
Chapter 11

ORDINARY DIFFERENTIAL EQUATIONS

The general form of a first order differential equations is

dy

dx
= f(x, y)

with initial condition y(a) = ya. We seek the solution y = y(x) for x > a. This is shown in Figure 1,
and is known as an “initial value problem”. (Boundary value problems are more complicated, and will
be discussed briefly later.)
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Figure 1: Geometrical interpretation of the problem.

Although some of these equations may be solved analytically (e.g. when f is linear in y, the
equation is separable) most are not solvable by analytical techniques. Indeed, even when there is an
analytical solution it is often of little practical use to us. For example, the d.e.:

dy

dx
+ 2xy = 1

with y(0) = 0 has solution

y(x) = e−x2

∫ x

0
et2dt.

This integral must be evaluated numerically, and is no easier than doing the initial problem numerically
from the start.

Note that numerical integration is simply a special case of solving a d.e. since

I =

∫ b

a
f(x)dx
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is equivalent to solving for I = y(b) with
dy

dx
= f(x)

and y(a) = 0. Note that there is no y in the right-hand-side of the differential equation.

1. The Euler Method

This is the simplest (and least accurate) method, but it illustrates the general principles underlying
the better schemes. We shall divide the area of integration, [a, b], into n equal segments of width
h = (b − a)/n, and define

xi = a + ih i = 0, 1, . . . , n.

This is shown in Figure 2.
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Figure 2: The Euler Method.

Clearly, from the diagram,
y1 =y0 + slope ×h

=y0 + hf(x0, y0)

and
y2 = y1 + hf(x1, y1)

which yields the general formula
yi+1 = yi + hf(xi, yi).

An alternative derivation of this Euler formula is possible from the Taylor Series:

y(xi+1) = y(xi) + hy′(xi) +
h2

2
y′′(xi) + . . .

If we neglect terms of order h2 (i.e. we “truncate”the series here, so that the “(local) truncation error”
is O(h2)):

yi+1 =yi + hy′(xi)

=yi + hf(xi, yi).
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Note some salient features:

— at each step we introduce an error due to truncation of the series, called the “local truncation
error”, which is O(h2) in this method.

— the complete integration involves n steps, so that the “global” error is ∼ nh2 ∼ (nh)h, and
since nh = (b − a) = constant, then the “global” error is O(h).

e.g. Solve dy
dx = y on [0, 1] with y(0) = 1 using Euler’s method with n = 10.

xi =0.1i i = 0, 1, . . . , 10

yi =yi + hf(xi, yi)

=yi + 0.1yi = 1.1yi

The exact solution is easily found to be y = ex, so we can calculate the Euler Method value and compare
with the exact solution: Thus the solution is:

xi yi % error
0.0 1.00 0.0
0.1 1.10 0.5
0.2 1.21 0.9
0.3 1.33 1.4
0.4 1.46 1.9
0.5 1.61 2.3
0.6 1.77 2.8
0.7 1.95 3.2
0.8 2.14 3.8
0.9 2.36 4.0
1.0 2.59 4.6

Note that the local error in this case is ∼ h2

2 y′′ ∼ h2/2 ∼ 0.04. This is verified in the table: the

error increases by 1
2% per step to a total of ∼ n×1

2% ≃5%.

Obviously the global error here ∝ h, so we can get more accurate results by decreasing h. Figure
3 shows the solution found by the Euler method with h = 0.1 together with the analytic solution.
Figure 4 shows the improvement we obtain when we decrease h to 0.05. Cearly we cannot decrease h
indefinitely, to obtain a given accuracy, because of the growth of round-off errors when the number of
calculations increases. We can do better than this !

2. Improved Euler Method (“Huen’s Method”)

The principal contribution to the error in Euler’s method is the neglect of curvature in the intervals
[xi, xi+1]. Rather than take a constant slope across the interval equal to the initial value, we can use
the average across the interval. This is shown in Figure 5 below.

Hence we can write

yi+1 = yi + h

[

f(xi, yi) + f(xi+1, yi+1)

2

]

.

The problem with this equation is that it is implicit , with yi+1 appearing on both sides of the equation.
To avoid this problem we will predict a value of yi+1 to use on the right-hand-side, and then use this
to provide a corrected value. We predict by using the Euler method:

ȳi+1 = yi + hf(xi, yi)
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Figure 3: Results of Euler Method with h = 0.1.

