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Abstract: We look at two classes of constructions for Latin squares which have exactly one

proper subsquare. The ®rst class includes known squares due to McLeish and to Kotzig and

Turgeon, which had not previously been shown to possess unique subsquares. The second class

is a new construction called the corrupted product. It uses subsquare-free squares of orders m
and n to build a Latin square of order mn whose only subsquare is one of the two initial squares.

We also provide tight bounds on the size of a unique subsquare and a survey of small order

examples. Finally, we foreshadow how our squares might be used to create new Latin squares

devoid of proper subsquaresÐso called N1 squares. # 2001 John Wiley & Sons, Inc. J Combin

Designs 9: 128±146, 2001
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1. INTRODUCTION

A Latin square is a matrix of order n in which each row and column is a permutation
of some (®xed) symbol set of size n. A subsquare of a Latin square is a submatrix
(not necessarily consisting of adjacent entries) which is itself a Latin square. A
subsquare of order 2 is an intercalate. Clearly, every Latin square of order n has n2

subsquares of order 1 and one subsquare of order n. A subsquare of order between
these trivial extremes is called proper. A Latin square without intercalates is said to
be N2 and a Latin square without proper subsquares is said to be N1. N2 squares are
known to exist for all orders other than 2 and 4; see for example [10]. However the
best general result to date for N1 squares is in [1]. There constructions are given for
all orders not of the form 2a3b. An excellent survey of these results and many others
dealing with subsquares in Latin squares is provided in [7].

We use interval notation such as �a; b�, �a; b�, although all our variables are integers
so we prefer to interpret these as discrete sets. That is, �a; b� � fa; a� 1; . . . ; bÿ 1g
etc. The notation �a�n is used to denote the integer b such that b � a �mod n� and
b 2 �1; n�. By L�i; j� we denote both the symbol in row i, column j of a Latin square L
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and the position it occupies. Some authors choose notation to distinguish between the
two, but we hope that context will do that for us. Also, we use the notation L�i; j�n to
signify that i and j are to be calculated modulo n. That is, L�i; j�n � L��i�n; � j�n�.

If a Latin square uses a symbol set �1; n� then it naturally de®nes a binary operation

 on that set, in which a
 b is the entry in row a, column b. The resulting algebraic
structure is a quasigroup. Reversing the process, every quasigroup de®nes a Latin
square. See [2] for details.

Also treated in [2] are some important equivalence relations for Latin squares. The
®rst is called isotopy. Two squares are isotopic if one can be obtained from the other
by rearranging the rows, rearranging columns and renaming the symbols. The set of
all squares isotopic to a given square forms an isotopy class. The second operation is
conjugacy. Here instead of permuting within the sets of rows, columns, and symbols
we permute the sets themselves. For example, we might interchange rows with
columns, which is the familiar matrix operation, transposition. The closure of an
isotopy class under conjugacy yields a main class. Subsquares are unaffected by
isotopy or conjugacy in the sense that for every s, the number of subsquares of order s
is a main class invariant.

A Latin rectangle is a matrix in which each row is a permutation of the symbol set
and no symbol occurs more than once in any column. If R is a 2� n Latin
subrectangle of some Latin square L, and R is minimal in that it contains no 2� n0
Latin subrectangle for n0 2 �2; nÿ 1�, then we say that R is a row cycle of length n.
Column cycles and symbol cycles are de®ned similarly, and the operations of
conjugacy on L interchange these objects. This means that statements such as the
following are really six statements in one: Any two entries x; y in the same column of
L determine a (unique) row cycle, which must be included in any subsquare of L
containing both x and y. Row cycles, column cycles, and symbol cycles will collec-
tively be known as cycles. The following is a standard result:

Theorem 1. The intersection of two subsquares is itself a subsquare. In particular,
if N is an N1 subsquare and it meets another subsquare M in two or more entries,
then N � M.

The purpose of this paper is to investigate the class U of Latin squares which
contain exactly one proper subsquare. We use Un;m for the subset of U consisting of
order n Latin squares with an order m subsquare. The motivation for our study, apart
from any intrinsic interest, is as an approach to the long standing open problem of the
construction of N1 squares. We will say more on this topic in our concluding
remarks, but for the moment observe that the subsquare of any member of U must
itself be an N1 square.

2. SMALL ORDERS

For small n it is possible to enumerate a set of main class representatives for Latin
squares of order n. This is done for n � 6 in [2] and for n � 7 in [11] (later corrected
in [12]). Also in [3] there is a catalogue of order 8 squares with at most one
intercalate, which clearly includes all candidates for U. It is a simple matter to check
that none of the squares listed in [2] or [11] possess a unique subsquare. However the
class which Norton missed has a single intercalate and no larger subsquares. Hence
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the square given in [12] represents the unique main class of minimal order in U. For
n � 8 there are only three classes of N2 squares and all are N1 squares, so in
particular U8;3 � ;. Of the 14 main classes of order 8 squares with precisely one
intercalate, the ®rst and sixth in Denniston's list contain a single order 3 subsquare
each, and no other subsquares are present. Hence U8;2 consists of the other 12 main
classes.

For n � 9, a table of the number of subsquares in N2 squares of order 9 may be
found in [16]. From there we know that U9;3 consists of 46 main classes. One example
is:

1 2 3 4 5 6 7 8 9

2 3 1 7 6 9 5 4 8

3 1 2 8 7 5 4 9 6

4 8 7 9 3 2 6 5 1

5 9 6 2 8 4 1 3 7

6 5 9 3 4 7 8 1 2

7 6 5 1 9 8 3 2 4

8 7 4 5 2 1 9 6 3

9 4 8 6 1 3 2 7 5

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
�1�

3. SKIP-SHIFT PROLONGATIONS

In this section we de®ne a method of Latin square construction which is a special case
of the prolongations discussed, for example, in [2] and [7]. Instances of our method
from the literature will be discussed in the following section. We start by de®ning a
few terms. A subset S of �1; k� is said to be regular if it corresponds to a congruence
class modulo m for some m < k (called the modulus of S) which divides k. So, for
example, f2; 5; 8; 11; 14g is a regular subset of �1; 15� but not of �1; 16�.

