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ABSTRACT: Let L be chosen uniformly at random from among the latin squares of order n ≥ 4
and let r, s be arbitrary distinct rows of L. We study the distribution of σr,s, the permutation of the
symbols of L which maps r to s. We show that for any constant c > 0, the following events hold with
probability 1 − o(1) as n → ∞: (i) σr,s has more than (log n)1−c cycles, (ii) σr,s has fewer than 9

√
n

cycles, (iii) L has fewer than 9
2 n5/2 intercalates (latin subsquares of order 2). We also show that the

probability that σr,s is an even permutation lies in an interval [ 1
4 − o(1), 3

4 + o(1)] and the probability
that it has a single cycle lies in [2n−2, 2n−2/3]. Indeed, we show that almost all derangements have
similar probability (within a factor of n3/2) of occurring as σr,s as they do if chosen uniformly at
random from among all derangements of {1, 2, . . . , n}. We conjecture that σr,s shares the asymptotic
distribution of a random derangement. Finally, we give computational data on the cycle structure of
latin squares of orders n ≤ 11. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 33, 286–309, 2008

Keywords: latin square; latin trade; random derangement; cycle structure; intercalate; quasigroup
character

1. INTRODUCTION

Any ordered pair (r, s) of distinct rows of a latin square L defines a permutation σr,s which
maps a symbol in r to the symbol in s which lies in the same column. The latin property
implies that σr,s is a derangement (that is, it has no fixed points). The purpose of this paper
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STRUCTURE OF TWO ROWS IN A RANDOM LATIN SQUARE 287

is to study σr,s when L and (r, s) are chosen uniformly at random. In particular, we are
interested in whether σr,s asymptotically has the same distribution as a derangement chosen
uniformly at random.

By symmetry, it suffices to focus on the row permutation σ1,2 formed by the first two rows
of the random latin square. Note that the number of extensions of a 2 × n latin rectangle to
an n × n latin square depends only on the cycle structure of the row permutation given by
the first two rows. Hence the probability of σ1,2 being a particular derangement d depends
only on the cycle structure of d.

Jacobson and Matthews [7] designed a Markov chain whose stationary distribution is
uniform over Latin squares of order n. They were not able to say how quickly their chain
converges to its stationary distribution. One handicap to testing the convergence empirically
is that very little is known about the structure of random latin squares.

McKay and Wanless [11] obtained some results about the distribution of intercalates
(latin subsquares of order 2). They showed that with probability 1 − o(1) a random latin
square has at least n3/2−ε intercalates (for any fixed ε > 0) and that the probability of
there being no intercalates is O(exp(−n2−ε)). In a later paper [12] the same authors showed
that with probability 1 − o(1) a random latin square possesses no symmetry except the
identity.

Cameron [1] showed that almost all n ×n latin squares have the property that their rows,
viewed as permutations, generate either the full symmetric group Sn or the alternating group
An on n letters. (Here the columns are labelled with the same set as the symbols so that
row r maps j to e if and only if symbol e occurs in column j of row r.) It was subsequently
shown by Häggkvist and Janssen [5] that the second of these possibilities can be ignored.
They showed that the proportion of all-even n × n latin squares is o(cn) for some constant
c < 1, where a latin square is called all-even if every row is an even permutation.

The results outlined above are the only prior results on the structure of random latin
squares of which the present authors are aware.

An algorithm for generating random latin rectangles is given by McKay and Wormald
[13]. Structural results for random k × n latin rectangles (with k much smaller than n) are
fairly easy to obtain by switchings (see, for example, [4] and [11]). Some of this information
can then be used to deduce properties of random latin squares (this is how the results
quoted above from [11] were obtained). Unfortunately, much accuracy is lost because of
the uncertainty in the number of extensions of a latin rectangle to a latin square. In this
paper we avoid this problem by doing the switchings within latin squares themselves. This
requires the use of more complicated switchings. First, in Section 2, we cover the basic
definitions and notation which are used throughout the paper. Our switchings are described
in Section 3.

The number of cycles in a random permutation of n symbols has a distribution which
is asymptotically normal with mean and variance asymptotic to log n, see Kolchin [8]. The
same is known to be true for the number of cycles in a random derangement of n symbols,
by the results of Flajolet and Soria [3]. We expect that this also holds for the number of
cycles in σ1,2 for a random n × n latin square. We have proved that for any constant c > 0,
with probability which tends to 1, a random n × n latin square has between (log n)1−c and
9
√

n cycles in the row permutation σ1,2. These and other results are described in Section 4.
In Section 5 we give data on the cycle structure of latin squares for orders n ≤ 11. Finally,
in Section 6 we formally state a conjecture which predicts that the distribution of σ1,2 tends
toward that of a random derangement as n → ∞ and briefly explore the implications of
this conjecture for the character theory of quasigroups.
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288 CAVENAGH, GREENHILL, AND WANLESS

2. DEFINITIONS

In this section we define the terminology and notation which will be used throughout the
paper.

A latin square of order n is a matrix of order n in which each one of n symbols appears
exactly once in each row and exactly once in each column. In this paper we assume that
the symbol set is [n] = {1, 2, . . . , n}, so that it coincides with the set of indices of the rows
and columns. Since it will usually be clear from context which latin square we are dealing
with, we will frequently use the notation i ◦ j for the symbol in row i and column j of a latin
square. It is often convenient to think of a latin square of order n as a set of n2 triples of the
form (i, j, i ◦ j), where i is a row and j is a column. In particular, thinking of a latin square
as a set allows us to use set notation and terminology.

A partial latin square Q of order n is an n × n array of symbols from the set [n], where
each symbol occurs at most once in each row and at most once in each column, with empty
cells allowed. If there are no empty cells then Q is a latin square. As for latin squares we
may denote Q as a set of ordered triples (elements) of the form (i, j, i ◦ j), where symbol
i ◦ j occurs in row i and column j. The definition of Q above does not require that Q ⊆ L
for some latin square L of the same order as Q, but all partial latin squares in this paper will
have that property.

A k × � latin rectangle is a k × � matrix in which each of � symbols occurs exactly once
in each row and at most once in each column. A latin subrectangle is a submatrix which is
a latin rectangle. If k = � then the latin subrectangle is called a latin subsquare, and a 2 × 2
latin subsquare is called an intercalate.

If R is a 2 × m latin subrectangle of some latin square and R is minimal in that it
contains no 2 × m′ latin subrectangle for 2 ≤ m′ < m, then we say that R is a row cycle of
length m.

Another way to think of row cycles is in terms of the permutation which maps one row
to another row. Suppose that r and s are two rows of a latin square. We define a permutation
σr,s : [n] 	→ [n] by σr,s(r ◦ j) = s ◦ j for each j ∈ [n]. The latin property ensures that σr,s

is a derangement, meaning that every cycle has length at least 2. Each row cycle on r and
s corresponds to a cycle of the permutation σr,s and vice versa. If c is a cycle of σr,s, then
we find the corresponding row cycle by taking all occurrences in r and s of symbols which
occur in c.

A column cycle is a set of elements which forms a row cycle when the square is transposed.
Thus σr,s may also be defined if r and s are columns. (The context will make it clear whether
r and s are rows or columns.) Row cycles and column cycles will collectively be known as
cycles.

For the remainder of the paper we will consider latin squares of order n ≥ 4 exclusively
and m = m(n) will be some integer between 4 and n. We say that a partial latin square F of
order n is suitable if

• every cell in the first m columns of F is empty,
• no cell in the final n − m columns of F is empty,
• the first two rows of F contain the same symbols.

This final condition on F means that the first two rows of F consist of entire row cycles
(rather than fragments of row cycles). To illustrate, the first partial latin square shown below

Random Structures and Algorithms DOI 10.1002/rsa
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is suitable (with m = 4) but the second is not.

5 3
3 5
1 4
2 1
6 2
4 6

5 3
3 2
1 4
2 1
6 5
4 6

Any permutation of [n] can be written as a product of disjoint cycles in the standard way.
The lengths of these cycles define a partition of n which we call the cycle structure of the
permutation.

