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Abstract A Latin square of order n is an n × n array of n symbols, in which each symbol
occurs exactly once in each row and column. A transversal is a set of n entries, one selected
from each row and each column of a Latin square of order n such that no two entries contain
the same symbol. Define T (n) to be the maximum number of transversals over all Latin
squares of order n. We show that bn ≤ T (n) ≤ cn√

n n! for n ≥ 5, where b ≈ 1.719 and
c ≈ 0.614. A corollary of this result is an upper bound on the number of placements of
n non-attacking queens on an n × n toroidal chess board. Some divisibility properties of
the number of transversals in Latin squares based on finite groups are established. We also
provide data from a computer enumeration of transversals in all Latin squares of order at
most 9, all groups of order at most 23 and all possible turn-squares of order 14.
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1 Introduction

A Latin square of order n is an n × n array of n symbols, in which each symbol occurs exactly
once in each row and column. We can think of a Latin square as a set of n2 entries of the
form (row, column, symbol). A set of n entries, one selected from each row and each column
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of a Latin square of order n such that no two entries contain the same symbol, is called a
transversal. Transversals play a crucial role in the important concept of orthogonality for
Latin squares (see, e.g. [9]). Despite this, a number of basic questions about their properties
remain unresolved.

To date, literature regarding transversals has been largely concerned with the question of
existence. This question is still far from being resolved even if strong additional assumptions
are made about the structure of the square. Of particular note is the case of Latin squares
based on finite groups, which we discuss further in Section 3.

The number of transversals provides a useful invariant for squares of small orders where
this number can be computed in reasonable time (see, e.g., Killgrove et al. [15]). Also Brown
and Parker used the number of transversals as a heuristic during their extended search for
a triple of mutually orthogonal Latin squares of order 10 (see [4] and the references cited
therein), although to possess an orthogonal mate a square of order n need not have more
than n transversals [28]. One of the few general results in the area stems from a conjecture
made by Ryser [21] in 1967 stating that for every Latin square of order n, the number of
transversals is congruent to n mod 2. In [2], Balasubramanian proved:

Theorem 1 In any Latin square of even order the number of transversals is even.

Despite this, it has been noted in [1] and [5] (and other places) that there are many known
counterexamples of odd order to Ryser’s conjecture. Hence the conjecture has now been
weakened to the following:

Conjecture 2 (Ryser) Each Latin square of odd order has at least one transversal.

The results of counting transversals in all Latin squares of order 9 are presented in
Section 4 and verify Conjecture 2 for n = 9. This means that Conjecture 2 has now been
verified for n ≤ 9 using computer enumeration; however, this method becomes intractable
for n > 9.

The other conjecture of interest in this paper is one posed by Vardi [26].

Conjecture 3 (Vardi) Let tn denote the number of transversals in a cyclic Latin square of
order n. Then there exist two real constants c1 and c2 such that

cn
1n! ≤ tn ≤ cn

2n!
where 0 < c1 < c2 < 1 and n ≥ 3 is odd.

Vardi makes this conjecture while considering a variation on the toroidal n-queens prob-
lem. The toroidal n-queens problem is that of determining in how many different ways n
non-attacking queens can be placed on a toroidal n × n chessboard. Vardi considered the
same problem using semiqueens in place of queens, where a semiqueen is a piece which
moves like a toroidal queen but cannot travel on negative diagonals. The solution to Vardi’s
problem provides an upper bound on the toroidal n-queens problem. The problem can be
translated into one concerning Latin squares by noting that every configuration of n non-
attacking semi-queens on a toroidal n × n chessboard corresponds to a transversal in a cyclic
Latin square L of order n, where L(i, j) ≡ i − j mod n. Note that the toroidal n-queens
problem is equivalent to counting transversals in L such that the corresponding positions in
L ′ contain a transversal, where L ′

i j = i + j mod n.
Let T (n) be the maximum number of transversals over all Latin squares of order n. In

Section 2, we derive an upper bound on T (n) and in doing so prove the upper bound given
in Vardi’s Conjecture. A simple exponential lower bound on T (n) is also given.
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In Section 3, we examine the important special case of transversals in Latin squares based
on finite groups. We prove some results in the same spirit as Theorem 1 and also report
on computer enumerations for groups of order at most 23. In Section 4, we report further
computer enumerations, this time for arbitrary Latin squares of order at most 9 and for the
so called turn-squares of order 14.