A skip square is a Latin square L of some order n > 1 which for all i and j satis®es
L�i; j� ��L�1; 1� � sr�iÿ 1� � sc� jÿ 1��n where sr; sc are integers which are relatively
prime to n. We call sr the row skip and sc the column skip of L. Any Latin rectangle
consisting of consecutive rows of a skip square is a skip rectangle. A skip square of
particular note is Cn, obtained from Cn�1; 1� � 1 with skips sr � sc � 1. This is (one
form of) the Cayley table of the cyclic group of order n. In fact it is not hard to see
that all skip squares of order n are isotopic to Cn, but we will be interested in
properties which are destroyed by (most) isotopisms.

Lemma 1. Suppose L is a skip square of order n and that R is a 2� r submatrix of
L . If R is a row cycle then it consists of regular columns and symbols in L . Conjugate
results also hold. So, for example, a symbol cycle must have regular rows and
columns.

Proof. Suppose R is a row cycle containing symbols �. A symbol � is in � if and
only if ��� �sr�n 2 � where sr is the row skip of L and � is the difference in the
indices of the two rows involved in R. Hence � is a union of cosets of the subgroup
generated by �sr in the additive group of integers modulo n. In fact the minimality
condition in the de®nition of cycles ensures that there is only one coset involved, and
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such cosets are regular. A conjugacy argument demonstrates that the columns in R are
also regular. &

We call the cycles discussed in Lemma 1 regular cycles. Along the same lines is:

Lemma 2. Suppose L is a skip square of order n and that S is an s� s submatrix of
L for s > 1. Then S is a subsquare if and only if it consists of regular rows and
columns �each with modulus n=s�. The symbols in a subsquare will also be regular.

We omit the proof. It is essentially that of Lemma 2 from [1], which also had a
corollary like this:

Lemma 3. A skip square is N1 if and only if it is of prime order.

A transversal of a Latin square L of order n is a set of n entries no pair of which
share a common row, column, or symbol. Call T a skip transversal if there are
integers a and b such that T is a transversal consisting of the entries L�a� ib; i�n for
i 2 �1; n�. Note that the skip b must be relatively prime to n. A t-tuple �T1; T2; . . . ; Tt�
of disjoint skip transversals is a shift list if there is some integer s (called the shift and
required to be relatively prime to n) such that Ti�1 can be located by shifting Ti to the
right by s places, regardless of the choice of i 2 �1; t�. That is, L�a; b� 2 Ti�1 if and
only if L�a; bÿ s�n 2 Ti.

For any subset S of the entries of a Latin square L, de®ne the shadow of S in
another Latin square L0 to be the set of entries in L0 which have the same (row,
column) coordinates as the entries in S.

The skip-shift prolongation process has two principal parameters, n and s. Both are
positive integers and n > 2s. We start with a skip square CC of order nÿ s and a shift
list T of s pairwise disjoint skip transversals of CC. We form a new square M of order
n which has four blocks RA, RB, RC, and RD arranged as follows

RC RB

RA RD

� �
: �2�

RA is an s� �nÿ s� block in which the s rows are in 1:1 correspondence with the
transversals T . The entry in column c of row r is the entry in column c of the
transversal corresponding to row r.

RB is an �nÿ s� � s block in which the columns correspond to the transversals in
a similar fashion.

RC is a square block of order nÿ s obtained from CC by changing the entries in
T . For each T 2 T the entries in T are replaced by a common symbol from
�nÿ s; n�, and a different symbol is used for each transversal. We think of RC

as being divided into two regions, R0C and R00C which contain, respectively,
symbols in �1; nÿ s� and �nÿ s; n�.

RD is any Latin square of order s on the symbol set �nÿ s; n�.

In brief, the resulting square M is just a prolongation of a skip square using
transversals of a particular form. Clearly M has a subsquare (RD) of order s. We are
interested as to when this is the only subsquare.

While the above de®nition has deliberately been made general enough to encom-
pass the examples in the next section, we will ®nd it easier to work with more
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structure. Hence we de®ne a skip-shift prolongation to be canonical if it has the
following additional properties.

(P1) The shift list of transversals fT1; . . . ;Tsg used in the prolongation are de®ned
by Ti � fCC� j; j� i�nÿs : j 2 �1; nÿ s�g.

(P2) The correspondence used to construct RA is that Ti corresponds to row
nÿ s� i.

(P3) The correspondence used to construct RB is that Ti corresponds to column
nÿ s� i.

(P4) The symbol used to replace Ti in RC is nÿ s� i.

The bene®t of having a square in canonical form is that you can easily de®ne it in
terms of 5 explicit pieces (refer to Fig. 1). Speci®cally, suppose M is a canonical skip-
shift prolongation with parameters n and s, with `installed' subsquare RD. Then there
exist skip squares CA, CB, CC and CT of order nÿ s such that:

M�i; j� �

RD�iÿ n� s; jÿ n� s� for i; j 2 �nÿ s; n�;
CA�iÿ n� s; j� for i 2 �nÿ s; n�; j 2 �1; nÿ s�;
CB�i; jÿ n� s� for i 2 �1; nÿ s�; j 2 �nÿ s; n�;
CT �i; j� � nÿ s for i; j 2 �1; nÿ s� and � jÿ i�nÿs 2 �1; s�;
CC�i; j� otherwise:

8>>>><>>>>:
�3�

Also CT will have row skip 1 and column skip ÿ1. As a consequence the row skip in
CA equals the column skip in CB. Stipulating this extra structure loses nothing, as
shown by:

FIG. 1. Canonical skip-shift prolongation. The shading indicates where the symbols in
�nÿ s; n� occur, while the symbols in �1; nÿ s� occur in the unshaded regions.
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Lemma 4. Every skip-shift prolongation is isotopic to a canonical skip-shift
prolongation.