If L is a latin square containing F then we use ρ(L) = ρ(L, m) to denote the partition
of m derived from the row cycles in the first two rows of L \ F. This gives a partition of m
which has no part of size 1. Let P(m) be the set of all such partitions.

Fix a suitable partial latin square F of order n. For each λ ∈ P(m), let S(λ, F) be the
set of latin squares L such that F ⊆ L and ρ(L) = λ. In the next section we estimate the
relative sizes of the sets S(λ, F) using switchings.

Then we consider the set �(F) = ⋃
λ∈P(m) S(λ, F) consisting of all latin squares which

contain F. Using uniform measure on this set we form a probability space which, by slight
abuse of notation, we also denote �(F). All probabilities will be calculated in �(F), and
we use PF(·) to denote such probabilities. In the particular case when m = n and F is empty,
� = �(F) accords with the most obvious notion of random latin squares. However, stating
our results in terms of F makes it possible to find probabilities which are conditional on
certain structures being present in the last n−m columns of the square. This extra generality
may prove useful in some applications.

For a partition λ ∈ P(n), we use κ(λ) to denote the number of parts in λ. Since none of
our partitions have parts of size 1, we will write λ = (2λ2 , 3λ3 , 4λ4 , . . . , nλn) to signify that
λ has λi parts of size i, for i = 2, 3, . . . , n. If λi = 0, then we may omit iλi from the list, and
if λi = 1, then we will write i instead of i1.

Let Dn be the set of derangements of [n], and let γ (λ) denote the number of derangements
with cycle structure λ. It is elementary that if λ = (2λ2 , 3λ3 , 4λ4 , . . . , nλn) ∈ P(n) then

γ (λ) = n!∏n
i=2 λi!iλi

. (1)

We use Qn to denote the uniform probability distribution on Dn. Hence Qn(λ) =
γ (λ)/|Dn| is the probability of a random member of Dn having cycle structure λ.

Define a metric on P(n) as follows. Let 	n be the graph with vertex set P(n) and with
an edge between two partitions λ, µ ∈ P(n) if and only if λ can be formed by splitting
one part of µ into two parts, or vice versa. We then define the distance d(λ, µ) between
arbitrary partitions λ, µ ∈ P(n) to be the length of the shortest path in 	n between the
vertices corresponding to λ and µ.

3. SWITCHINGS

Let µ, λ ∈ P(m) with d(µ, λ) = 1. We will assume that µ is obtained from λ by splitting
one part of size α + β into two parts of size α and β. In this section we describe how to
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switch between sets S(µ, F) and S(λ, F) via latin trades. Our aim is to approximate the
ratio |S(µ, F)|/|S(λ, F)|.

A partial latin square Q of order n is said to be a latin trade if there exists a partial latin
square Q′ (also of order n) such that:

• Q and Q′ occupy the same set of non-empty cells,
• if (i, j, k) ∈ Q and (i, j, k′) ∈ Q′, then k �= k′ (that is, Q and Q′ are disjoint),
• for each i ∈ [n], the set of symbols in row i of Q is equal to the set of symbols in row

i of Q′ (row i is balanced), and
• for each j ∈ [n], the set of symbols in column j of Q is equal to the set of symbols in

column j of Q′ (column j is balanced).

The partial latin square Q′ is called a disjoint mate of Q. The choice of Q′ may not be unique.
We thus sometimes refer to the pair (Q, Q′) as a latin bitrade. Note that if Q is a latin trade
within a latin square L, then (L \ Q) ∪ Q′ is also a latin square. Thus, latin trades describe
the “difference” between two latin squares of the same order. It is also useful to note that
if (Q, Q′) is a latin bitrade, then (Q′, Q) is also a latin bitrade. In this sense, latin trades are
always “reversible”; an important property for the switching process below.

Lemma 3.1. Any row cycle R is a latin trade, with a unique disjoint mate obtained by
swapping the symbols in each column of R. Similarly, any column cycle is also a latin trade,
with a unique disjoint mate obtained by exchanging the symbols in each row.

For an analysis of how latin squares of order n ≤ 8 are connected by the trades in
Lemma 3.1 see [15].

Given a column j of a latin square L, we define ωL(j) = ω(j) �= j to be the column such
that 1 ◦ ω(j) = 2 ◦ j:

j ω(j)
1 e1 e2

2 e2 e3

We may define a similar function for any ordered pair of columns j and j′. Let δj,j′ be the
permutation of the rows of the latin square given by: δj,j′(i) = i′, where i ◦ j′ = i′ ◦ j.

Next, let j, j′ be two columns in a latin square L such that j′ �∈ {j, ω(j), ω−1(j)}. We
identify the pair {j, j′} as either an A-pair or a B-pair as follows. Consider the column cycles
of {j, j′}. If rows 1 and 2 belong to different cycles then {j, j′} is an A-pair. Otherwise rows
1 and 2 belong to the same cycle and {j, j′} is a B-pair.

For example, the left and right diagrams below illustrate an A-pair of columns and a
B-pair of columns, respectively. A double line is used between rows 2 and 3 of the latin
square for clarity.

1 2
3 4

2 1
4 5
5 6
6 3
7 8
8 7

A

1 2
3 4

2 5
5 3
6 7
4 1
7 8
8 6

B
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Definition 3.2. Let L ∈ S(µ, F) and let (j, j′) be an A-pair of columns that belong to
different row cycles in rows 1 and 2. Suppose furthermore that j and j′ belong to row
cycles of length α and β, respectively. Let Q be the column cycle within columns {j, j′} that
includes row 2 and let Q′ be its unique disjoint mate. Let L′ be the latin square defined by
L′ = (L \ Q) ∪ Q′. We say that L′ is the flip of L (with respect to columns j, j′).

In the following lemma, (ω′)β denotes the map formed by taking β iterations of ω′. Such
notation will subsequently be used without further comment.

Lemma 3.3. Let L ∈ S(µ, F) and let L′ be the flip of L with respect to columns j, j′ where
1 ≤ j, j′ ≤ m. Then L′ ∈ S(λ, F) and (ω′)β(j) = j′, where ω′ = ωL′ .

Proof. The fact that L′ ∈ S(λ, F) follows from the definition of the flip operation. Let i ◦′ j
denote the symbol in cell (i, j) of L′. Then 2 ◦ j = 2 ◦′ j′ and 2 ◦′ j = 2 ◦ j′, while every
other symbol in rows 1 and 2 is the same in L as in L′. It follows that ω′(j) = ω(j′) and
ω′(j′) = ω(j), with ω(c) = ω′(c) for any other column c. Thus, (ω′)β(j) = (ω′)β−1(ω(j′)) =
ωβ(j′) = j′. Similarly, (ω′)α(j′) = j. This implies that j and j′ belong to a row cycle of length
α + β in L′.

The following example demonstrates Lemma 3.3 in action with α = 4 and β = 3. The
latin trade Q and its disjoint mate Q′ are shown in bold.

j j′

1 7 3 4 5 6 2
7 3 4 1 6 2 5

6 7
7 8
8 1
5 4

L

j j′

1 7 3 4 5 6 2
7 3 4 6 1 2 5

7 6
8 7
1 8
5 4

the flip of L

Definition 3.4. Let L ∈ S(λ, F) and let (j, j′) be an A-pair of distinct columns that belong
to the same cycle of length α + β in rows 1 and 2. Suppose furthermore that ωβ(j) = j′.
Let Q be the cycle of column pair {j, j′} that includes row 2 and let Q′ be its unique disjoint
mate. Let L′ = (L \ Q) ∪ Q′. We say that L′ is the backflip of L (with respect to columns
j, j′).

Lemma 3.5. Let L′ be the backflip of L ∈ S(λ, F) with respect to columns j, j′ with
1 ≤ j, j′ ≤ m. Then L′ ∈ S(µ, F). Moreover, suppose we can apply the flip (respectively,
backflip) operation to a latin square L with respect to a pair of columns {j, j′} to obtain a
latin square L′. Then if we apply the backflip (respectively, flip) operation to L′ (again with
respect to columns {j, j′}), we obtain our original latin square L.