Figure 4: Results of Euler Method with h = 0.05.

and then use this in the above formula for yi+1:

yi+1 = yi + h

[

f(xi, yi) + f(xi+1, ȳi+1)

2

]

.

e.g. Solve dy
dx = y on [0, 1] again, with h = 0.1.
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Figure 5: The Improved-Euler Method.

Here
ȳi+1 =yi + hf(xi, yi) = yi + 0.1yi = 1.1yi (the Euler method value)

⇒ yi+1 =yi +
h

2
[f(xi, yi) + f(xi + h, ȳi+1)]

=yi +
0.1

2
[yi + 1.1yi]

=1.105yi

Using this we can construct the following table:
xi yi % error
0.0 1.000 0.00
0.1 1.105 0.02
0.2 1.221 0.03
0.3 1.349 0.05
0.4 1.491 0.06
0.5 1.647 0.08
0.6 1.820 0.09
0.7 2.012 0.11
0.8 2.223 0.12
0.9 2.456 0.14
1.0 2.714 0.15

Clearly this is much more accurate than the Euler method. Figure 6 shows this solution plotted
against the exact solution, and Figure 7 shows the results obtained with n = 20.

Let’s look at the error in the Improved Euler Method. Using the Taylor’s Series for 2 variables:

f(xi+1, ȳi+1) = f(xi + h, yi + k)

where k = hf(xi, yi) has been substituted to make the expansion clear. Proceeding with the expansion:

f(xi+1, ȳi+1) = f(xi, yi) + h
∂f

∂x
(xi, yi) + k

∂f

∂y
(xi, yi) + O(h2).
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Figure 6: Results with Improved-Euler method and h = 0.1.

If we now substitute in the expression for k we find

f(xi+1, ȳi+1) =f(xi, yi) + h
∂f

∂x
(xi, yi) + (hf(xi, yi))

∂f

∂y
(xi, yi) + O(h2)

=
dy

dx
+ h

[

∂f

∂x
+

∂f

∂y

dy

dx

]

+ O(h2)

=
dy

dx
+ h

df

dx
+ O(h2).

But f = dy
dx so:

f(xi+1, ȳi+1) =
dy

dx
+ h

d2y

dx2
+ O(h2).
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Figure 7: Results with Improved-Euler method and h = 0.05.

Hence, substituting this into the Improved Euler formula:

yi+1 =yi +
h

2
[f(xi, yi) + f(xi + h, yi + hf(xi, yi))]

=yi +
h

2

[

dy

dx
+

dy

dx
+ h

d2y

dx2
+ O(h2)

]

=yi + h
dy

dx
+

h2

2

d2y

dx2
+ O(h3).

This is a Taylor Series to second order in h, and hence the local truncation error is O(h3). Thus the
global error is O(nh3) ∼ O(h2) since nh = b − a.

In our previous example

y(1) =2.7172 with n = 10 : so the global error = 0.15%

y(1) =2.7140 with n = 20 : so the global error = 0.04%

So with h decreasing by a factor of 2 the error decreased by a factor of 4, as expected. Note that to
achieve an error of 0.1% at x = 1 would require
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— h = 1
12 with the Improved Euler Method,

— h = 1
480 with the Euler Method.

Thus there are two important advantages of the Improved Euler over the Euler:

— the error is smaller for a given h

— decreasing h increases the accuracy more quickly in the Improved Euler than in the Euler.

Finally, consider the case where
dy

dx
= f(x) (1)

i.e. the right-hand-side does not include y. Then the predictor step is not required and the corrector
equation is

yi+1 = yi +
h

2
[f(xi) + f(xi+1)] .

We now demonstrate that this is equivalent to the Trapezoidal Rule. From (1):

∫ yi+1

yi

dy =

∫ xi+1

xi

f(x)dx

yi+1 − yi =

∫ xi+1

xi

f(x)dx

or yi+1 =yi +

∫ xi+1

xi

f(x)dx.

Now, using the Trapezoidal Rule to evaluate the integral:

∫ xi+1

xi

f(x)dx =

(

xi+1 − xi

2

)

(f(xi+1) + f(xi)) .

Substituting:

yi+1 = yi +
h

2
[f(xi+1) + f(xi)] ,

as required. Thus the Improved Euler method is equivalent to the Trapezoidal Rule.