Proof. Let M be a skip-shift prolongation with parameters n and s, created by
prolongation of a skip square CC with row skip sr and column skip sc. Suppose that
the prolongation used transversals fT1; . . . ;Tsg with shift t and skip b and that T1

includes CC�1; a�. Form a new Latin square M0 by

M0�i; j� �
M�1� �iÿ 1�tb; a� � jÿ 2�t�nÿs if i; j 2 �1; nÿ s�;
M�i; �a� � jÿ 2�t�nÿs� if i 2 �nÿ s; n�; j 2 �1; nÿ s�;
M��1� �iÿ 1�tb�nÿs; j� if i 2 �1; nÿ s�; j 2 �nÿ s; n�;
M�i; j� otherwise:

8>><>>:
Note that both t and b are relatively prime to nÿ s by assumption and hence so is
their product. Using this fact it is straightforward to check that M0 is a Latin square
and is isotopic to M. Also the transversal Ti which was fM�1� b� jÿ 1�; a� jÿ 1�
�iÿ 1�t�nÿsgnÿs

j�1 has been mapped to fM0� j; j� i�nÿsgnÿs
j�1 as required by (P1). The

remaining entries of the ®rst nÿ s rows and columns come from a skip square with
row skip tbsr and column skip tsc. It is a simple matter to satisfy (P2), (P3) and (P4)
by permuting respectively the rows, columns and symbols in the range �nÿ s; n�. The
result will be a canonical skip-shift prolongation isotopic to M. &

We can now characterize when a skip-shift prolongation has only one subsquare.

Theorem 2. Let M be a skip-shift prolongation with parameters n and s � 3. Then
M 2 U if and only if

(a) M is an N2 square,
(b) RD is an N1 square,
(c) f � min fs; nÿ 2sg for all f < nÿ s which divide nÿ s.

By Lemma 4 we can assume that M is in the canonical form (3), since isotopies do
not affect the conditions of the theorem, nor the number of subsquares in M. We
prove the suf®ciency of the conditions (a), (b), and (c) ®rst.

Proof. �(� Suppose  is a cycle inside one of the skip squares CA, CB, CC, or CT.
Then by Lemma 1 and (c),  is a regular cycle of some modulus not exceeding s. In
particular if  is in CC then it cannot avoid hitting the shadow of R00C because every
row and column of CC has s consecutive entries in T . These facts will be used
repeatedly in what follows.

Assume that S is a proper subsquare of M where conditions (a), (b), and (c) hold.
Let the rows, columns and symbols of S be R, C, and � respectively. By (a) we know
that jRj � jCj � j�j � 3. We divide the problem into the following cases:

Case 1. �nÿ s; n� � �

If �1; nÿ s� \ R 6� ; then �1; nÿ s� � R because S must include the shadow of a
symbol cycle of modulus 1 in CT . However this cannot be, as S is a proper subsquare
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and nÿ s > 1
2

n. So jRj � s and S includes at least two entries in the N1 square RD.
This is only possible if S � RD (see Theorem 1).

Case 2. S \RD 6� ;

Referring to the previous case, we may assume that S \RD is a single entry, say in
row r, column c and symbol �. Suppose that � occurs along the diagonal of RC

involving positions �i; j� for which �iÿ j�nÿs � k. De®ne a 2� �nÿ s� Latin rectangle
L as follows.

L�i; j� � M�r; j� if i � 1;
M� j� k; c�nÿs if i � 2:

�

L is well-de®ned because L�1; j� � L�2; j� only if M�r; j� � M� j� k; c�nÿs. But since
M�r; c� � M� j� k; j�nÿs � � this is impossible by (a). Indeed, by the comments
immediately following (3), we see that L must be a skip rectangle.

Now if S contains M�r; j� for some j 2 �1; nÿ s� then S contains M� j� k; j�nÿs

(because � 2 �) and thus also contains M� j� k; c�nÿs. Indeed if S contains the entry
which ®lled L�1; j� then it contains the entry which was put into L�2; j� and vice versa.
Moreover S must use the same symbols in row 1 of L as it does in row 2, namely
� n f�g. So S uses whole row cycles of L, and such cycles are regular by Lemma 1.
Taking one such cycle and interpreting it back in M, it follows that there are regular
subsets R0 � R and C0 � C where jR0j � jC0j.

Let S0 � S be the intersection of rows R0 with columns C0. Also, let S00 be the
shadow of S0 in CC. By Lemma 2, S00 is a subsquare of CC. Now by construction we
know that S0 contains copies of � from R00C. Let M�r0; c0� � � be one of these copies,
and let �0 � CC�r0; c0�. We argue that �0 2 �. Firstly note that �0 must occur in each
row and column of S00, in particular it occurs at some position �r1; c1� 6� �r0; c0�. Now
M�r1; c1� 6� M�r0; c0� � �, because the copies of � were originally installed along a
transversal of CC. Hence M�r1; c1� 2 � n f�g � �1; nÿ s� so �0 � M�r1; c1� 2 �. Now
from M�r0; c0� 6� CC�r0; c0� we infer that �0 occurs in RA in column c0 and RB in row
r0. Finally we note that S must include these two occurrences of �0 2 �, and this can
only happen if M�r; c0� � M�r0; c� � �0. But M�r; c� � M�r0; c0� � �, and intercalates
are forbidden by (a).

Case 3. S � RA

Consider RA as a copy of CA with nÿ 2s consecutive rows cut off. By Lemma 2, R
must be regular with modulus m dividing nÿ s such that �nÿ s�=m � 3. In order for
S to ®t into RA we must have m > nÿ 2s but this contravenes (c).

Case 4. R \ �nÿ s; n� 6� ;

By the previous cases we may assume that S misses RD, but hits RC. It follows that
� � �1; nÿ s� and hence S cannot hit R00C. Since jRj � 3 we must have a row cycle
inside RA or in R0C and either way it must have regular columns with modulus not
more than s. This makes it impossible to hit RC but avoid hitting R00C.
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Case 5. S \RB 6� ;

This can be treated in the same way as the situation S \RA 6� ; covered by the
preceding 2 cases.