Proof. Observe that the backflip operation is the exact inverse of the flip operation.

The above results describe how to join and split cycles within rows 1 and 2 across A-
pairs of columns. The next lemmas describe ways to change columns between A-pairs and
B-pairs, under certain conditions.

Random Structures and Algorithms DOI 10.1002/rsa
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Definition 3.6. Let L ∈ S(µ, F). Let Q1 and Q2 be two distinct row cycles in the first m
columns of rows 1 and 2. Suppose that column j belongs to cycle Q1 and column j′ belongs
to cycle Q2. Without loss of generality, suppose Q1 contains a symbol that is smaller than
every symbol in Q2. Let Q′

1 be its unique disjoint mate and let L′ be the latin square given
by (L \ Q1) ∪ Q′

1. We say that L′ is the switch of L (with respect to columns j and j′).

Lemma 3.7. Let L ∈ S(µ, F) and let L′ be the switch of L with respect to columns j and
j′, where 1 ≤ j, j′ ≤ m. Then L′ ∈ S(µ, F) and {j, j′} is an A-pair of columns in L if and
only if it is a B-pair of columns in L′, and vice versa.

Proof. Replacing a row cycle in rows 1 and 2 with its disjoint mate does not change the
lengths of any cycles in those rows. Thus, L′ still belongs to S(µ, F). However, 1◦ j = 2 ◦′ j
and 1◦′ j = 2◦ j while 1◦ j′ = 1◦′ j′ and 2◦ j′ = 2◦′ j′. It follows that the pair {j, j′} changes
its status from an A-pair to a B-pair, or vice versa.

The following diagram shows Lemma 3.7 in action. Note that Q1 contains the smallest
symbol (in this case, 1). Both Q1 and Q′

1 are shown in bold. The pair {j, j′} is an A-pair in L
and becomes a B-pair in the switch of L.

j j′

1 7 3 4 5 6 2
7 3 4 1 6 2 5

6 7
7 8
8 1
5 4

L

j j′

7 3 4 1 5 6 2
1 7 3 4 6 2 5

6 7
7 8
8 1
5 4

the switch of L

Corollary 3.8. Suppose we can apply the switch operation to a latin square L with respect
to a pair of columns {j, j′} to obtain a latin square L′. Then if we apply the switch operation
to L′ (again with respect to columns {j, j′}), we obtain the latin square L.

In Lemma 3.7 we showed that if we trade a cycle of rows 1 and 2, the B-pairs with
exactly one column in this cycle become A-pairs and vice-versa. Thus, it is always possible
to transform a B-pair into an A-pair when the columns of the pair belong to different row
cycles. Now we describe an operation which can be performed when the columns of a B-pair
belong to the same row cycle.

Definition 3.9. Let L ∈ S(λ, F) and let (j, j′) be a B-pair of distinct columns that belong
to the same row cycle of length α+β in rows 1 and 2, where α, β ≥ 2. Suppose furthermore
that j′ = ωα(j). Let (1, j, e1), (1, j′, e2), (2, j, e3), (2, j′, e4) ∈ L. Note that e1, e2, e3 and e4 are
pairwise distinct. Let δ = δj,j′ and let a and b be the smallest positive integers such that
δa(1) = 2 and δb(2) = 1. We define a partial latin square Q ⊂ L as follows. Firstly suppose
that min(e1, e2, e3, e4) ∈ {e1, e4}. Then let

Q = {(2, j, e3), (1, j′, e2)} ∪ {(1, ωk(j), 1 ◦ ωk(j)), (2, ωk(j), 2 ◦ ωk(j)) | 1 ≤ k < α}
∪ {(δk(1), j, δk(1) ◦ j), (δk(1), j′, δk(1) ◦ j′) | 1 ≤ k < a}
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and

Q′ = {(2, j, e2), (1, j′, e3)} ∪ {(1, ωk(j), 2 ◦ ωk(j)), (2, ωk(j), 1 ◦ ωk(j)) | 1 ≤ k < α}
∪ {(δk(1), j, δk(1) ◦ j′), (δk(1), j′, δk(1) ◦ j) | 1 ≤ k < a}.

Otherwise min(e1, e2, e3, e4) ∈ {e2, e3}. In this case we let

Q = {(1, j, e1), (2, j′, e4)} ∪ {(1, ωk(j′), 1 ◦ ωk(j′)), (2, ωk(j′), 2 ◦ ωk(j′)) | 1 ≤ k < β}
∪ {(δk(2), j, δk(2) ◦ j), (δk(2), j′, δk(2) ◦ j′) | 1 ≤ k < b}

and

Q′ = {(1, j, e4), (2, j′, e1)} ∪ {(1, ωk(j′), 2 ◦ ωk(j′)), (2, ωk(j′), 1 ◦ ωk(j′)) | 1 ≤ k < β}
∪ {(δk(2), j, δk(2) ◦ j′), (δk(2), j′, δk(2) ◦ j) | 1 ≤ k < b}.

Let L′ = (L \ Q) ∪ Q′. (In the above, ◦ is defined with respect to L rather than L′.) We say
that L′ is the cross-switch of L (with respect to columns j and j′).

The following example shows the situation before and after a cross-switch operation.
Here α = 3 and β = 4. Note how the pair of columns {ω2(j), ω(j′)} changes from an A-pair
to a B-pair.

j ω2(j) j′ ω(j′)
1 2 3 4 5 6 7
2 3 4 5 6 7 1

5 6 7 4
7 1 3 5
6 7 2 1

L

j ω2(j) j′ ω(j′)
1 2 4 5 3 6 7
2 5 3 4 6 7 1

7 6 5 4
3 1 7 5
6 7 2 1

the cross-switch of L

Lemma 3.10. Let L ∈ S(λ, F) and let j, j′, L′, Q, Q′ be as in the Definition 3.9, where
1 ≤ j, j′ ≤ m. Then (Q, Q′) is a latin bitrade and L′ ∈ S(λ, F). Moreover, for any 1 ≤ k < α

and 1 ≤ k′ < β, the pair {ωk(j), ωk′
(j′)} is an A-pair in L′ if and only if it is a B-pair in L,

and vice versa.

Proof. We first show that (Q, Q′) is a latin bitrade. We assume that min(e1, e2, e3, e4) ∈
{e1, e4}; the other case is similar. It is easy to see that Q and Q′ occupy the same set of
non-empty cells and are disjoint.

Observe that 1 ◦ ωα(j) = 1 ◦ j′ = e2 and that for each k, 2 ◦ ωk(j) = 1 ◦ ωk+1(j) (by the
definition of ω). In particular, 1 ◦ ω(j) = 2 ◦ j = e3. It follows that row 1 contains the set
of symbols

{1 ◦ ωk(j) | 1 ≤ k ≤ α}
in Q and Q′. Thus, row 1 is balanced. Similarly, observing that 2 ◦ ω0(j) = 2 ◦ j = e3 and
2 ◦ ωα−1(j) = 1 ◦ j′ = e2, Q and Q′ both contain the set of symbols

{2 ◦ ωk(j) | 0 ≤ k < α}
in row 2. Every other row of Q contains two symbols, which are swapped in Q′.

Random Structures and Algorithms DOI 10.1002/rsa



294 CAVENAGH, GREENHILL, AND WANLESS

Next we show that the columns of (Q, Q′) are balanced. Consider column j. Observe that
δa(1) ◦ j = 2 ◦ j = e3 and that for each k, δk(1) ◦ j′ = δk+1(1) ◦ j (by the definition of δ). In
particular, δ(1) ◦ j = 1 ◦ j′ = e2. It follows that column j contains the set of symbols

{δk(1) ◦ j | 1 ≤ k ≤ a}

in Q and Q′. Thus, column j is balanced. Similarly column j′ is balanced. The remaining
columns of Q each contain two symbols, which are swapped in Q′.