A goodway to estimate the relative amount of computer time required to solve a differential equa-
tion is to count the number of calls to the function routine. The overheads are essentially proportional
to this figure, so twice as many calls will mean twice as long to run, in general. Note that the Improved
Euler method uses two function calls per step, which is twice as many as the Euler method. So for the
same amount of computer time (or actual dollar cost, if one is paying for time on a major computer)
one can use steps which are half as small in the Euler Method than in the Improved Euler method. The
advantage lies in the fact that the Improved Euler method with step 2h is usually more accurate than
the Euler with step h, as we saw above.
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3. Modified Euler Method

Another simple modification to the Euler Method is to use the slope of the mid-point of [xi, xi+1]:

yi+1 = yi + hf(xi+ 1
2

, yi+ 1
2

),

where xi+ 1
2

= xi + h/2 and for yi+ 1
2

we use the Euler method:

yi+ 1
2

= yi +
h

2
f(xi, yi).

Like the Improved Euler method, the Modified Euler Method has a global error O(h2), and uses two
function calls per step.

4. Fourth-Order Runge-Kutta Method

The Euler, Improved Euler and Modified Euler are particular examples of a class of techniques
known as “Runge-Kutta” methods, which have the general form

yi+1 = yi + hφ

where φ is some approximation to the slope. For example:

a) φ = k1 where k1 = f(xi, yi) is the Euler Method.

b) φ = k2 where k=
2 f(xi +

1

2
h, yi + h

k1

2
) is the Modified Euler Method.

c) φ =
1

2
(k1 + k⋆

2) where k⋆
2 = f(xi + h, yi + hk1) is the Improved Euler Method.

The most popular method of this class is the 4th Order Runge-Kutta Method, which has a global
error of order h4 which means that the local truncation error is O(h5). In this method we take:

k1 =f(xi, yi)

k2 =f(xi +
h

2
, yi +

hk1

2
)

k3 =f(xi +
h

2
, yi +

hk2

2
)

k4 =f(xi + h, yi + hk3)

and
yi+1 = yi + hφ

where

φ =
1

6
(k1 + 2k2 + 2k3 + k4) .

e.g. Solve dy
dx = y (again !) with y(0) = 1 but with only TWO subdivisions of h = 1

2 .

The first step is
k1 =y0 = 1

k2 =y0 +
hk1

2
= 1.25

k3 =y0 +
hk2

2
= 1.3125

k4 =y0 + hk3 = 1.65625
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And hence

y1 = y0 +
h

6
(k1 + 2k2 + 2k3 + k4) = 1.64844.

And the second step is
k1 =y1 = 1.64844

k2 =y1 +
hk1

2
= 1.25y1

k3 =y1 +
hk2

2
= 1.3125y1

k4 =y1 + hk3 = 1.65625y1

And hence

y2 = y1 +
h

6
(k1 + 2k2 + 2k3 + k4) = 2.71735.

Thus we have a global error of only 0.03% with n = 2 ! This is more accurate than the Improved Euler
method with n = 20 !

Concerning computational efficiency, we note that each step of the 4th order Runge-Kutta method
take 4 function evaluations (one per k value). So n = 2 uses 8 evaluations, whereas the Improved Euler
with n = 20 uses 40 function evaluations ! So the RK4 method gave a better answer with less work.
Figure 8 shows the log of the errors for this problem with n = 10 and each of the Euler, Improved Euler,
and RK4 methods.

Figure 8: Comparison of errors with the different methods.
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5. Errors

We’ll now look at an example, but keep the number of function evaluations constant, so that each
method takes the same amount of computer time. Consider now the d.e.

dy

dx
= −y + 1

over the interval [0, 0.5] with y(0) = 0. Suppose we solve this with RK4 using h = 0.1, so that n = 5.
This is 20 function evaluations. If the Improved Euler method is to step across this interval with 20
function evaluations, then we need 10 steps of h = 0.05 because each step takes two function evaluations.
And for the Euler Method, as each step needs one function evaluation, then we take 20 steps across the
interval, or h = 0.025. The table below shows the results:

x E (h = 0.025) IE (h = 0.05) RK4 (h = 0.1) Exact
0.1 0.096312 0.095120 0.09516250 0.09516258
0.2 0.183348 0.181198 0.18126910 0.18126925
0.3 0.262001 0.259085 0.25918158 0.25918178
0.4 0.333079 0.329085 0.32967971 0.32967995
0.5 0.397312 0.393337 0.39346906 0.39346934

This shows quite clearly that even for the same amount of work. the RK4 method is significantly
better, and hence the method of choice.