Case 6. S � R00C
We employ a conjugate argument to the case S � RA, which was Case 3.

Case 7. S � RC

First consider a symbol cycle c de®ned by two different symbols in � \ �1; nÿ s�.
Note that c must lie entirely within R0C if it lies within S � RC. But that means it
must be a regular cycle with modulus at most s, which therefore hits R00C. This
contradiction, together with Case 6, shows that j� \ �1; nÿ s�j � 1. However,
j�j � 3 so S must contain a symbol cycle, c, in R00C. Let R0 and C0 be the regular rows
and columns of c. Let S0 � S be the intersection of rows R0 with columns C0 and let S00
be the shadow of S0 in CT . By Lemma 2, S00 is a subsquare of CT . By Case 6 there
must be a symbol � in S00 in the shadow of R0C. However, the shadow in CC of the
occurrences of � in CT is a transversal and � must occur at least twice in the
subsquare S00. So there are at least two distinct symbols in S \R0C, a contradiction.

Proof. �)� Conditions (a) and (b) are clearly necessary. So assume that nÿ s � fk
for integers f > s and k > 1. In general there will be many subsquares of order k
inside RC. It suf®ces to exhibit one of them. We take R � fr 2 �1; nÿ s�:
r � 1�mod f �g and C � fc 2 �1; nÿ s� : c � 1 �mod f �g as the rows and columns
of our subsquare S. Then any position M�r; c� occupied by S satis®es
cÿ r � 0 �mod f � whereas the shadow of R00C has �cÿ r�f 2 �1; s�. Hence S lies
entirely within R0C and is a subsquare by Lemma 2.

All that remains is to show the necessity of f � nÿ 2s in (c). Suppose that
nÿ s � fk for f > nÿ 2s and k > 1. Take, say, R � fr 2 �nÿ s; n�: r � n �mod f �g
and C � fc 2 �1; nÿ s� : c � 1 �mod f �g. Then jRj � jCj � k because �k ÿ 1� f < s
so we have a subsquare of order k in RA, by Lemma 2. &

4. EXAMPLES FROM THE LITERATURE

In [10] McLeish gives a construction for a quasigroup called Mn;s. We will use the
same label for the Latin square derived from the Cayley table of this quasigroup. It is
a simple matter to check that Mn;s is an example of skip-shift prolongation and that
the subscripts n and s correspond to the parameters of the same name. (Indeed, the
names of the blocks in (2) were also chosen to match [10].) McLeish attempted to
characterise when Mn;s is free of intercalates. Her result was slightly corrected in [14],
to the following:

Theorem 3. Mn;s is N2 if and only if

(a) either (i) n � 0 �mod 4�, n > 3sÿ 11 and 2n > 5sÿ 5 or
(ii) n � 2 �mod 4� and n > 4sÿ 6,

LATIN SQUARES WITH ONE SUBSQUARE 135



(b) nÿ s is not divisible by 3 or 5,
(c) s � 1 �mod 4� and s > 1.

Combining Theorem 3 with Theorem 2 we have:

Theorem 4. McLeish's square Mn;s 2 U if and only if s � 1 �mod 4� is prime, nÿ s
has no factor in �2; 6� [ �s; nÿ s� and Theorem 3�a� holds.

Proof. Theorem 3 takes care of Theorem 2(a). The condition that s is prime is
equivalent by Lemma 3 to Theorem 2(b), sinceRD is a skip square in Mn;s. Hence the
only possible obstacle would be if nÿ s had a factor in �nÿ 2s; s� but no factor in
�2; 5�. This possibility can be subsumed by the other conditions as follows. If
s � 1 �mod 4� is prime and �nÿ 2s; s� n �2; 6� 6� ; then s � 13 and n � 3sÿ a where
0<a < s. Suppose nÿs � fk for f 2�nÿ2s; s� and k � 7. Then, k <�2sÿ a�=�sÿ a�
so, a> 5s=6>10, but this contradicts Theorem 3(a). &

In [8] Kotzig and Turgeon give a construction they call �g�T� extension. This is
easily seen to be an example of skip-shift prolongation with the parameter s � 3. The
circumstances under which the result is an N2 square are understood from the original
paper. They are that n is even, n 6� 0 �mod 3� and n 6� 3 �mod 5�. The parameters T
and g also need to be chosen suitably, but this can always be done when n obeys the
previous relations. Refer to [8] for details. Let Kn denote the set of N2 squares of
order n which are constructible by the method of �g�T� extensions.

Note that if s � 3, n 6� 0 �mod 3�, n 6� 3 �mod 5� and n is even then nÿ s has
no proper factor less than 7. In this case Theorem 2(c) is equivalent to nÿ s
being prime. Also all squares of order 3 are N1 so Theorem 2(b) is automatic.
Hence we have:

Theorem 5. The Kotzig-Turgeon squares Kn � Un;3 whenever n � p� 3 for a
prime p � 7, and otherwise Kn and U are disjoint.

5. SIZE OF UNIQUE SUBSQUARES

In this section we deal with the question of how large a unique subsquare of a Latin
square of order n can be. Our ®rst result gives an upper bound.

Lemma 5. Un;m � ; unless 2m� 1 � n.

Proof. Suppose L is a Latin square of order n. It is well known (eg. [7, p. 105]) that
a proper subsquare of L cannot be of order exceeding 1

2
n. This bound can only

be achieved if L is the union of 4 disjoint subsquares, in which case it is certainly
not in U. &

The simple bound in Lemma 5 turns out to be sharp. In (1) we gave an example in
U9;3, so n � 2m� 3 is certainly achievable. An example where n � 2m� 2 follows
from Theorem 4, which showed M12;5 2 U12;5. Examples for which n � 2m� 1 seem
hard to ®nd by computer search. However, our next result leads to successful
constructions.
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Lemma 6. Let M be a N1 square on the symbol set �1;m� where m� 1 is a prime
>3. Suppose that M�i; j� 6� �iÿ j�m�1 for all i; j. Then there exists N 2 U2m�1;m.