Thus, (Q, Q′) is a latin bitrade. The fact that L′ ∈ S(λ, F) follows from the definition of
the cross-switch operation. Next, if 1 ≤ k < α and 1 ≤ k′ < β, then precisely one column
from the pair {ωk(j), ωk′

(j′)} has symbols swapped in rows 1 and 2 when the cross-switch
operation is applied. The other column remains unchanged. Thus, the pair {ωk(j), ωk′

(j′)}
changes from an A-pair to a B-pair or vice-versa.

Corollary 3.11. Suppose we can apply the cross-switch operation to a latin square L with
respect to a pair of columns {j, j′} to obtain a latin square L′. Then if we apply the cross-
switch operation to L′ (again with respect to columns {j, j′}), we obtain the latin square L.

In the following we need to distinguish carefully between the cases α �= β and α = β.
In the former, using the notation from Section 2, µ has µα parts of size α, µβ parts of size
β and µα+β parts of size α + β, where µα , µβ ≥ 1 and µα+β ≥ 0. Thus, λ has µα − 1 parts
of size α, µβ − 1 parts of size β and µα+β + 1 parts of size α +β. As d(µ, λ) = 1, all other
parts occur the same number of times in µ as in λ.

In the case that α = β, µ has µα ≥ 2 parts of size α(= β), and µ2α ≥ 0 parts of size
2α. Thus, λ has µα − 2 parts of size α and µ2α + 1 parts of size 2α. Again, all other parts
occur the same number of times in µ as in λ.

We now use the latin trades defined in this section to obtain bounds for the ratio
|S(λ, F)|/|S(µ, F)|. To do this we define two bipartite multigraphs with edges between
S(λ, F) and S(µ, F). Each edge from L ∈ S(λ, F) to L′ ∈ S(µ, F) will correspond to
some latin bitrade (Q, Q′) such that L′ = (L \ Q) ∪ Q′. The first multigraph, GS, is defined
with respect to S(λ, F) (splitting) and the second multigraph, GJ , is defined with respect to
S(µ, F) (joining).

Splitting

Let L ∈ S(λ, F). In each of the µα+β + 1 cycles of length α + β and for each of the α + β

pairs of columns {j, j′} ⊂ [m] such that ωα(j) = j′ (or α such pairs if α = β),

1. If {j, j′} is an A-pair then backflip with respect to {j, j′};
2. else if {j, j′} is a B-pair and {ω(j), ω(j′)} is an A-pair then backflip with respect to

{ω(j), ω(j′)};
3. otherwise {j, j′} is a B-pair and {ω(j), ω(j′)} is a B-pair. In this case cross-switch with

respect to {ω(j), ω(j′)}. Now {j, j′} has become an A-pair, and we backflip with respect
to {j, j′}.

4. In each of 1 to 3 above we obtain a latin square L′ ∈ S(µ, F), and we place an edge
between L and L′ in GS. Note that in each case we have backflipped with respect to a
pair of columns which is an A-pair in L′.
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5. Now switch L′ with respect to {j, j′} to obtain a latin square L′′ ∈ S(µ, F). We also
place an edge between L and L′′ in GS.

Joining

Let L ∈ S(µ, F). For each of the µαµβ pairs of cycles of length α and β (or µα(µα − 1)/2
pairs in the case α = β) and for each of the αβ pairs {j, j′} ⊂ [m] of columns where column
j belongs to the cycle of length α and column j′ belongs to the cycle of length β,

1. If {j, j′} is a B-pair, then switch with respect to {j, j′}. This ensures that {j, j′} is an
A-pair.

2. Next, flip with respect to {j, j′} to create a latin square L′ ∈ S(λ, F). Place an edge
between L and L′ in GJ .

3. If {ω−1(j), ω−1(j′)} is now a B-pair then add an extra edge between L and L′ in GJ ;
and

4. If {ω(j), ω(j′)} is now a B-pair, then cross-switch with respect to {ω(j), ω(j′)} to create
a latin square L′′ ∈ S(λ, F). Place an edge between L and L′′ in GJ .

Lemma 3.12. Let λ and µ be partitions such that d(λ, µ) = 1, where µ may be obtained
from λ by splitting one part of λ of size α + β to give two parts of µ of size α, β. If α �= β,
then

1

2
≤ |S(λ, F)|

|S(µ, F)|
(µα+β + 1)(α + β)

µαµβαβ
≤ 3

2
.

Otherwise α = β and

1

2
≤ |S(λ, F)|

|S(µ, F)|
2(µ2α + 1)

αµα(µα − 1)
≤ 3

2
.

Proof. From Lemma 3.5, Corollary 3.8, and Corollary 3.11, the bipartite multigraphs GJ

and GS are identical (that is, they have exactly the same multiset of edges). Write G = GJ =
GS and denote the number of edges in G (counting multiplicities) by Z . In G, each vertex of
S(λ, F) has degree 2(µα+β + 1)(α + β) (or 2(µα+β + 1)α if α = β), which implies that

Z =
{

2(µα+β + 1)(α + β)|S(λ, F)| if α �= β,
2(µα+β + 1)α|S(λ, F)| if α = β.

(2)

Similarly, inG each vertex of S(µ, F)has some degree d such thatµαµβαβ ≤ d ≤ 3µαµβαβ

(if α �= β) or µα(µα − 1)αβ/2 ≤ d ≤ 3µα(µα − 1)αβ/2 (if α = β). This implies that

µαµβαβ|S(µ, F)| ≤ Z ≤ 3µαµβαβ|S(µ, F)| if α �= β,

µα(µα − 1)αβ/2|S(µ, F)| ≤ Z ≤ 3µα(µα − 1)αβ/2|S(µ, F)| if α = β.

The result follows by substituting (2) into the above inequalities.

Theorem 3.13. Let λ and µ be partitions such that d(λ, µ) = 1, where µ may be obtained
from λ by splitting one part of λ into two. Then,

1

2
≤ |S(λ, F)|

|S(µ, F)|
/

γ (λ)

γ (µ)
≤ 3

2
.
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Proof. Suppose that µ may be obtained from λ by splitting one part of λ of size α + β

into two parts of size α and β. From Eq. (1) in the previous section, if α �= β then

γ (λ)

γ (µ)
= µαµβαβ

(µα+β + 1)(α + β)
.

Similarly, if α = β then
γ (λ)

γ (µ)
= µα(µα − 1)α

2(µ2α + 1)
.

The result then follows from Lemma 3.12.

4. PROPERTIES OF RANDOM LATIN SQUARES

In this section, we derive some properties of random latin squares. In Section 4.1 upper
and lower bounds on various probabilities are calculated, and in Section 4.2 these are used
to analyse the number of cycles in the row permutation formed by the first two rows of a
random latin square.

4.1. Bounds on Probabilities

To obtain bounds on the size of S(λ, F), for λ ∈ P(m), we will compare S(λ, F) with
S((m), F), where (m) is the partition of m with one part.

Lemma 4.1. Let λ ∈ P(m). Then

(2/3)κ(λ)−1 ≤ |S(λ, F)|
|S((m), F)| · (m − 1)!

γ (λ)
≤ 2κ(λ)−1.

Proof. Let
(m) = p0, p1, . . . , pκ(λ)−1 = λ

be a sequence of partitions, starting from (m) and ending at λ, such that for 1 ≤ i ≤ κ(λ)−1,
the partition pi is obtained from pi−1 by splitting one part of pi−1 into two. Then by Theorem
3.13 we have for 1 ≤ i ≤ κ(λ) − 1,

γ (pi−1)

2γ (pi)
≤ |S(pi−1, F)|

|S(pi, F)| ≤ 3γ (pi−1)

2γ (pi)
.

Therefore,

|S((m), F)|
|S(λ, F)| =

κ(λ)−1∏
i=1

|S(pi−1, F)|
|S(pi, F)|

≥ (1/2)κ(λ)−1
κ(λ)−1∏

i=1

γ (pi−1)

γ (pi)

= (1/2)κ(λ)−1 γ ((m))

γ (λ)

= (1/2)κ(λ)−1 (m − 1)!
γ (λ)

.
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Inverting this gives the upper bound. The lower bound is proved similarly.

While the above result will be used most often, we can also prove something more
general.