In figure 9 we apply the three methods we have developed to the solution of the d.e.

dy

dx
= 5x4

with y(−1) = −1, and n = 10. In figure 10 we repeat this, but with n = 20. For the Euler Method the
log of the error decreases from about −0.3 to −0.6, which is a factor of 2 smaller when h was halved.
For the Improved Euler method the log of the error decreases from −1.3 to −1.8, which is about a
factor of 4 smaller. And, for RK4 the log of the error goes from about −4 or −5 to −5.2 or −6.5, which
is about a factor of 16 smaller. Thus the errors decrease as

— h for the Euler method,

— h2 for the Improved Euler method,

— h4 for the RK4 method.

Finally, Figure 11 shows the solution to

dy

dx
= y + x

with y(0) = 0 and the three methods discussed so far. Again, we have adjusted n in each case so that
the amount of work done in each case is identical. The solid line is the analytical solution, and we see
that even though we used only n = 5 for the RK4 method, the solution is very good, and well ahead of
both the Improved Euler (with n = 10) and the Euler (with n = 20).
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Figure 9: Comparison of errors in solving dy
dx = 5x4 with n = 10.

Figure 10: Comparison of errors in solving dy
dx = 5x4 with n = 20.

6. Error Control: The Runge-Kutta-Fehlberg Method

Ideally, we wish to specify the maximum error we will accept in our numerical solution, and then
expend the minimum effort necessary to achieve this. In general this is not consistent with a constant
step-length. So we now look at a method which uses an adaptive step-length h.
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Figure 11: Comparison with different n but same amount of CPU time.

One technique, as we saw in Richardson Extrapolation, is to do the calculation once with h and
then again with h/2, enabling us to estimate the errors. We shall use a related, but more advanced
technique here.

Suppse Y (x) is an exact solution of

dy

dx
= f(x, y).

Let y be a solution from a method with global error O(h4), such as the RK4 method. Let z be a
solution from a method with global error O(h5) (e.g. a different RK scheme, say RK5). Then the local
truncation error is

yi =Yi + αh5,

zi =Yi + βh6.

Thus

|yi − zi| =Yi + αh5 − (Yi + βh6)

=αh5 + O(h6). (1)

Suppose we now want to make the same step but with h′ = sh. Then the solution ȳi has truncation
error:

ȳi − Yi = α(sh)5 = αs5h5.

If we limit this error to the value T then

αs5h5 =T,

⇒ αh5 =
T

s5
.
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Substituting this into (1):

|yi − zi| =
T

s5

⇒ s =

(

T

|yi − zi|

)1/5

.

This determines s, given yi and zi, and hence tells us the new step to use so that our error is below the
specified tolerance. To be sure, one usually replaces T by T/2 so that

s =

(

T

2|yi − zi|

)1/5

.

Alternatively, one can look at the global error:

yi = Yi + α(sh)4

and hence

|yi − Yi| = αs4h4 = T ⇒ αh4 =
T

s4
.

Substituting this into equation (1):
hT

s4
= |yi − zi|

and

⇒ s =

(

hT

|yi − zi|

)1/4

.

Note that this is a factor of h1/4 stricter than our previous criterion. Again, it is common to let
T → T/2:

s =

(

hT

2|yi − zi|

)1/4

. (2)

The problem that remains is to find y and z !

Well, we already have a method which has global error O(h4)—this is the RK4 method. If we can
devise a 5th order method it will, in general, have it’s own 5 k’s, giving a total of 9 k’s to be evaluated
at each step. This is very expensive in computer time. But these k’s are not unique, and Fehlberg (in
1966) found a set of 6 k’s which would allow a 4th order and a 5th order solution ! This is only one
function evaluation more than any 5th order method. This is the so-called “Runge-Kutta-Fehlberg”
method (RKF). It uses

yi+1 =yi +
25

216
k1 +

1408

2565
k3 +

2197

4104
k4 −

1

5
k5.

zi+1 =zi +
16

135
k1 +

6656

12825
k3 +

28561

56430
k4 +

9

50
k5 +

2

55
k6.
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where
k1 =hf(xi, yi)

k2 =hf(xi +
h

4
, yi +

1

4
k1)

k3 =hf(xi +
3h

8
, yi +

3

32
k1 +

9

32
k2)

k4 =hf(xi +
12h

13
, yi +

1932

2197
k1 −

7200

2197
k2 +

7296

2197
k3)

k5 =hf(xi + h, yi +
439

210
k1 − 8k2 +

3680

513
k3 −

845

4104
k4)

k6 =hf(xi +
1

2
h, yi −

8

27
k1 + 2k2 −

3544

2566
k3 +

1859

4104
k4 −

11

40
k5)

Then we adjust h → sh according to

s =

(

hT

2|yi − zi|

)1/4

.