Proof. We de®ne N in 5 regions as follows:

RD: N�i; j� � M�i; j�m�1 � m� 1 for all i; j 2 �m� 2; 2m� 1�,
RA: N�i; j� � � jÿ i�m�1 for i 2 �m� 2; 2m� 1� and j 2 �1;m� 1�,
RB: N�i; j� � �iÿ j�m�1 for i 2 �1;m� 1� and j 2 �m� 2; 2m� 1�,
R0C: N�i; j� � i whenever i � j 2 �1;m� 1�,
R00C: N�i; j� � � jÿ i�m�1 � m� 1 otherwise.

It is then a simple matter to check that N is a skip-shift prolongation, so we
can apply Theorem 2. Note that conditions (b) and (c) are immediate from our choice
of M, so it suf®ces to show that N is N2. Lemma 3 and the fact that M is an N1
square together show that N cannot have an intercalate inside one of its ®ve regions.
Given the range of symbols used in each region, the only other possibility is an
intercalate which includes one entry from each of RA, RB, R00C and RD. So suppose
we have r1; c1 2 �1;m� 1� and r2; c2 2 �m� 2; 2m� 1� such that r1 6� c1, N�r1; c1� �
N�r2; c2� and N�r1; c2� � N�r2; c1�. Applying the rules of our construction we ®nd that
r1ÿc2�c1ÿ r2 �mod m�1� and hence M�r2; c2�m�1�c1ÿ r1�r2 ÿ c2 �mod m� 1�.
This contradicts our choice of M, and completes the proof. &

The condition on the entries of M in Lemma 6 turns out to not be very restrictive.
If one has a candidate of a suitable order, it is usually a simple matter to ®nd an
isotopic square which obeys M�i; j� 6� �iÿ j�m�1. As a concrete example, take the N1
square of order 10 discovered by Heinrich [6]. By switching a few columns we get the
square in (4), which obeys the hypotheses of Lemma 6 and hence justi®es our claim
that the bound in Lemma 5 is sharp.

6 7 4 2 5 3 1 9 8 10

2 3 5 7 1 4 9 8 10 6

3 4 1 9 2 5 8 10 6 7

4 5 2 8 3 1 10 6 7 9

5 1 3 10 4 2 6 7 9 8

1 2 9 6 10 8 7 5 4 3

7 8 10 1 6 9 5 4 3 2

8 9 6 5 7 10 4 3 2 1

9 10 7 4 8 6 3 2 1 5

10 6 8 3 9 7 2 1 5 4

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
�4�

At the other end of the scale, one could ask how small a unique subsquare can be,
relative to the square in which it is found. In Section 2 we found squares in U7;2 and
U8;2, and it seems likely that Un;2 6� ; for all suf®ciently large n. This would be hard
to prove, but note that Theorem 5 shows that there are arbitrarily large n for which
Un;3 6� ;.

6. CORRUPTED PRODUCTS

In the remainder of the paper we look for a way of embedding a unique subsquare M
of order m in a Latin square of order km for a ®xed integer k. By Lemma 5 we must
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have k � 3, and (1) shows one example for k � 3. However our method can only
possibly work for k � 7 and one must know of an N1 square of order k. One strength
of it will be though, that if it works once for a particular k then it will work for almost
any choice of M (provided of course that M is an N1 square). This offers the luxury
of prescribing the subsquare if so desired. (To be pedantic for a moment, our
construction only produces a square whose unique square is isotopic to M. However,
from such a square it is a trivial matter to recover a square in which the subsquare
is M).

Let L be a Latin square and � any symbol other than L�i; j� (� need not be in the
symbol set of L). We denote by � ,!L�i; j� the matrix obtained from L by replacing
the entry L�i; j� with �. Any matrix of the form � ,!L�i; j� is said to be a near copy of
L and also of any square isotopic to L. Let T � � ,!L�i; j�. We call the symbols in L
the natives of T , the symbol L�i; j� in particular is the displaced native. The position
�i; j� is known as the hole in T . It will prove convenient to apply the same terminology
to near copies as we use for Latin squares. For example, a submatrix which happens
to be a Latin square will be called a subsquare. Note however that a near copy is
never a Latin square and hence is not a subsquare of itself.

In any matrix we de®ne the principal entry to be the entry in the ®rst row and
column. Likewise, in a matrix partitioned into blocks the principal block is the block
corresponding to the principal entry when the blocks are thought of as single entries.

When we deal with a product of squares of order m and n we will index the rows,
columns and symbols with pairs from 
m;n � �1;m� � �1; n�. Let S be any subset of
the entries of such a product. De®ne the maps �1 and �2 to be the coordinate
projections from 
m;n to �1;m� and �1; n� respectively. The result, �1�S�, of applying
�1 to each row, column and symbol index of each entry of S will be called the
projection of S onto the ®rst factor. Projecting S onto the second factor is the
analogous process using �2. Another aid to visualising the structure of a product is to
impose a convenient ordering on 
m;n. Our default order �1 on this set will be to
order on the ®rst coordinate (using the second coordinate to break ties). We will also
mention �2, which is an ordering based on the second coordinate (using the ®rst
coordinate to break ties).

The direct product of M and N is de®ned by M � N��i; j�; �k; l�� � �M�i; k�;N� j; l��.
Of course the square so de®ned has a wealth of subsquares. When the rows and
columns are ordered with �1 it decomposes into m2 blocks, each of which is a copy
of N. When viewed with �2 it partitions into n2 blocks which are copies of M.
Clearly such a square is a long way from being in U! Nevertheless, by a technique
similar to what Heinrich [7] calls a nonuniform product we will destroy enough
subsquares to reach U. The key concept is a corrupting pair.

De®nition. Let A be a N1 square. We say that �A;B� is a corrupting pair if,
regardless of the choice of i and j,

(a) B is a square isotopic to A,
(b) A�i; j� 6� B�i; j� with the exception that A�1; 1� � B�1; 1�,
(c) B�i; j� ,!A�i; j� has no proper subsquare involving the principal entry.

