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Stars Lab 2: Polytropic Stellar Models

1 Introduction

In the last lab you learned how to use numerical methods to solve various ordinary differential equations. Our
aim was to finally get to the stage where we could reliably solve the Lane-Emden equation to make a simple
stellar model. We did that. But we only looked at a couple of properties of the resulting solutions. Here we will
look more at the interior. We will also add a luminosity equation to the integrations, and finally we will try to
construct a main sequence from polytropes. We will also look briefly at the properties of white dwarfs.

2 The Lane-Emden Equation

You may recall the Lane-Emden equation which is written in dimensionless form as:
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where the following variables are used/defined:

r = αξ (2)
ρ = ρcθ

n (3)
T = Tcθ (4)
P = Kργ (5)
P = Pcθ

n+1 (6)

n =
1

γ − 1
(7)

α =

[
K(n + 1)ρ1/n−1

c

4πG

]1/2

(8)

ξ1 = first zero of θ(ξ) i.e. θ(ξ1) = 0 (9)
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You previously used the code le to solve the Lane-Emden equation. This uses the Runge-Kutta-Fehlberg
method to provide an answer to a specified mazximum error, or tolerance. To remind yourself how to run the
code run it again now.

Run le by typing le and hitting ENTER. The code will request

• n: the polytropic index (must be below 5 of course!)

• iout: how often to output an integrations step (use 1, for every step)

• hmax: the maximum step-size (try hmax = 0.5 maybe)

• tolerance: the maximum error (try 1.e-5)

The output gives you a table of x = ξ (in our standard terminology), y = θ, z = dθ
dξ and h. It also tells you if

the method had to reject a step as too large.

Once it has found the surface it prints out the other things we are interested in : ξ1,
ρc

ρ̄
and −ξ2 dθ

dξ
.
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3 Structure of Polytropes

Now lets have a look at the internal structure of our polytropes. The key variable is of course θ in that it
determines all of the thermodynamical variables, through equations (3)–(6).

Run the program plotle to see θ(ξ) and θn(ξ)). I have written this program so that it draws a symbol (large
square) at each integration point. First look at θ(ξ) which is just the scaled temperature. This is not particularly
concentrated toward the centre. But the second graph (hit ENTER twice) shows θn vs ξ. Since θn is just ρ/ρc we
see that the density is much more contrally concentrated than the temperature is.

Q1(a) Run plotle for an n = 3 polytrope. At what value of ξ is the temperature half of its central value? At
what value of ξ is the density half of its central value?

Q1(b) Prepare a table showing the ξ values of the halfway point in temperature and denisty fo n = 0, 1, 1.5, 2, 3
and 4. Just read the value from the graph as best you can, but instead of running plotle you should use
plotle0.5 which will guide your eye to the mid-point values.

Q1(c) What happens as we increase n? Explain your result for n = 0.

3.1 Central Concentration of T and ρ

It appears that as n increases, the star concentrates its density and temperature at the centre. Run the program
multiplotle1 to view the solution for various values of n on the same axes. This code plots θ vs ξ, or the
scaled temperature vs the radius.

Its a little hard to be certain of the relative concentration since the radius ξ1 is changing for each value of n.
Hence I have prepared a program multiplotle1scaled which plots the value of θ against ξ/ξ1 so that all the
radius is scaled to one for each star. this one clearly shows that the temperature gets more concentrated to the
centre.

Now look at the distribution of ρ/ρc vs ξ by running multiplotle2. Again, its a little hard to see what is
going on with such large variations in ξ1. So run the version multiplotle2scaled which scales all radi to
unity.

Experiment a little with multiplotle3awhich plots the log of the density against the radius, and multiplotle3ascaled
which plots the log of the density against the scaled radius. To zoom in on the central regions, run the pair of
codes multiplotle3b and multiplotle3bscaled.

Q2 Summarize these experiments by selecting a couple of graphs that show what is going on with the run of
density with radius and how it varies with polytro[pic index n.

3.2 Unscaling the Lane-Emden Equation

The dimensionless, and scaled, results we have looked at so far are very good for getting a feel for the structure
of the resulting stars. But to get real numbers we have to unscale the equations and use values for real stars.
How do we do that?

We start by specifying the polytropic index for the model and perform the integrations, as we have done in
the past. We then write down three key outputs from the integrations:

• the dimensionless radius ξ1

• ρc

ρ̄
which we saw was given by −

∣∣∣∣∣ ξ

3dθ
dξ

∣∣∣∣∣
ξ1

• −
∣∣∣∣ξ2 dθ

dξ

∣∣∣∣
ξ1

Next we specify the mass and radius of the star we are trying to model. We then follow the procedure (I
hesitate to call it a recipe!) below:

1. calculate ρ̄ from the specified M and R
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2. calculate α from R = αξ1

3. calculate ρc from equation (11)

4. calculate K from equation (8)

5. calculate Tc from the equation given in lectures: Tc = Kρ
1/n
c

( µ
<

)
where < is the gas constant and µ is the

mean molecular weight given by µ =
4

6X + Y + 2

If you do not know what X and Y are by now, then you should! Use solar values of X = 0.7 and Y = 0.28.
Thus we have everything we need to determine the actual density, temperature and pressure throughout the

star.