Typically we restrict the rate of change of h with something like:
if (s > 2) then

Set h = 2h
else if (s < 0.5) then

Set h = 0.5h
else

Set h = sh
endif

if (h < hmin) set h = hmin

if (h > hmax) set h = hmax

It is important to note neither of our formulae for s will actually work in practice. The reason is
because we are using the current values of y and z, and these include all accumulated differences from
the first step. In reality, we need the difference in the addition to y and z at the current step. So the
denominator in the equations for s should not really be |yi − zi| but |y(i−yi−1) − z(i−zi−1)|. This is
purely because we derived the formula assuming that we started with the exact valuye Y , and looked
at the change. If we accumulate the change, however, then the errors begin to accumulate also. Hence
we must look only at the difference in the increments. Think about this, and it should all become clear
(eventually).

7. Higher-Order Differential Equations

The earlier methods can be easily extended to 2nd or higher order differential equations. Here we
seek a solution of

d2y

dx2
= F (x, y,

dy

dx
),

where F is given and y(x0) = y0 and dy
dx(x0) = z0, say. Note that we have two (because it is a second

order equation) initial conditions, and hence this is an initial value problem. If we have y(x0) = y0

and y(xn) = yn then we have boundary conditions and we say the problem is a boundary value
problem. These are more subtle, and we will discuss them briefly later.

The basis of our approach is to split the 2nd order d.e. into two first order d.e.s by defining a new
dependent variable:

z =
dy

dx
.
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Then we must solve
dy

dx
=z

dz

dx
=F (x, y, z).

This is a special case of the coupled pair of equations

dy

dx
=G(x, y, z)

dz

dx
=F (x, y, z)

where G = z. But the principle is the same for both: we simply apply our chosen method to the two

first order d.e.s (noting that the zi and yi resulting from dz
dx and dy

dx are then used in each d.e. Note that
this principle can be generalised to any number of coupled d.e.s, and hence to any d.e. of any order.

So, for a second order d.e. solved by the Euler Method we have:

yi+1 = yi + hzi

zi+1 = zi + hF (xi, yi, zi)

for i = 0, 1, . . . , n. Note that these equations are coupled: we need both yi and zi before we can get
yi+1 or zi+1, We cannot solve for all the yi and then the zi (or vice versa).

For the improved Euler method we have a predictor and a corrector step for each variable:

Predict: ȳi+1 =yi + hzi

z̄i+1 =zi + hF (xi, yi, zi)

Correct: yi+1 =yi +
1

2
h(zi + z̄i+1)

zi+1 =zi +
1

2
h
(

F (xi, yi, zi) + F (xi+1, ȳi+1, z̄i+1)
)

e.g. Consider the d.e.
d2y

dx2
+ 2

dy

dx
+ y = 1,

with y(0) = 0 and dy
dx(0) = 0. Here we set dy

dx = z and thus

d2y

dx2
=

dz

dx
= 1 − 2

dy

dx
− y.

We have y0 = 0 and z0 = 0. Using 2 steps of the Improved Euler Method yields:

ȳ1 = y0 + hz0 = 0 z̄1 = z0 + h(1 − y0 − 2z0) =
1

2

y1 = y0 +
1

2
h(z0 + z̄1) z1 = z0 +

1

2
h [(1 − y0 − 2z0) + (1 − ȳ1 − 2z̄1)]

=
1

8
=

1

4

ȳ2 = y1 + hz1 =
1

4
z̄2 = z1 + h(1 − y1 − 2z1) =

7

16

y2 = y1 +
1

2
h(z1 + z̄2) z2 = z1 +

1

2
h [(1 − y1 − 2z1) + (1 − ȳ2 − 2z̄2)]
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=
19

64
=

5

16

Thus we estimate y(1) = 19/64 ≃ 0.297. Using h = 1
4 yields y(1) ≃ 0.270. The exact solution is

y(x) = 1 − (x + 1)e−x

and hence y(1) = 0.2642. Of course, one can now use Richardson Extrapolation on our two 2nd order
approximations to obtain:

y(1) ≃ 4

3
×0.270 − 1

3
0.297 ≃ 0.261.