We say �A;B� is a strong corrupting pair if additionally,

(d) B�i; j� ,!A�i; j� has no proper subsquare of order �3.
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We leave questions of the existence of corrupting pairs to Section 7. For now we
describe what we will do with them. Let �A;B� be a corrupting pair of order n and let
M be an N1 square of order m. The corrupted product P � �A;B� �s M of
shift s 6� 0 �mod m� is de®ned by

P��i; j�; �k; l�� �
�A�i; k�; �M� j; l� � s�m� when i � k � 1;
�B�i; k�;M� j; l�� when j � l � 1 and ik 6� 1;
�A�i; k�;M� j; l�� otherwise;

8<: �5�

where the index set is 
n;m. We leave it to the readers to convince themselves that the
matrix so de®ned is indeed a Latin square. Note that this depends crucially on the fact
that A�1; 1� � B�1; 1�.

The requirement that a corrupting pair consist of isotopic squares means that this
corrupted product is a product of two squares A and M (in the same weak sense that
Heinrich's non-uniform product is a product of two squares). Intuitively what we are
doing is this. Starting with the ordinary direct product A�M you obtain P by, ®rstly,
corrupting the copies of M by changing the principal copy of A to B. This leaves only
the principal copy of M intact, because A and B agree only in their principal entry.
Secondly, we take the one intact copy of M and shift all its entries by s (modulo m).
This leaves one shifted copy, S, of M but it corrupts all the copies of A and B. The
result, P, clearly has one proper subsquare, namely S. In Section 8 we investigate
conditions under which there are no others.

As with the ordinary direct product, we can consider viewing the corrupted product
(5) under the orderings �1 and �2. Figure 2 shows the result under �1, where P
partitions naturally into n2 blocks of order m, which we call M-blocks. Each M-block
is a near copy of M except for the principal M-block which is actually isotopic to M.
Under the other ordering, �2, we get m2 blocks of order n, which we call A-blocks
(see Fig. 3). Each A-block is a near copy of A, including the principal block because B
is isotopic to A. We use �M to denote the principal M-block, which is a subsquare of P
and is shaded in both ®gures. We use �A to denote the entries in the principal A-block
other than the principal entry. These are the entries which are unusual in that they are
derived from B.

7. EXISTENCE OF CORRUPTING PAIRS

In this section we settle the existence question for corrupting pairs of order n for all
n � 23. First note that a corrupting pair consists of N1 squares so no such pair exists
for n � 4 or 6. It is also easy to check by exhaustion that no corrupting pairs exist for
other n < 7. For these orders the only N1 squares are isotopic to Cn. By exploiting
isotopies it turns out we need only check Cn against each of its isotopes and ®nd that
none of them produces a corrupting pair. By contrast it seems easy to ®nd corrupting
pairs for n � 7. Indeed all the examples we are about to give are strong corrupting
pairs. They were found using the simple algorithm:

(i) Start with an N1 square A.
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(ii) Find a list L of entries forbidden in B whenever �A;B� is a strong corrupting
pair.

(iii) Randomly permute the rows and columns of A to get B0.
(iv) Use L to determine a list of forbidden images for symbols. If no permutation

of the symbols avoids all forbidden images then return to the previous step.
(v) Apply an `̀ acceptable'' symbol permutation to B0 to get B.

For n � 7; 8; 9 examples of corrupting pairs were found by taking A to be
respectively, C7, the ®rst square in Denniston's catalogue [3], and an N1 square given
in [16]. The resulting corrupting pairs were as follows:

FIG. 2. P viewed under �1.

FIG. 3. P viewed under �2.
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A7 �

1 2 3 4 5 6 7

2 3 4 5 6 7 1

3 4 5 6 7 1 2

4 5 6 7 1 2 3

5 6 7 1 2 3 4

6 7 1 2 3 4 5

7 1 2 3 4 5 6

0BBBBBBBBBBB@

1CCCCCCCCCCCA
; B7 �

1 5 2 7 3 4 6

6 4 7 1 2 3 5

2 1 4 3 5 6 7

7 6 3 2 4 5 1

3 7 5 4 6 1 2

4 2 6 5 1 7 3

5 3 1 6 7 2 4

0BBBBBBBBBBB@

1CCCCCCCCCCCA

A8 �

1 2 3 4 5 6 7 8

2 3 1 5 6 7 8 4

3 5 4 1 7 8 6 2

4 6 8 3 1 5 2 7

5 1 7 8 3 2 4 6

6 7 5 2 8 4 1 3

7 8 2 6 4 3 5 1

8 4 6 7 2 1 3 5

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
; B8 �

1 7 5 8 3 2 4 6

8 6 7 2 1 4 5 3

5 1 2 3 4 6 7 8

2 4 6 5 7 8 3 1

6 5 4 7 8 3 1 2

4 3 1 6 2 7 8 5

3 2 8 4 5 1 6 7

7 8 3 1 6 5 2 4

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA

A9 �

1 2 3 4 5 6 7 8 9

2 4 1 9 3 8 6 5 7

3 1 7 6 8 9 5 4 2

4 3 5 7 1 2 8 9 6

5 8 2 1 9 7 4 6 3

6 9 4 8 7 5 3 2 1

7 6 8 5 2 3 9 1 4

8 7 9 2 6 4 1 3 5

9 5 6 3 4 1 2 7 8

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA
; B9 �

1 7 4 6 8 2 5 9 3

9 8 2 5 6 1 3 7 4

6 3 5 4 2 7 9 8 1

3 4 6 8 9 5 1 2 7

8 6 1 2 5 3 7 4 9

7 2 9 1 4 8 6 3 5

2 1 3 9 7 4 8 5 6

4 5 7 3 1 9 2 6 8

5 9 8 7 3 6 4 1 2

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA
Corrupting pairs were also found for all orders in �10; 23� which we now describe

more succinctly by simply naming An and identifying the isotopy which produces Bn

from An. For example, the corrupting pair �A7;B7� above can be written in one line as

C7 : �7; 6; 5; 3; 4; 1; 2�; �5; 3; 4; 1; 7; 2; 6�; �7; 1; 6; 5; 4; 3; 2�:

The interpretation is that we start with A � C7 and ®nd its corrupting partner B by
applying the three permutations listed to, respectively, the rows, columns and
symbols of A. So in this case row 1 becomes row 7, row 2 becomes row 6, etc.