Lemma 4.2. Let λ, µ ∈ P(m). Then

(1/2)d(λ,µ) ≤ |S(λ, F)|
|S(µ, F)| · γ (µ)

γ (λ)
≤ 2d(λ,µ).

Proof. The proof is very similar to the proof of Lemma 4.1. There is a path from λ to µ

in the graph 	n of length d(λ, µ), say

λ = p0, p1, . . . , pd(λ,µ) = µ.

For 1 ≤ i ≤ d(λ, µ), the partition pi is obtained from pi−1 by splitting one part of pi−1 into
two or by joining two parts of pi−1 into one. If there are r splitting steps then we find that

|S(λ, F)|
|S(µ, F)| · γ (µ)

γ (λ)
≤ (3/2)r2d(λ,µ)−r ≤ 2d(λ,µ)

and |S(λ, F)|
|S(µ, F)| · γ (µ)

γ (λ)
≥ (1/2)r(2/3)d(λ,µ)−r ≥ (1/2)d(λ,µ).

Here we have used the inequalities of Theorem 3.13 directly for a splitting step, but these
inequalities must be inverted for a joining step.

In subsequent results, recall that PF refers to probability in the uniform space �(F).

Theorem 4.3. Let �(F) = E ∪ O, where E (respectively, O) is the set of all latin squares
L ∈ �(F) such that σ1,2(L) is an even (respectively, odd) permutation. Then as m → ∞

1

4
− o(1) ≤ PF(E) ≤ 3

4
+ o(1).

In particular 1
7 ≤ PF(E) ≤ 6

7 for m ≥ 4. Since PF(O) = 1 − PF(E), the same results hold
for PF(O).

Proof. We build a multigraph on the whole of �(F) by applying every possible splitting
and joining process from Section 3. (Note that, as in the proof of Lemma 3.12, the multigraph
obtained from all splitting operations is equal to the multigraph obtained from all joining
operations.)

Consider the degree of some L ∈ �(F). There are between 1
2 m and m pairs {j, j′}

of distinct columns such that j′ ∈ {ω(j), ω−1(j)}. Every other pair of columns results in
between 1 and 3 edges by either splitting or joining. Hence the degree of L is somewhere
between

(m
2

) − m = 1
2 m(m − 3) and 3

((m
2

) − 1
2 m

) = 1
2 m(3m − 6).

Now regardless of whether we split or join, the parity of σ1,2(L) changes, which means
that our multigraph is bipartite, with every edge joining a vertex in E to a vertex in O. It
follows that

m − 3

3m − 6
|E| ≤ |O| ≤ 3m − 6

m − 3
|E|.
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This implies that
m − 3

4m − 9
≤ |E|

|E| + |O| ≤ 3m − 6

4m − 9
,

from which the result follows.

Let PF(λ) = |S(λ, F)|/|�(F)| be the probability that a randomly chosen element of
�(F) gives rise to the partition λ. Also, by a slight abuse of notation, let κ(π) denote the
number of cycles in the cycle decomposition of the permutation π .

Lemma 4.4. Let m ≥ 4. The probability that the first two rows and first m columns of a
random element of �(F) consist of a single m-cycle is bounded as follows:

2m−2 ≤ PF((m)) ≤ 2m−2/3.

Proof. Using Lemma 4.1, we have

PF((m))−1 =
∑

λ∈P(m)

|S(λ, F)|
|S((m), F)|

≤
∑

λ∈P(m)

γ (λ)

(m − 1)!2κ(λ)−1

= 1

2(m − 1)!
∑

π∈Dm

2κ(π).

This sum can be evaluated using generating functions (for example by adapting [16, p.82]).
If h(m, k) denotes the number of derangements of m with k cycles then∑

π∈Dm

2κ(π) =
∑

k

h(m, k)2k = m![xm]e−2x(1 − x)−2 (3)

where [xm]f (x) denotes the coefficient of xm in the Maclaurin series of f (x). Now

[xm]e−2x(1 − x)−2 =
m∑

i=0

(−2)i

i!
( −2

m − i

)
(−1)m−i

=
m∑

i=0

1

i! (−2)i(m − i + 1)

≤ m.

To see this, write
m∑

i=0

1

i! (−2)i(m − i + 1) =
m∑

i=0

(−1)iti

where ti = 2i(m − i + 1)/i!. Notice that ti > ti+1 for 1 ≤ i < m. So, the whole sum
is bounded above by t0 − t1 + t2 = m − 1, which we bound above by m for simplicity.
Therefore,

PF((m))−1 ≤ m!m
2(m − 1)! = m2/2
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giving the stated lower bound.
For the upper bound, we similarly find that

PF((m))−1 ≥ 3

2(m − 1)!
∑

π∈Dm

(2/3)κ(π).

Replace 2 by 2/3 in (3) and calculate that

[xm]e−2x/3(1 − x)−2/3 =
m∑

i=0

1

i! (−2/3)i

(−2/3

m − i

)
(−1)m−i

=
m∑

i=0

(−1)iti (4)

where

ti = 2i

3m
· 2 · 5 · · · (3(m − i) − 1)

i!(m − i)! .

Since for 0 ≤ i < m
ti+1

ti
= 2(m − i)

(i + 1)(3(m − i) − 1)
< 1,

we can write
m∑

i=0

(−1)iti > t0 − t1 + t2 − t3 = g(m)t0

where

g(m) = 41m3 − 174m2 + 217m − 84

3(3m − 1)(3m − 4)(3m − 7)
.

Observing that

t0 = (−1)m

(−2/3

m

)
= 2 · 5 · 8 · · · (3m − 1)

3 · 6 · 9 · · · (3m)
,

we introduce

u = 1 · 4 · 7 · · · (3m − 2)

2 · 5 · 8 · · · (3m − 1)
and v = 3 · 6 · 9 · · · (3m)

4 · 7 · 10 · · · (3m + 1)
.

Then t2
0 > uv since (

3k − 1

3k

)2

>
3k − 2

3k − 1

3k

3k + 1

for all integers k ≥ 1. Hence t3
0 > ut0v = 1/(3m +1) which implies that t0 > (3m +1)−1/3.

This gives

PF((m))−1 ≥ 3m

2
g(m)t0 >

3m

2(3m + 1)1/3
g(8) ≥ 1

2
m2/3

whenever m ≥ 8. Therefore, PF((m)) ≤ 2m−2/3 as required, provided that m ≥ 8. For
4 ≤ m ≤ 7 the same inequality can be verified by direct computation of (4).
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Corollary 4.5. If λ ∈ P(m) then

3m−1 γ (λ)

m!
(

2

3

)κ(λ)

≤ PF(λ) ≤ m1/3 γ (λ)

m! 2κ(λ).

Proof. For the lower bound, combine the lower bounds of Lemma 4.4 and Lemma 4.1 to
give

PF(λ) = PF((m))
|S(λ, F)|

|S((m), F)| (5)

≥ 2m−2 γ (λ)

(m − 1)! (2/3)κ(λ)−1

= 3m−1 γ (λ)

m! (2/3)κ(λ)

as claimed. The upper bound is proved similarly.

An interesting aspect of Corollary 4.5 is that γ (λ)/m! is the proportion of permutations
of [m] which have cycle type λ. This leads us to our next observation.

Corollary 4.6. If λ ∈ P(m) and κ(λ) ≤ 6
5 log m then

m−3/2 ≤ PF(λ)

Qm(λ)
≤ m3/2.

Proof. By definition Qm(λ) = γ (λ)/|Dm| = (γ (λ)/m!)(m!/|Dm|). Standard theory on
derangements gives that for m ≥ 4,

1

3
= |D3|

3! <
|Dm|
m! < 1.

This allows us to rewrite Corollary 4.5 as

m−1

(
2

3

)κ(λ)

≤ PF(λ)

Qm(λ)
≤ m1/32κ(λ).

The result now follows, since 6
5 log 2

3 − 1 > − 3
2 and 6

5 log 2 + 1
3 < 3

2 .