Alternatively, of course, we could use the RK4 scheme. In this case we would have

yi+1 =yi +
h

6
(k1 + 2k2 + 2k3 + k4)

zi+1 =zi +
h

6
(ℓ1 + 2ℓ2 + 2ℓ3 + ℓ4)

where
k1 =f(xi, yi, zi) = zi

k2 =f(xi +
h

2
, yi +

hk1

2
, zi +

hℓ1

2
) = (zi +

hℓ1

2
)

k3 =f(xi +
h

2
, yi +

hk2

2
, zi +

hℓ2

2
) = (zi +

hℓ2

2
)

k4 =f(xi + h, yi + hk3, zi + hℓ3) = (zi + hℓ3)

ℓ1 =g(xi, yi, zi)

ℓ2 =g(xi +
h

2
, yi +

hk1

2
, zi +

hℓ1

2
)

ℓ3 =g(xi +
h

2
, yi +

hk2

2
, zi +

hℓ2

2
)

ℓ4 =g(xi + h, yi + hk3, zi + hℓ3)

One could also use the RKF method, etc etc. And, as said earlier, this technique can be used to solve
any system of o.d.e.s of any order.

8. Boundary Value Problems

We limit our discussion in this section to 2nd order differential equations. In this case we do not

know dy
dx initially, but rather we know y(a) = A and y(b) = B. There are two main techniques for

solving these problems:

i) the shooting method

ii) finite-difference methods.
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y(a)

y(b)=B

y(b)=B

y(b)=B

ba

1

2

= required value

Figure 12: The Shooting Method.

8.1 The Shooting Method

The basis of this method is to guess an initial value for dy
dx and use an initial-value method (e.g.

RK4). Of course, we won’t have y = y(b) = the desired value = B. So we now choose a different initial

value of dy
dx and repeat. This is shown schematically in figure 12.

Let our first guess for dy
dx at x = a be A′(1) and suppose this resulted in y(b) = B(1). Suppose

now that our second guess for dy
dx at x = a was A′(2) and suppose this resulted in y(b) = B(2). Clearly

we wish to find A′ so that y(b) = B. Effectively, we can think of y(b) as a non-linear function g of A′.
Then we want the root of

g(A′) − B = 0.

We can solve this using

i) Secant method

ii) Bisection method

iii) False-Position method

We cannot use the Newton-Raphson method, of course, because we do not know how to differen-
tiate g. Nevertheless, we can now solve this equation for A′. But note that each iteration involves an
RK4 integration ! Hence the Shooting Method is not very efficient.

8.2 Finite-Difference Methods

An alternative method is to approximate the derivatives with approximate formulae known as
“difference” formulae. To see this, consider the Taylor Series expansions:

y(xi+1) =y(xi) + hy′(xi) +
h2

2
y′′(xi) . . .

y(xi−1) =y(xi) − hy′(xi) +
h2

2
y′′(xi) . . .

If we now add these two equations (and write yi for y(xi)):

yi+1 + yi−1 = 2yi + h2y′′i + O(h4),
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which yields

y′′i =
yi+1 − 2yi + yi−1

h2
+ O(h4).

Alternatively, if we subtract the two Taylor Series:

y′i =
yi+1 − yi−1

2h
+ O(h2).

Using this technique we can determine approximate formulae for various derivatives. These can then
be substituted into the d.e. and hence we obtain a set of simultaneous algebraic equations to solve for
the yi !

e.g. Consider the differential equation

α
d2y

dx2
+ β

dy

dx
+ γy = δ

where α, β, γ and δ are constants. Then let y(a) = y0 and y(b) = ye at the end-point. Divide the
interval b − a into n equal intervals of width h = (b − a)/n. Then substitute the difference equations:

y′′i =
yi+1 − 2yi + yi−1

h2

y′i =
yi+1 − yi−1

2h

into the differential equation to obtain:

α

h2
(yi+1 − 2yi + yi−1) +

β

2h
(yi+1 − yi−1) + γyi = δ

for i = 0, 1, . . . , n. The resulting yi will be approximate solutions for y(xi). Now, we can re-write these
equations as

α(y2 − 2y1 + y0) +
βh

2
(y2 − y0) + γy1h

2 = δh2

α(y3 − 2y2 + y1) +
βh

2
(y3 − y1) + γy2h

2 = δh2

...
...

