)_{T} \quad \text { and } \quad \delta=-\left(\frac{\partial \ln \rho}{\partial \ln T}\right)_{P}
$$

Show that
a) $\alpha=1 / \beta$
b) $\delta=(4-3 \beta) / \beta$
c) $c_{P}-c_{V}=\frac{P \delta^{2}}{\rho T \alpha}$.

Q11. Hence, using the results of this sheet, derive the useful expression $\nabla_{a d}=\frac{P \delta}{T \rho c_{P}}$ for the adiabatic gradient.

Q12. Show that another expression for the adiabatic gradient is

$$
\nabla_{a d}=\frac{\Re \delta}{\beta \mu c_{P}}=\left(\frac{\gamma-1}{\gamma}\right)\left(\frac{4-3 \beta}{\beta^{2}}\right)
$$