The initial square An will be one of a number of types. When n is prime we can use
Cn. For n 2 f12; 16; 18g we use the square Gn of order n published in either [4] or [5].
For the other composite orders we use a square Dn derived from the construction
in [1]. We make two comments about Dn. Firstly, we found the description of its
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construction given in [7] to be misleading in one aspect. It is important that the rows
of S�p;m� are permuted thus: 2 goes to 1, 3 goes to 2, 4 goes to 3 etc, not the other
way as [7] seems to imply. Secondly, the squares as constructed in [1] have symbols
which are ordered pairs. To construct Dn we map these symbols to �1; n� by using �1.
Our strong corrupting pairs can now be described:

D10 [1,6,8,4,9,7,2,10,5,3], [3,9,7,6,8,2,10,5,1,4], [4,1,7,9,2,10,5,6,8,3].
C11 [3,10,5,4,6,11,2,7,1,9,8], [5,9,4,10,11,8,7,6,2,1,3], [2,6,4,9,3,5,1,7,10,8,11].
G12 [8,11,7,9,6,5,2,4,1,12,3,10], [3,12,4,10,11,8,6,5,9,7,1,2],

[7,12,11,8,3,10,9,5,6,1,2,4].
C13 [1,13,9,8,10,5,11,6,3,4,12,2,7], [2,8,7,4,12,11,9,1,3,5,10,13,6],

[3,2,4,8,9,10,5,1,6,11,12,7,13].
D14 [7,12,11,14,8,10,4,3,2,13,1,5,6,9], [7,9,3,14,5,13,10,12,6,11,4,8,1,2],

[8,7,3,4,11,2,1,9,5,10,6,14,12,13].
D15 [7,9,13,6,14,4,10,5,8,12,11,2,15,1,3], [15,2,12,14,3,13,6,10,1,5,7,8,4,11,9],

[3,6,1,4,8,11,5,2,9,12,15,10,13,7,14].
G16 [2,1,13,10,9,11,5,3,8,7,4,15,16,6,14,12],

[5,1,11,8,6,2,12,9,10,7,15,14,16,3,4,13],
[4,3,7,1,15,6,5,11,16,8,12,2,9,10,13,14].

C17 [3,10,15,1,7,4,17,6,14,2,5,12,16,11,9,13,8],
[17,13,11,6,10,14,9,5,16,7,8,1,2,15,12,4,3],
[8,2,4,5,7,10,9,13,11,14,3,6,16,12,1,15,17].

G18 [3,10,7,6,18,15,1,9,8,12,17,5,16,14,13,11,2,4],
[16,18,3,13,4,7,15,1,10,6,8,14,2,11,9,12,5,17],
[3,1,5,8,6,2,7,4,10,12,9,18,15,17,16,11,13,14].

C19 [14,12,17,6,2,13,16,4,5,7,18,9,15,10,19,1,3,8,11],
[16,7,13,6,8,12,15,17,1,18,4,10,19,5,3,9,14,2,11],
[2,3,4,6,1,10,15,5,8,7,11,14,9,12,13,18,17,16,19].

D20 [1,5,18,17,8,4,13,19,9,3,6,7,2,20,10,15,16,14,11,12],
[2,12,4,3,14,10,13,15,8,11,5,1,6,18,9,20,16,19,7,17],
[1,8,2,7,4,3,11,9,12,14,17,16,13,15,19,18,6,10,5,20].

D21 [5,4,12,6,19,1,20,2,8,7,16,21,15,10,17,11,13,3,14,9,18],
[14,13,11,3,8,4,1,12,6,21,2,18,5,17,20,19,15,10,9,7,16],
[14,9,2,1,8,5,15,6,13,11,3,19,16,20, 21,18,7,17,10,12,4].

D22 [11,22,12,20,9,2,17,13,5,7,18,8,21,3,10,4,6,19,14,15,1,16],
[8,22,1,10,19,2,9,12,4,5,13,15,14,18,6,20,11,17,21,3,16,7],
[11,2,7,4,3,5,1,6,8,16,9,12,19, 15,14,13,17,18,10,21,22,20].

C23 [13,12,9,14,4,10,6,15,3,21,8,17,20,16,23,22,19,1,18,2,7,11,5],
[23,17,21,20,8,5,19,10,7,6,16,4,14,2,13,11,15,12,18,9,3,22,1],
[2,5,13,3,14,8,4,6,7,16,9,11,12,18,10,15,1,20,22,17,19,21,23].

It is convenient to stop at this point since no N1 square of order 24 is currently
widely available in the literature (although there is one in [13]). The speed of success
of our algorithm indicates that it is very likely that corrupting pairs exist for all orders
greater than 6. However proving this much would necessarily involve resolving the
existence spectrum for N1 squares.
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8. CORRUPTED PRODUCTS WITH A UNIQUE SUBSQUARE

We now pursue some conditions under which we can be sure that the corrupted
product P � �A;B� �s M de®ned by (5) has a unique proper subsquare. First we prove
this slight extension of Theorem 1.

Lemma 7. Let N be an N1 square of order � 2 and T a near copy of N in a Latin
square L. If L has a subsquare U which meets T in at least two positions then T � U.

Proof. Let V � U \ T occupy rows R and columns C and contain native symbols �.
By taking the transpose if necessary we may assume that jCj � jRj and jCj � 2. We
®rst argue that V cannot consist of a single row r containing the hole from T . If it did
and the hole was in column c, there would be at least one � 2 � occurring inside V in
row r and a column other than c. But then when � occurs in column c (in a row other
than r) this occurrence must lie within both U and T and hence in V . We infer that V
always contains a row in which every symbol is in �. Hence j�j � jCj � jRj.