...

α(yn − 2yn−1 + yn−2) +
βh

2
(yn − yn−1) + γynh2 = δh2.

We can write this in matrix form as:





















γh2 − 2α α + βh
2 0 0 . . . 0

α − βh
2 γh2 − 2α α + βh

2 0 . . . 0

0 α − βh
2 γh2 − 2α α + βh

2
. . . 0

...
. . .

. . .
. . .

. . .
...

...
. . . α − βh

2 γh2 − 2α α + βh
2

0 . . . . . . 0 α − βh
2 γh2 − 2α





















y

˜

=

















δh2 − (α − βh
2 )y0

δh2

δh2

...
δh2

δh2 + (α − βh
2 )yn

















,

where

y

˜

=









y1

y2
...

yn









.
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Note that this is a tri-diagonal system ! This is another example of why the Thomas Algorithm is so
important. An advantage of this finite-difference technique is that the constants α, β, γ and δ can very
easily be made functions of x.

e.g. Solve the differential equation
y′′ + 2y′ + y = 0

with y(0) = 1 and y(1) = 0. Using finite-differences with n segments we get

(

yi+1 − 2yi + yi−1

h2

)

+ 2

(

yi+1 − yi−1

2h

)

+ yi = 0

which becomes
(1 − h)yi−1 + (h2 − 2)yi + (1 + h)yi+1 = 0.

With h = 0.2 (i.e. n = 5 intervals) and y0 = 1 and y5 = 0:







−1.96 1.2 0 0
0.8 −1.96 0 0
0 0.8 −1.96 1.2
0 0 0.8 −1.96













y1

y2

y3

y4






=







−0.8
0
0

−1.2






.

Using the Thomas algorithm yields:

y

˜

=







0.65
0.40
0.22
0.09






≃







y(0.2)
y(0.4)
y(0.6)
y(0.8)






.

The exact solution is
y(x) = (1 − x)e−x

so that this finite-difference solution is accurate to 2 decimal places. One can control the error by using
higher accuracy difference formulae, which are beyond the scope of this introductory course.
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Exercises:

1. Use Euler’s method with h = 0.2 to determine approximate values of the solutions of each of the
following differential equations in [0,1]:

(a)
dy

dx
= −y (b)

dy

dx
= 2x

where y(0) = 1 in each case. Determine the exact solution and plot both your results and the exact
solution. Calculate the errors at each point.

2. Repeat Question 1 but with h = 0.1 and show that the errors at each point x = 0.2, 0.4, 0.6, 0.8
and 1.0 are halved from the case where h = 0.2.

3. Repeat Question 1(a) using the Improved Euler (Huen’s) Method and h = 0.2. Recalculate the
solution with h = 0.1 and identify the factor by which the error is reduced when h is halved.

4. Calculate the approximate solution of the differential equation

dy

dx
= −y2, y(0) = 1

using both the Improved Euler method and the Modified Euler method for two steps with h = 0.5.
Repeat using four steps of h = 0.25 and compare the errors in each case.

5. Use the fourth order Runge-Kutta method to determine an approximate value of y(1) for the
differential equation

dy

dx
= 2xy,

given y(0) = 2. Use n = 2, 5 and 10.

6. Use Euler’s method, the Improved Euler method and the fourth-order Runge-Kutta method to
determine the approximate solution of the equation

dy

dx
= x + y, y(0) = 0.

Integrate from x = 0 to x = 1 and in each case use n = 10. Plot all 3 graphs on the same axes together
with the exact solution. Repeat, again with n = 10, but this time over the interval x = 0 to x = 5.

7. Again consider the differential equation in Question 6. Plot the solutions obtained with

i) the Euler method with n = 20,

ii) the Improved Euler method with n = 10,

iii) the fourth-order Runge-Kutta method with n = 5, on the same axes.

Note that these all involve the same number of function evaluations, yet the RK4 solution is clearly
superior.

8. Show that each step of the fourth-order Runge-Kutta method for the aproximate solution of the
differential equation

dy

dx
= y
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using a step-length in x of h yields approximate values yi for y(xi) which can be written as

yi = Ayi−1

where

A = 1 + h +
h2

2
+

h3

6
+

h4

24
.

Identify the value of A for the exact solution and hence show that the error in A is O(h5).
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