Before proceeding, we require a few more definitions. For 0 ≤ k ≤ n, a set of k entries,
each selected from different rows and columns of a Latin square such that no two entries
contain the same symbol, is called a partial transversal of length k. It has been conjectured
by Brualdi ([9, p.103]) that every Latin square of order n possesses a partial transversal of
length n − 1. A claimed proof of this by Derienko [11] appears to contain a fatal error [5].
The best reliable result to date states that there must be a partial transversal of length at least
n − O(log2 n). This was shown by Shor [24], and the implicit constant in the ‘big O’ was
marginally improved by Fu and Lin [12]. It has also been shown by Cameron and Wanless
[5] that every Latin square possesses a set of n entries from different rows and columns in
which no symbol appears more than twice.

For each Latin square there are 3! = 6 conjugate squares obtained by uniformly per-
muting the coordinates in each entry. These conjugates can be labelled by a permutation
giving the new order of the coordinates, relative to the original order, which we denote by
(123). Hence, the (123)-conjugate is the square itself and the (213)-conjugate is its trans-
pose. A Latin square is said to be symmetric if its (123) and (213)-conjugates are equal and
semi-symmetric if its (123), (231) and (312)-conjugates are all equal.

We have now defined the core concepts which are used in our arguments. However, we
shall occasionally make remarks which assume the reader is familiar with other basic ter-
minology of Latin squares. In particular, any reader not familiar with the terms isotopic,
autotopy, orthogonal mate, MOLS, Latin subsquare, or main class is referred to [6, 7] for
definitions of these concepts.

2 Bounds on T(n)

We begin by proving two technical lemmas which are required in the proof of Theorem 6.

Lemma 4 Let T be a rooted tree, and let N (v) be the number of children of vertex v in
T . Define p0(T ) = 1. For each level l > 0 of T , let pl(T ) = max

∏l−1
i=0 N (vi ), where the

maximum is taken over all paths v0, v1, . . . , vl−1 of T , vi is a vertex at level i of T and v0

is the root of the tree. When no such path exists, we take pl(T ) = 0.
Then, if Vl(T ) is the number of vertices of T at level l,

Vl(T ) ≤ pl(T ).

Proof We prove this lemma using induction on l. The lemma is trivially true when l = 0,
and we assume it holds when l ≤ m, for m ≥ 0. Now let l = m + 1 and T1, T2, . . . , TN (v0)

be the distinct subtrees obtained by deleting the root of T . It follows that

pl(T ) = max
1≤ j≤N (v0)

N (v0) pl−1(T j ) ≥
N (v0)∑

j=1

pl−1(T j )

and Vl(T ) = ∑N (v0)
j=1 Vl−1(T j ). Hence by the induction hypothesis, we conclude that

pl(T ) ≥ Vl(T ). �
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Define In = {0, 1, . . . , n} and consider a function f : In → R. Let H( f ) be the convex
hull of the point set {(0, f (0)), (1, f (1)), . . . , (n, f (n))}. We define the concave envelope
of f to be the function c : In → R given by c(i) = max{y : (i, y) ∈ H( f )}. Note that c
is the least concave function such that c(i) ≥ f (i) for all i ∈ In , where we mean that c is
concave in the usual sense that c(a − 1) + c(a + 1) ≤ 2c(a) for all a ∈ {1, 2, . . . , n − 1}.
Lemma 5 Let b : In → R be a function such that b(i) < b(n) for all 0 ≤ i ≤ n − 1
and let

F = { f : In → R |
f (0) = b(0), f (n) = b(n) and f (i + 1) ≥ f (i) ≥ b(i) for 0 ≤ i ≤ n − 1}.

Define the function g : F → R as g( f ) = ∏n−1
i=0 ( f (i + 1) − f (i)) and let c : In → R be the

concave envelope of b. Note that c ∈ F. Then if f ∈ F and f 	= c, we have g( f ) < g(c).

Proof We note that since F is a compact set and g is continuous, there exists a function
f ∈ F for which g( f ) achieves its maximum.

If we suppose that f is not concave, we can choose consecutive integer points
p, p + 1, p + 2 ∈ In such that f is strictly convex at p + 1. Let d = 1

2 ( f (p + 2) − f (p)),
then it follows that f (p+2) = f (p)+2d and f (p+1) = f (p)+d −ε for some 0 < ε < d .