Q3 Use the above to determine the central density and temperature for an n = 3 model for the Sun. How do
these values compare with the accepted values for the Sun?

I have provided a program that will do this for you, so you can use this to check the value you calculated
above. Run plotlert1 to make a polytrope for an arbitrary n, M and R. Use this program to investigate how
the central conditions vary as you change M and R and n.

Q4 For a given M and R. how do ρc and Tc vary with n? Present your results in a table or graph (perhaps using
gnuplot). Vary n between 0.5 and 4.0.

Code Name You enter: Graphical Output

multiplotlerhoM R/R�, n 1) log(ρ) vs r for various M/M�
2) log(ρc) vs M/M�

multiplotleTM R/R�, n 1) log(T ) vs r for various M/M�
2) log(Tc) vs M/M�

multiplotlerhoR M/M�, n 1) log(ρ) vs r for various R/R�
2) log(ρc) vs R/R�

multiplotleTR M/M�, n 1) log(T ) vs r for various R/R�
2) log(Tc) vs R/R�

multiplotlerhon R/R�,M/M� 1) log(ρ) vs r for various n
2) log(ρc) vs n

multiplotleTn R/R�,M/M� 1) log(T ) vs r for various n
2) log(Tc) vs n

4 Adding Luminosity

Given that we have unscaled our equations we can now calculate a luminosity if we make the assumption that
all energy generated is radiated by the layers of the star. In that case we simply add the luminosity equation in
the form

dL(r)
dm

= ε (12)

where ε is the energy generation in ergs/gm/sec. We will break this up into two contributions εpp and εCNO for
the pp and CNO cycles, respectively.

From our friendly nuclear physicists we get these rates as

εpp = ε0ppT
2/3
6 e−33.8/T

1/3
6 (13)

εCNO = ε0CNOT
2/3
6 e−152.28/T

1/3
6 (14)

where the ε0 are constants. Run the program plotrates to see the two rates plotted against temperature.
NOte that at low temperature the pp chains dominate. But at higher values of T the CNO cycle takes over and
dramatically exceeds the pp rate.

Q5(a) Why does the CNO cycle require higher temperatures to compete with the pp chains?

3



Q5(b) What is the central temperature in an n = 3 model for the Sun? Which nuclear reaction network, pp or
CNO, is thus dominant in the Sun?

The program plotlelum1 will solve the Lane-Emden equation and scale everything to M� and R�. You
choose the polytropic index n, but for now use n = 3, as in the Eddington Standard Model.

Q5(c) What is the total luminosity of an n = 3 model for the Sun? What are the pp and CNO contributions in
percentages and absolute amounts?

Q5(d) Vary the polytropic index between n = 3 and n = 4 and show how the total luminosity increases with n.
Also plot (perhaps using gnuplot) the fraction contributions from the pp and CNO networks to this total.

The absolute value of the luminosoty increases with n due to the associated increase in temperature and
density, as we found earlier. Bit how is the distribution of luminosoity affected by an increase in n? We saw
that higher n leads to more centrally condensed structure, both in t as well as ρ. We would thus expect the
luminosity to be more concentrated toward the centre too. Run the program plotlelum2 to see of this is true.
The plot here is L/Ltot vs r/R. Is it what you expect?

5 The Zero-Age Main Sequence

Our last task concerning luminosity is to try to construct a ZAMS from polytropes. The table below gives an
approximate ZAMS from detailed stellar models. As mass increases the star needs a higher pressure to suport
itself against gravity. Hence the temperature increases also. But the note that the density actually decreases
slightly. The overall radius increases with mass. Hence the variation of ρc/ρ̄ is not monotonic, but passes
through a maximum at a mass of ∼ 1.5M�.

Q6 Why does the M = M� model in Table 1 not have the solar radius and the solar luminosoty?

Hence if we were to try to simulate a ZAMS using polytropes we should start by determining an appropriate
n for each mass. You can do this using the codes discussed so far. However, for simplicity I have written a code
called rhoconrhobar which varies n in small amounts and prints out the value of ρc/ρ̄. It will not give exactly
the same values for ρc/ρ̄ that are required, however. For this we need to interpolate within the results to find
the n value appropriate for a required ρc/ρ̄.