Since the number of cycles in a random derangement of [m] is asymptotically normal with
mean and variance asymptotic to log m, as m → ∞ (see [3]), it follows using Chebyshev’s
inequality that all but a vanishing proportion of derangements of [m] satisfy the hypothesis
κ(λ) < 6

5 log m. Thus, Corollary 4.6 shows that almost all derangements of [m] have
the same probability, to within a multiplicative factor of m3/2, of occurring as a random
derangement as they have of occurring as the permutation between rows 1 and 2 within the
first m columns of a random element of �(F).

It is not obvious that the upper bound given in Corollary 4.5 is nontrivial. So, we also
prove the next result, which is weaker but more transparent.

Lemma 4.7. Let λ ∈ P(m). Then

PF(λ) ≤ 16m−2/3

(
3

4

)κ(λ)

.
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Proof. Again we form a sequence of partitions, starting with (m) and ending up at λ:

(m) = p0, p1, . . . , pκ(λ)−1 = λ.

However, this time we insist that pi+1 is formed from pi in a particular way: we always split
the largest part of pi and we split it to produce the smallest part in λ which is not yet present
in pi (counting multiplicities). For example, to produce λ = (22, 3, 42) ∈ P(15) we have
the sequence

(m) = (15), (2, 13), (22, 11), (22, 3, 8), (22, 3, 42) = λ.

Let �i = |S(pi, F)|/|S(pi+1, F)|. We will argue that �i ≥ 4/3 except in a few cases.
Suppose that a part of size α + β in pi is split to give parts of size α and β in pi+1, where
without loss of generality α ≤ β. By our choice of cuts, pi has exactly one part of size
α + β. Also, if i < κ(λ) − 2 (that is, if the step from pi to pi+1 is not the last step) then
β ≥ 2α. Using the lower bounds from Lemma 3.12, it then follows that �i ≥ 4/3 unless
one of the following holds:

• i < κ(λ) − 2, α = 2 and pi has no parts of size 2, in which case �i ≥ 2/3;
• i < κ(λ) − 2, α = 3 and pi has no parts of size 3, in which case �i ≥ 1;
• i = κ(λ) − 2 and α ≤ 4, in which case �i ≥ 3/5.

None of these three cases can arise more than once on the path from (m) to λ. Even if all
three arise then they contribute at worst 2/5 instead of (4/3)3 to the product

∏
i �i. It follows

that
|S((m), F)|
|S(λ, F)| =

κ(λ)−2∏
i=0

�i ≥ 2

5

(
4

3

)κ(λ)−4

= 81

640

(
4

3

)κ(λ)

.

Therefore, using the upper bound from Lemma 4.4,

PF(λ) = PF((m))
|S(λ, F)|

|S((m), F)| ≤ 2m−2/3 × 640

81

(
3

4

)κ(λ)

leading to the stated bound.

Corollary 4.8. Suppose that m ≥ 12. The most likely partition for the cycle structure of
the row cycles of the first two rows and first m columns of a randomly chosen element of
�(F) is either (m) or (2, m − 2).

Proof. With notation and arguments as in Lemma 4.7, we form the sequence

(m) = p0, p1, . . . , pκ(λ)−1 = λ.

Firstly, suppose that λ has no parts of size 2. Then, we have �i > 1 for all i ≥ 0 except the
case i = 0, α = 3, β ≤ 6 (which cannot happen, as it implies m ≤ 9). The case when λ

has parts of size 2 works similarly except that we compare to p1 = (2, m − 2) rather than to
p0 = (m). A case analysis reveals that λi > 1 for i ≥ 1 except for the case when pi has no
parts of size 3, but α = 3 and β ≤ 6 (which given that m ≥ 12 implies that λ has at least
two parts of size 2 and hence �1 ≥ 8/5). It is thus easy to see

∏
i≥1 �i > 1 whenever λ has

a part of size 2.
Applying (5) completes the proof.
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The condition m ≥ 12 in Corollary 4.8 is necessary, since we cannot with our current
results rule out the partition (2, 3, 6) being as likely as (2, 9) and more likely than (11).
However, in the particular case m = n ≤ 11 we will see in Section 5 that the most likely
partition is always (m), which is also the most common partition in Dn.

4.2. Asymptotic Results

Throughout this section, we assume that m = m(n) → ∞ as n → ∞. We work with
a sequence (Fn) of suitable partial latin squares and we are interested in the sequence of
probability spaces given by (�(Fn)). In the special case that m = n → ∞ and Fn = ∅ for
all n, we obtain asymptotic results about uniformly random n × n latin squares.

Order notation O(·), o(·) will be for n → ∞ and uniform over all sequences (m(n)) and
(Fn). Some further comments about O(·) are required. We will only write f = O(g) when
g(m) has no zeroes at integer points m ≥ 4. In this case, if f (m) ≤ cg(m) for all sufficiently
large m (where c is a constant), then there exists a constant C such that f (m) ≤ Cg(m) for
all m ≥ 4. In turn this implies that f = O(g) where f and g are considered as functions of
n and where m(n) → ∞, regardless of how slowly.

We first prove that a randomly chosen element of �(Fn) is unlikely to have many row
cycles within the first two rows and the first m columns.

Theorem 4.9. Let (Fn) be a sequence of suitable partial latin squares where n → ∞.
The probability that a random element of �(Fn) has at least k row cycles within the first
two rows and the first m columns is

o

((
3

4

)k

exp(π
√

2m/3)

)
.

In particular, there is a constant c with 0 < c < 1 such that the probability that a random
element of �(Fn) has at least 9

√
m such cycles is o(c

√
m).

Proof. Let λ be a partition in P(m) with at least k parts. Then Lemma 4.7 implies that

PFn(λ) ≤ 16m−2/3

(
3

4

)k

.

Hardy and Ramanujan [6] proved that the number of partitions of m is asymptotically equal
to

1

4m
√

3
exp

(
π

√
2m/3

)
as m → ∞. This will do as an (asymptotic) upper bound on the number of partitions with no
parts of size 1 and at least k parts. Multiplying these together, the probability that a random
element of �(Fn) has at least k row cycles (within the first two rows and first m columns) is

O(m−5/3)

(
3

4

)k

exp
(
π

√
2m/3

)
,

proving the first statement. If k = 9
√

m then this probability is o(exp(c′√m)), where

c′ = π
√

2/3 − 9 log(4/3) < 0.
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Putting c = exp(c′) gives 0 < c < 1 and completes the proof.

In particular this implies that with probability 1 − o(1) as n → ∞, a randomly chosen
element of �(Fn) should have one or more cycles of length at least

√
m/9 in the first two

rows and m columns.

Corollary 4.10. The probability that the total number of row cycles among all the rows
of a random n × n latin square is at least 9

2 n5/2 is o(1). Hence the probability that a random
n × n latin square has at least 9

2 n5/2 intercalates is o(1).

Proof. The probability that two given rows of a random latin square have at least 9
√

n
cycles is o(n−2), by Theorem 4.9 with Fn = ∅ and m = n → ∞. Since there are fewer than
1
2 n2 pairs of distinct rows in the latin square, this implies the first statement. The second
statement holds since every intercalate is a row cycle.

Having obtained an upper bound on the likely number of cycles, we now seek a lower
bound.

Theorem 4.11. Let (Fn) be a sequence of suitable partial latin squares and let c be a
positive constant. Then with probability 1 − o(1) as n → ∞, a randomly chosen element
of �(Fn) has more than (log m)1−c cycles in the first two rows and first m columns.

Proof. Let K = (log m)1−c and let PK be the probability that a randomly chosen element
of �(Fn) has no more than K cycles in the first two rows and m columns. By Corollary 4.5,

PK =
∑

λ∈P(m)
κ(λ)≤K

PFn(λ) ≤ m1/32K
∑

λ∈P(m)
κ(λ)≤K

γ (λ)

m! = m1/32K p,

where p is the probability that a random permutation of [m] is a derangement with at most
K cycles.

Kolchin [8, Theorem 4.2.4] proves that whenever k = o(log m), the probability that a
random permutation of [m] has exactly k cycles is

f (k) = k

m log m

(log m)k

k! (1 + o(1)).