Let λ = ∏p−1
i=0 ( f (i + 1) − f (i))

∏n−1
i=p+2( f (i + 1) − f (i)) and note that λ > 0. Hence

g( f ) = λ( f (p + 1) − f (p))( f (p + 2) − f (p + 1))

= λ(d2 − ε2). (1)

Since letting ε = 0 yields a larger product and f (p) + d > f (p + 1) ≥ b(p + 1), this
contradicts our choice of f ∈ F such that g( f ) attains its maximum value. Hence f must
be concave.

Now suppose that f is concave and f 	= c. Then there exist consecutive integer points
p, p + 1, p + 2 ∈ In such that f is strictly concave at p + 1 and f (p + 1) > c(p + 1). We
can apply a similar argument to that given above by noting that in this instance f (p + 1) =
f (p) + d + ε for some ε > 0 where d = 1

2 ( f (p + 2) − f (p)) as before. Additionally,
c(p + 1) = f (p) + d + δ for some 0 ≤ δ < ε. Considering g( f ) as it is in (1), letting ε = δ

will yield a larger product, and as f (p + 1) > c(p + 1) ≥ b(p + 1) this again contradicts
our choice of f . Therefore, f is the concave envelope of b and hence f = c. �

We are now ready to derive an upper bound on T (n).

Theorem 6 Let T (n) be the maximum number of transversals in a Latin square of order n.
Then

T (n) ≤ 27

35

(
(2β − 3α)(n + 1) + 3α2 − β2

3(β − α)

)β−α α−1∏

k=0

(n − 2k)

n−1∏

k=β

1
3 (2n − 2k + 1)

for n ≥ 13, where α = 
α0� and β = �β0
, with β0 = √
3 α0 = 1

4 (1 + √
3)(n + 1).

Proof In order to calculate an upper bound on the number of transversals in a Latin square
L of order n, we analyse a tree that contains every transversal in L exactly once.

Let ri and ci be the set of entries comprising the i th row and i th column of L , respectively,
and let si be the set of the n entries of the square containing the i th symbol, where 1 ≤ i ≤ n.
Let {γ1, . . . , γk} be the set of entries in a partial transversal of length k, where 0 ≤ k < n.
Define E({γ1, . . . , γk}) to be the first member of the list r1, . . . , rn, c1, . . . , cn, s1, . . . , sn

such that
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Rule 1: E({γ1, . . . , γk}) ∩ {γ1, . . . , γk} = ∅, and
Rule 2: of the sets which satisfy Rule 1, E({γ1, . . . , γk}) contains the fewest entries which

have no row, column or symbol in common with any of {γ1, . . . , γk}.
For example, consider the square

1 2 4 5 3 7 8 6
2 1 5 6 7 8 4 3
5 8 3 1 2 4 6 7
3 7 6 8 1 2 5 4
4 3 1 7 6 5 2 ©8
8 4 7 3 5 6 1 ©2
6 5 8 2 4 3 7 1
7 6 2 4 �8 1 3 5

for k = 3. The entries in the partial transversal γ1, γ2 and γ3 are shown in bold, and both
c8 and s8 satisfy Rules 1 and 2. The entries in c8, which have no row, column or symbol
in common with entries in the partial transversal are enclosed by a ©, and those in s8, by
a �. Then E({γ1, γ2, γ3}) = c8 because c8 appears earlier in the list r1, . . . , r8, c1, . . . , c8,

s1, . . . , s8 than s8.
We now use the above rules to describe a rooted tree T of height at most n, in which each

node at level k is a partial transversal of length k and the root is the empty partial transversal.
For k < n, the children of the node {γ1, . . . , γk} are the partial transversals {γ1, . . . , γk+1}
such that γk+1 ∈ E({γ1, . . . , γk}). Nodes at level n (if any) are transversals and have no
children. Let N ({γ1, . . . , γk}) denote the number of children of the node {γ1, . . . , γk}. In the
example given above, N ({γ1, γ2, γ3}) = 2.