Table 1: Table 1 - Zero Age Main Sequence

M/M� R/R� Tc/106K ρc/g/cm3 ρc/ρ̄ L/L�

1.0 0.92 13.9 92 51 0.75
1.4 1.3 18.1 90 100 4.8
2.0 1.5 21.6 69 82 20
4.0 2.2 26.2 29 55 275
8.0 3.4 30.4 12 42 3100
10.0 3.9 31.9 9.5 40 6500

For example, look at the M = 1 star in the ZAMS table. It has ρc/ρ̄ = 51. Run rhoconrhobar. There is
no value of n for exactly 51. We see that the required n must be between 2.8 (which has ρc/ρ̄ = 34.95) and 3.0
(which has ρc/ρ̄ = 54.18). To determine the value of n corresponding to ρc/ρ̄ = 51 we “interpolate” between
the two bracketing values. We can use linear interpolation, which simply assumes a straight line joins the two
data points. In this case we have the situation shown in Figure 1.
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The simple way to do this is the recall that the equation for a straight line passing through two point (x1, y1)
and (x2, y2) is:

(y − y1)
x− x1

=
(y2 − y1)
(x2 − x1)

(15)

So in our case we specify the required value of y=51 and then use the closest points either side of that value
as given by rhoconrhobar.

Q7(a) Verify the values given in Figure 1 by using equation (15).

I do not expect you to do that for each value in the table. Rather, I have written a code that does it for you.
You will need to enter the bracketing values of ρc/ρ̄ and n. Use the program lininterp.

Q7(b) Present a table of values of n for the masses in the ZAMS of Table 1.

We have calculated the luminosity for a polytropic model for the Sun with n = 3. We saw that the luminosity
was not quite right, and this is of course due to the apprximations in the polytropic equation of state. We
know the Sun has higher T andρ than the polytrope, so we mnust get a lower L also. To allow for this we
will multiply the burning rates by a constant factor. We will determine this factor by assuming that the M = 1
model is powered entirely by pp reactions. We will then scale our pp rate so that we get the L given in Table 1
for the M = 1 star. Similarly, the M = 8 model is entirely powered by CNO so we will scale the CNO rates by
the factor required to get the luminosity right for the M = 8 model in Table 1.

Run lelum1 and input values for the M = 1 case, and use the n determined above to be 2.967 for this case. It
will prompt for values of the correction factors fpp and fCNO. Use 1 for each initially to see what the uncorrected
values are. The code will oputput the resulting L for the values you input. This L is likely to be less than the
value in teh ZAMS table, so now determine the value of fpp needed to get the L value inthe table. It is a simple
linear scaling.

Q7(c) List the values given by the code for no correction factors and explain how you determined the value of
fpp.

Q7(d) Repeat the procedure for the 8M� case and hence determine fCNO.

Q7(e) Using these values of fpp and fCNO, together with the n value you determined for each mass (in Q7(b)),
present a table of luminosities determined by the polytropic models. Compare with the ZAMS table.

Q7(f) Finally, present your ZAMS in the HR diagram. You have L from the previous part. Determine log(Te)
from L = 4πR2σT 4

e . Compare with the ZAMS in Table 1. (σ = 5, 67× 10−5 erg cm−2K4s−1)
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6 White Dwarfs

Our last task is to look at white dwarfs, since these are very well approximated by polytropes. We saw in
lectures that the maximum amss for a White Dwarf is about 1.44M�, corresponding to an n = 3 model with a
completelely degenerate, super-relativistic equation of state. But lets look at some less extreme examples! The
most common white dwarf is one with a mass close to 0.6M�.

We will take our equation of state to be
P = Kρ7/5 (16)

with K = 1.× 1014 in cgs units, and n = 2.5.

Q8(a) Using the information above, and the codes we have used earlier, determine the radius of the n = 2.5
white-dwarf of mass 0.6M�. Express the radius in Earth radi, R⊕ = 6.38E8cm. This involves using the Lane-
Emden solution and then unscaling the equations, but in a different way to what you did before. Here we know
K but do not know R. You may have to think a little!

Degenerate matter behaves strangely. A white-dwarf is supported entirely by the degenerate pressure of the
electrons. There is no nuclear energy source in white dwarfs, so they cool. As they cool, however, they lose
thermal energy and they become increasingly degenerate. The density increases and the radius decreases. A
curious fact is that increasing the mass of a white dwarf leads to higher degeneracy, higher density and hence a
lower radius!

Run the program wd to determine the central density and radius of white dwarfs of different masses and
polytropic indices n.

Q8(b) Using wd to generate values, show how the white-dwarf radius decreases with increasing mass. Present
your graphs as a table, or preferably a graph. Use at least two values of n.

You can check your results by running plotwd.
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