It is easy to check that
f (k + 1)

f (k)
= (1 + o(1))

log m

k

and hence f (k) ≤ f (K) for all k ≤ K when m is large enough. Therefore, as derangements
are asymptotically a non-zero fraction of all permutations,

p = O(1)
K2

m log m

(log m)K

K ! = O(m−1)(log m)
1
2 (1−3c)+cK eK ,

using Stirling’s formula. We deduce that

PK = O(m−2/3)(log m)
1
2 (1−3c)+cK(2e)K = O(m−2/3) exp(o(log m)) = o(1),

which proves the theorem.
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5. COMPUTATIONAL RESULTS

In this section, we report computational results for latin squares of small order. The aim
is to give exact values for the probability of each possible cycle structure for each order
n ≤ 11. With regard to the results of the previous section we only consider here the case
when m = n and F = ∅.

For n ≤ 3 there is only one possible cycle structure, which therefore has probability 1.
Data for each partition λ ∈ P(n) for 4 ≤ n ≤ 9 is given in Table 1, whilst Table 2 gives
data for n ∈ {10, 11}.

Suppose R is a 2×n latin rectangle. We say that an n×n latin square whose first two rows
are R is a completion of R. The number of completions depends on the cycle structure λ of
the two rows of R, but not otherwise on R. Also the completions of R fall into equivalence
classes of size (n − 2)!, where squares are equivalent if they differ only in the order of the
rows after the first two. We define C(λ) to be 1/(n − 2)! times the number of completions
for any R with cycle structure λ.

In the column headed Pn(λ), we give the probability of the first two rows of a randomly
chosen latin square of order n having cycle structure λ. For comparison, in the column
headed Qn(λ), we give the probability Qn(λ) = γ (λ)/|Dn| of a random member of Dn

having cycle structure λ.
The value of Qn(λ) is easily calculated from (1). We next explain how C(λ) and Pn(λ)

were calculated. Note that they are related by

Pn(λ) = γ (λ)C(λ)∑
µ∈P(n)

γ (µ)C(µ)
.

Let Sn be the full symmetric group on [n]. There is a natural action of Sn × Sn × Sn on
the latin squares of order n found by considering these squares as sets of triples. The orbits
of this action are called isotopism classes and the stabiliser of a latin square is called its
autotopism group. The number of isotopism classes of latin squares is known [10] for each
order n ≤ 10 (the number of latin squares of order 11 is known [12], but the number of
isotopism classes is not).

The probabilities Pn(λ) reported in Table 1 were calculated by two entirely independent
methods. The first method used a program written by Meynert for her work in [10]. For
a given order, Meynert’s program produces one representative of each isotopism class of
latin square, together with the order of its autotopism group. Suppose that we consider one
representative L of an isotopism class I , for which the autotopism group has order a. It is a
simple matter to find all the row cycles in L and therefore to count, for each λ, the number
#(L, λ) of (unordered) pairs of rows of L with cycle structure λ. By the orbit-stabiliser
theorem there are n!3/a squares in I . Moreover, of these squares, the proportion which have
cycle structure λ between rows 1 and 2 is exactly #(L, λ)/

(n
2

)
. From the output of Meynert’s

program then, it is straightforward to calculate the probabilities Pn(λ) given in Table 1. The
computation for the 115618721533 isotopism classes of order 9 took more than one GHz
year. To corroborate the values quoted, we checked that the results of the program were
consistent with the total number of latin squares as known from [10, 12].

The second method was more powerful and allowed us to gather data for all n ≤ 11.
Thus, we were able to independently verify the accuracy of Table 1, as well as finding the
data in Table 2. The method made use of data collected in the computation [12] to count the
latin squares of orders up to 11. That computation involved counting the 1-factorizations
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TABLE 1. Data for 4 ≤ n ≤ 9

λ C(λ) Pn(λ) Qn(λ)

(22) 2 1
2

1
3

(4) 1 1
2

2
3

(2,3) 4 5
14 ≈ 0.357 5

11 ≈ 0.455

(5) 6 9
14 ≈ 0.643 6

11 ≈ 0.545

(23) 224 7
98 ≈ 0.071 3

53 ≈ 0.057

(32) 192 16
98 ≈ 0.163 8

53 ≈ 0.151

(2, 4) 176 33
98 ≈ 0.337 18

53 ≈ 0.340

(6) 168 42
98 ≈ 0.429 24

53 ≈ 0.453

(22, 3) 55296 252
2206 ≈ 0.1142 35

309 ≈ 0.1133

(3, 4) 54528 497
2206 ≈ 0.2253 70

309 ≈ 0.2265

(2, 5) 55040 602
2206 ≈ 0.2729 84

309 ≈ 0.2718

(7) 54720 855
2206 ≈ 0.3876 120

309 ≈ 0.3883

(24) 258392064 78855
10890328 ≈ 0.0072 15

2119 ≈ 0.0071

(2, 32) 252518400 822000
10890328 ≈ 0.0755 160

2119 ≈ 0.0755

(22, 4) 254582784 932310
10890328 ≈ 0.0856 180

2119 ≈ 0.0849

(42) 252850176 925965
10890328 ≈ 0.0850 180

2119 ≈ 0.0849

(3, 5) 251894784 1967928
10890328 ≈ 0.1807 384

2119 ≈ 0.1812

(2, 6) 252952576 2470240
10890328 ≈ 0.2268 480

2119 ≈ 0.2265

(8) 252110848 3693030
10890328 ≈ 0.3391 720

2119 ≈ 0.3398

(23, 3) 22710505439232 3032179605
160046713496 ≈ 0.0189 315

16687 ≈ 0.0189

(33) 22618103611392 2684304560
160046713496 ≈ 0.0168 280

16687 ≈ 0.0168

(2, 3, 4) 22645209169920 18140769675
160046713496 ≈ 0.1133 1890

16687 ≈ 0.1133

(22, 5) 22679270326272 10900833363
160046713496 ≈ 0.0681 1134

16687 ≈ 0.0680

(4, 5) 22606854291456 21732052923
160046713496 ≈ 0.1358 2268

16687 ≈ 0.1359

(3, 6) 22613272363008 24153580710
160046713496 ≈ 0.1509 2520

16687 ≈ 0.1510

(2, 7) 22646925230080 31100818950
160046713496 ≈ 0.1943 3240

16687 ≈ 0.1942

(9) 22610937544704 48302173710
160046713496 ≈ 0.3018 5040

16687 ≈ 0.3020

of all k-regular bipartite graphs on 22 or fewer vertices. From this information the number
of k × n latin rectangles was calculated for 1 ≤ k ≤ n ≤ 11. Each rectangle R has an
associated bipartite graph G(R) which records the information required to find the number
of completions of R to a latin square. Crucially, the function G(·) is many to one. This
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TABLE 2. Data for n = 10, 11

λ C(λ) Pn(λ) Qn(λ)

(25) 51411315765364654080 3575078749235
5020513457165912 ≈ 0.00071 105

148329 ≈ 0.00071

(22, 32) 51215051179356585984 94971486795080
5020513457165912 ≈ 0.01892 2800

148329 ≈ 0.01888

(23, 4) 51275576338789957632 71312791977630
5020513457165912 ≈ 0.01420 2100

148329 ≈ 0.01416

(32, 4) 51076163026198462464 189427874450360
5020513457165912 ≈ 0.03773 5600

148329 ≈ 0.03775

(2, 42) 51140368085911863296 213374243141045
5020513457165912 ≈ 0.04250 6300

148329 ≈ 0.04247

(2, 3, 5) 51143865047155998720 455229511680720
5020513457165912 ≈ 0.09067 13440

148329 ≈ 0.09061

(52) 51074806889452666880 272768896656928
5020513457165912 ≈ 0.05433 8064

148329 ≈ 0.05437

(22, 6) 51207824325532975104 284874256673440
5020513457165912 ≈ 0.05674 8400

148329 ≈ 0.05663

(4, 6) 51072884275767410688 568247143316860
5020513457165912 ≈ 0.11319 16800

148329 ≈ 0.11326

(3, 7) 51074461189093195776 649445358137680
5020513457165912 ≈ 0.12936 19200

148329 ≈ 0.12944

(2, 8) 51140258707024117760 853495147107050
5020513457165912 ≈ 0.17000 25200

148329 ≈ 0.16989

(10) 51072829020284387328 1363791668479884
5020513457165912 ≈ 0.27164 40320

148329 ≈ 0.27183

(24, 3) 3665106903315598519509712896 131415776701318605804
55506181523176647910224 ≈ 0.00237 3465