Next suppose that j�j > jRj so that in each column c 2 C there must be a symbol
�c 2 � which does not occur in column c of V . But �c must occur in each column of
U which is only possible if the hole is in column c and �c is the displaced native.
With jCj� 2 and only one hole, we are forced to conclude that j�j�jCj� jRj. Also if
the hole is inside V then the displaced native is in �. It follows that the submatrix of N
corresponding to V must be a subsquare, which can only be the whole square. &

Lemma 8. If S 6� �M is a proper subsquare of P then the projections of S onto the
®rst and second factors are injective.

Proof. Suppose that S 6� �M is a proper subsquare of P. The projection of S onto the
®rst factor only fails to be injective if it hits an M-block, T , in two different places. By
Lemma 7 this means that the whole block T is included in S. Now S 6� �M implies
that S 6� T so S must hit (a whole row of) another M-block, T 0. Applying Lemma 7
again, we see that S includes T 0. Now consider the A-blocks. Every one of these near
copies of A hits both T and T 0 and hence must be included in S by Lemma 7. Thus S is
the whole of P and is not proper. The argument for projection onto the second factor
is similar. &

Corollary. P has no proper subsquare (except maybe �M) of order exceeding
min fm; ng.

Let S be any subsquare of P of order s > 1, which has injective projections onto
each factor. S does not hit any M-block or A-block twice so �1�S� agrees with its
shadow in A, except possibly in one entry that comes from �A. Moreover, �1�S�
contains s2 distinct entries covering no more than s distinct rows, columns or
symbols. It follows that �1�S� must be a Latin square. Given that A is an N1 square,
this leaves only two possibilities:

(i) S is isotopic to A and misses �A, or
(ii) A includes a near copy of S and S hits �A. The corrupted entry inherited from

�A must serve to return the displaced native to the near copy of S.

Note that (i) requires that S and A are of the same order whereas (ii) can only work
if S is strictly smaller than A. The corresponding result for projection onto the second
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factor is that either (i) S is isotopic to M and misses �M , or (ii) M includes a near copy
of S and S hits �M .

These observations are crucial to the next theorem and also motivate our ®nal
de®nition. Let A and M be N1 squares of order n and m respectively, where n < m.
A forbidden shift with respect to the pair �A;M� is an integer s such that there is an
entry M�i; j� for which �M�i; j� � s�m ,!M�i; j� contains a subsquare isotopic to A. An
allowable shift is any integer which is not a forbidden shift.

Theorem 6. Let �A;B� be a corrupting pair of order n and M an N1 square of
order m � 3. Suppose s 6� 0 �mod m�. Then the corrupted product P � �A;B� �s M
de®ned by �5� is in Unm;m provided one of the following holds:

�i� n < m and s is an allowable shift with respect to �A;M�.
�ii� n � m.
�iii� n > m and �A;B� is a strong corrupting pair.

Proof. Suppose P has a proper subsquare S of order � � 2, other than �M . By the
corollary to Lemma 8, � � min fm; ng. Suppose that � < min fm; ng. Then S hits �A

and �M exactly once each. Consider the shadow of �1�S� on A. It must hit the
principal entry in A, because S hits �M . Also �1�S� contains exactly one entry derived
from �A. Part (c) of the de®nition of corrupting pairs now says that S cannot be a
subsquare.

Therefore � � min fm; ng. At this point we distinguish three cases:

Case 1. m > n � �.

Since S is the same order as A it must be isotopic to A and miss �A. Projecting onto
the second factor, we see that as S is smaller than M it must hit �M and M must
contain a near copy of S which gets `̀ completed'' by the entry inherited from �M.
However, if s is an allowable shift then this is impossible as S is isotopic to A.

Case 2. n > m � �.

By projecting onto the ®rst factor we see that S must hit �A in exactly one place, say
in position �i; j�. This means S is isotopic to a subsquare of B�i; j�,!A�i; j�. If �A;B� is a
strong corrupting pair then this is impossible since � � m > 2.

Case 3. n � m � �.

Since S and M are the same size, we infer by applying �2 that they are isotopic and S
misses �M . However S and A are also the same size so the injectivity of �1 means
that every entry of A is covered by the shadow of �1�S�. In particular, the
principal entry of A is covered, which means there is an entry of S in �M after all, a
contradiction. &

Returning to our comments at the start of Section 6, we see that the hard work is in
®nding strong corrupting pairs. Given such a pair, �A;B� of order k, we can embed
almost any N1 square M of order m as the unique subsquare in a square of order mk.
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The process only fails for M of order 2 and M for which all shifts are forbidden with
respect to �A;M�. This last occurrence requires M to contain at least mÿ 1 near
copies of A. As A is of order � 7, this rates to be an extremely unlikely event for a
randomly chosen M. The paper [9] cannot prove such a statement, but does offer
some discussion on the probability distribution of subsquares in Latin squares.

9. CONCLUDING REMARKS

It was claimed in the introduction that a study of U could lead to new constructions of
N1 squares. For any given L 2 U, it is reasonable to expect a small perturbation of L
to destroy the existing subsquare. If such a perturbation can be found to not introduce
new subsquares then clearly the result is an N1 square. Exactly this idea was used in
[13] to create N1 squares of orders 32, 64 and 128. The starting square for order 128
was M128;37, which is in U by Theorem 4, whereas for n � 32; 64 the starting square
was in Kn (see Theorem 5). Interestingly, exactly the same technique works on Kn for
a number of other small powers of 2; namely n=16, 512, 1024, 4096 etc. Finally, an
idea based on corrupted products was used to create N1 squares of the other
unknown orders 2a3b < 256. Although [13] is not widely available, the author is
working on a systematic use of these techniques to completely resolve the existence
question for N1 squares. Details should appear in [15].
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