To prove that T is a tree we let �k = {γ1, . . . , γk} be an arbitrary partial transversal. We
will prove by induction that for each i (0 ≤ i ≤ k) there is at most one �i ⊆ �k such that
|�i | = i and �i ∈ T . This is clearly true for i = 0. Given �i ∈ T (i < k), define E(�i ) as
in Rules 1 and 2. Then at most one γ ∈ �k\�i belongs to E(�i ) since no two elements of
�k\�i share the same row, column or symbol. In the case that k = n, �k\�i includes entries
in every row, column and symbol not used by �i and so γ ∈ (�k\�i ) ∩ E(�i ) exists. This
shows that every transversal appears in T exactly once. However, not all partial transversals
in L are nodes of the tree.

From Lemma 4, we deduce that

T (n) ≤ max
n−1∏

k=0

N ({γ1, . . . , γk}), (2)

where the maximum is taken over all transversals {γ1, . . . , γn} and γ1, γ2, . . . , γn is the
order in which the entries are added, which determines the path from the root of T to
the node {γ1, . . . , γn}. When we consider this product for a particular transversal, we let
N ({γ1, . . . , γk}) = N (k).

Let Ak denote the k2 entries of L which lie at the intersection of the k rows and k columns
used by {γ1, . . . , γk}. For convenience, we will describe the case where Ak is a block in the
upper left corner of L and where E({γ1, . . . , γk}) is row rk+1. All other possibilities give
the same calculation. With Ak in the upper left-hand corner, the remainder of L naturally
partitions into blocks Bk , Ck and Dk as illustrated below.

[
Ak Bk

Ck Dk

]
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Let Sk denote the set of symbols in the entries {γ1, . . . , γk}, and let τ(k) be the number
of entries, including {γ1, . . . , γk}, that lie in Ak and contain symbols from Sk . We obtain
a bound for τ(k + 1) by noting that there are n − k − N (k) symbols from Sk in that part
of rk+1 which lies in Dk , so there must be k − (n − k − N (k)) = N (k) − n + 2k symbols
from Sk in the (k + 1)th row of Ak+1. By Rule 2, there are also at least N (k) − n + 2k
symbols from Sk in the same column of Ak+1 as γk+1 and at least N (k) − n + 2k entries
with the same symbol as γk+1 in Ak . By definition, these contributions do not overlap, and
we have yet to count γk+1 itself. It follows that Ak+1 inherits at least 3(N (k) − n + 2k) + 1
entries containing symbols in Sk+1 from its (k + 1)th row and column, and the entries in Ak

containing the same symbol as γk+1. Hence

τ(k + 1) ≥ τ(k) + 1 + 3(N (k) − n + 2k).

Rearranging gives

N (k) ≤ n − 2k + 1
3 (τ (k + 1) − τ(k) − 1). (3)

In order to better analyse and eventually maximise
∏n−1

k=0 N (k), we can rewrite the upper
bound on N (k) given in (3) as

N (k) ≤ σ(k + 1) − σ(k), (4)

where σ(k) = kn − k2 + 1
3 (τ (k) + 2k).

Next we calculate a lower bound on τ(k). There are k2 entries containing the k symbols
from Sk in blocks Ak and Bk , and by definition at least k of these are in Ak . This is a lower
bound on τ(k). However, Bk can accommodate at most k(n − k) entries containing symbols
from Sk , so τ(k) must be at least k2 − k(n − k). Hence

τ(k) ≥ max{k, k(2k − n)}. (5)

It is possible to improve the lower bound on τ(n − 2) slightly. We do this by noting that
whenever our partial transversal is completable to a transversal there will be exactly two
entries in Dn−2, one in each of the two rows, which contain symbols not in Sn−2. This leaves
(n − 2)2 − 2(n − 3) = n2 − 6n + 10 entries containing symbols from Sn−2 in An−2, which
is greater than n2 − 6n + 8, the lower bound on τ(n − 2) given in (5).

The bound on τ(k) given in (5) together with the value of τ(n − 2) implies a lower bound
on σ(k). In order to derive this bound, we start by using the values in (5) to obtain functions
σ1(x) and σ2(x) for real x ∈ [0, n],

σ1(x) = xn − x2 + x,

σ2(x) = x

3
(2n + 2 − x).