1468457 ≈ 0.00236

(2, 33) 3654670127432923786424352768 465925534255529661236
55506181523176647910224 ≈ 0.00839 12320

1468457 ≈ 0.00839

(22, 3, 4) 3658073628175447748014768128 1573963105880708302914
55506181523176647910224 ≈ 0.02836 41580

1468457 ≈ 0.02832

(3, 42) 3651068615485195593569009664 1570949051859006624882
55506181523176647910224 ≈ 0.02830 41580

1468457 ≈ 0.02832

(23, 5) 3661536838959916187375370240 630181290060088514748
55506181523176647910224 ≈ 0.01135 16632

1468457 ≈ 0.01133

(32, 5) 3651113980532641396005273600 1675699809199651405170
55506181523176647910224 ≈ 0.03019 44352

1468457 ≈ 0.03020

(2, 4, 5) 3654503023485006491701739520 3773824267499312011524
55506181523176647910224 ≈ 0.06799 99792

1468457 ≈ 0.06796

(2, 3, 6) 3654560495907096144560259072 4193204018247818993496
55506181523176647910224 ≈ 0.07554 110880

1468457 ≈ 0.07551

(5, 6) 3650989756490710602617978880 5026928387578452522783
55506181523176647910224 ≈ 0.09057 133056

1468457 ≈ 0.09061

(22, 7) 3658021348698519412435582976 2698183905490885837608
55506181523176647910224 ≈ 0.04861 71280

1468457 ≈ 0.04854

(4, 7) 3651001745403125604370350080 5386012387199840468655
55506181523176647910224 ≈ 0.09703 142560

1468457 ≈ 0.09708

(3, 8) 3651059158432419738286030848 6283779931052691933096
55506181523176647910224 ≈ 0.11321 166320

1468457 ≈ 0.11326

(2, 9) 3654505609384418502447726592 8386282084065682431712
55506181523176647910224 ≈ 0.15109 221760

1468457 ≈ 0.15102

(11) 3650997021475262386218729472 13709831974085660596596
55506181523176647910224 ≈ 0.24700 362880

1468457 ≈ 0.24712

allowed the computation, which dealt solely with the graphs, to be fast enough to work for
n = 11, but at the cost of not being able to extract all data (e.g., the number of isotopism
classes) from the results.

Happily for our current purposes, we can infer the number of completions for each
2 × n latin rectangle from the data generated by the computation in [12]. This is essentially
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TABLE 3. Probability of σ1,2 Being an Odd/Even Permutation

n PF(O) PF(E)

4 1
2

1
2

5 5
14 ≈ 0.3571429 9

14 ≈ 0.6428571

6 1
2

1
2

7 1099
2206 ≈ 0.4981868 1107

2206 ≈ 0.5018132

8 1361835
2722582 ≈ 0.5001998 1360747

2722582 ≈ 0.4998002

9 20004658047
40011678374 ≈ 0.4999705 20007020327

40011678374 ≈ 0.5000295

10 627568158293671
1255128364291478 ≈ 0.5000032 627560205997807

1255128364291478 ≈ 0.4999968

11 385459343334624914377
770919187821897887642 ≈ 0.4999997 385459844487272973265

770919187821897887642 ≈ 0.5000003

because for (n − 2) × n latin rectangles R the cycle structure of the two missing rows can
be inferred from G(R). However, the completions for k × n rectangles (for k > 2) cannot
be so easily recovered, because of the information lost by mapping R to G(R).

In Theorem 4.3 we examined the probabilities PF(O), PF(E) of σ1,2 being an odd (resp.
even) permutation. The tables just given allow us to calculate these probabilities exactly in
the case m = n ≤ 11. The results are shown in Table 3.

To test the hypothesis that the number of completions of a 2 × n latin rectangle becomes
less sensitive to the structure of the rectangle as n grows, we calculated the following statistic
for each n. Take the numbers of completions as listed in Tables 1 and 2 and find the standard
deviation divided by the mean. The values of this statistic (which is called the coefficient
of variation) for n = 4, 5, . . . , 11 are approximately 0.33333, 0.20000, 0.11288, 0.00537,
0.00833, 0.00154, 0.00195 and 0.00117. From this it may be hypothesised that the trend is
toward zero, but that odd and even values of n behave slightly differently. However, there
are too few data points for this to be totally convincing. Another way to measure the spread
of these values for each n is simply to take the maximum number of completions divided by
the minimum number. This gives the approximate values 2.0000, 1.5000, 1.3333, 1.0141,
1.0258, 1.0046, 1.0066, 1.0039 for n = 4, 5, . . . , 11.

6. A CONJECTURE

The data given in Tables 1, 2 show very good agreement between Pn and Qn and lead us
to conjecture that the cycle structure of a random derangement and the first two rows of a
random latin square have asymptotically the same distribution. The total variation distance
between two probability distributions σ , τ on the same underlying set A is defined by

dTV(σ , τ) = 1

2

∑
x∈A

|σ(x) − τ(x)| = max
B⊆A

|σ(B) − τ(B)|.

Conjecture 6.1. dTV(Pn, Qn) = o(1) as n → ∞.

Random Structures and Algorithms DOI 10.1002/rsa



308 CAVENAGH, GREENHILL, AND WANLESS

The values of dTV(Pn, Qn) for n = 4, 5, . . . , 11 are approximately 0.17, 0.097, 0.027,
0.0020, 0.0012, 0.00047, 0.00040, 0.00029.

In looser language, Conjecture 6.1 suggests that for large n the number of completions
of a 2 × n latin rectangle R to an n × n latin square is fairly insensitive to the choice of
R. This may even be true for k × n latin rectangles for any fixed k, although we have no
evidence to test that hypothesis.

If Conjecture 6.1 turned out to be true it would provide very accurate information on
the cycle structure of random latin squares and thus, for example, give strong results on
the distribution of intercalates. Another consequence would be the following, which was
communicated to us by P. J. Cameron.

Lemma 6.2. Conjecture 6.1 implies that for almost all reduced n × n latin squares, the
group of permutations generated by the rows is the symmetric group Sn. This in turn implies
that almost all loops have trivial character theory.

We now explain what is meant by this lemma and why it is true.
A latin square on the symbol set [n] is said to be reduced if its first row and column

are in the natural order 1, 2, . . . , n. The rows of a latin square, considered as permutations,
generate a transitive group. Łuczak and Pyber [9] showed that, for a proportion 1 − o(1) of
elements g ∈ Sn, the only transitive subgroups of Sn containing g are Sn and (possibly) An.
Since |Dn|

/|Sn| approaches 1/e > 0, the same assertion holds if g is a random derangement.
Now if Conjecture 6.1 is true then the second row of a random reduced latin square L is
essentially a random derangement, so it would follow that the rows of L generate either Sn

or An with probability 1 − o(1). A result of Häggkvist and Janssen [5] (mentioned in the
introduction) implies that the chance of generating An is exponentially small. So the rows
of almost all reduced latin squares would generate Sn.

Reduced latin squares correspond to algebras called loops, and in general latin squares
correspond to quasigroups (see [10], for example, for details). Smith [14] has extended the
character theory of groups to quasigroups. Cameron [1] showed that almost every quasigroup
Q has trivial character theory by showing that the rows of Q generate either Sn or An. If
Conjecture 6.1 is true, then this result on quasigroups also holds for loops (in either case,
[5] shows that the group in question is almost never An).

For good estimates of the asymptotic probability that random permutations generate An

or Sn, see [2].
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