We also note that σ(n − 2) = 1
3 (n2 + 2n − 6) when we use the improved lower bound

on τ(n − 2). The common tangent to σ1(x) and σ2(x) touches the curves at α0 and β0,
respectively, where β0 = √

3 α0 = 1
4 (1 + √

3)(n + 1). We choose α, β ∈ Z to be α = 
α0�
and β = �β0
 where β ≤ n − 2, and define b : In → R

b(i) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σ1(i), for 0 ≤ i ≤ α,

0, for α < i < β,

σ2(i), for β ≤ i ≤ n, i 	= n − 2,
1
3 (n2 + 2n − 6), for i = n − 2.

(6)
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Then σ(i) ≥ b(i) for all integers i ∈ In .
Next we define a function

c(i) =
⎧
⎨

⎩

(β − i)b(α) + (i − α)b(β)

β − α
, for α < i < β,

b(i), otherwise,
(7)

where ((β − i)b(α) + (i − α)b(β))/(β − α) is the linear function which agrees with σ1 at
α and σ2 at β (see Fig. 1).

It is routine but somewhat tedious to check that c is the concave envelope of b given that
n ≥ 13. Then by Lemma 5,

∏n−1
k=0(σ (k + 1) − σ(k)) is maximised when σ = c. So by (4)

max
n−1∏

k=0

N (k) ≤
n−1∏

k=0

(c(k + 1) − c(k))

and it follows from (2) and (7) that

T (n) ≤ 3

(
(2β−3α)(n+1)+3α2−β2

3(β−α)

)β−α α−1∏

k=0
(n − 2k)

n−1∏

k=β
k 	=n−2
k 	=n−3

1
3 (2n − 2k + 1)

= 27
35

(
(2β−3α)(n+1)+3α2−β2

3(β−α)

)β−α α−1∏

k=0
(n − 2k)

n−1∏

k=β

1
3 (2n − 2k + 1).

�

For n < 13 the argument in Theorem 6 needs slight modification because the function c
defined by (7) is not concave. For these values, the concave envelope of b is

c(i) =
⎧
⎨

⎩

(n − i − 2) b(α) + (i − α) b(n − 2)

n − α − 2
, for α < i < n − 2,

b(i), otherwise.

Fig. 1 A graph of the
functions σ1, σ2 and c
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This gives

T (1) ≤ 1, T (2) = 0, T (3) ≤ 3, T (4) ≤ 8, T (5) ≤ 25, T (6) ≤ 96, T (7) ≤ 420,

T (8) ≤ 2106, T (9) ≤ 12304, T (10) ≤ 75000, T (11) ≤ 528647 T (12) ≤ 3965268.

(8)

We will now prove the upper bound given in Conjecture 3, and in doing so obtain an
exponential improvement on the trivial bound n!. This requires the following lemma, which
can be proved using elementary calculus.

Lemma 7 If θ(x) is defined by 1 + x = ex−θ(x)x2
for x > −1 with θ(0) = 1/2, then

|θ(x) − 1
2 | ≤ 1

25 whenever |x | ≤ 1
10 .

Theorem 8 Let T (n) be the maximum number of transversals in a Latin square of order n,
then

T (n) ≤ cn√
n n!

for n ≥ 5 where c =
√

3−√
3

6 e
√

3/6 ≈ 0.61354.

Proof We can confirm the theorem holds for n = 5, 6 by comparing it to experimental
values (see Table 2), and by using the bounds on T (n) given in (8) for n = 7, . . . , 12. For
n ≥ 13 we have Theorem 6, which can be restated as

T (n) ≤ 2n+α−β+13α−n+3( n
2 )! (n − β + 1

2 )! ((2β − 3α)(n + 1) + 3α2 − β2
)β−α

35
√

π( n
2 − α)! (β − α)β−α

, (9)

where α = 
α0� and β = �β0
, with β0 = √
3α0 = 1

4 (1 + √
3 )(n + 1).

By direct computation of (9) we can verify that the theorem holds for 13 ≤ n < 85. For
n ≥ 85 we approximate the bound given in (9) using the following form of Stirling’s formula:

n! = √
2πn nne−n

(

1 + φ(n)

n

)

, (10)

where 1
12 ≤ φ(n) ≤ 1

11 and n ≥ 1, including non-integer n.
We define εα, εβ ∈ [0, 1] by α = α0 −εα and β = β0 +εβ , and apply (10) to (9) to obtain

T (n) ≤ f (n) cn√
n n!,

where

c =
√

3 − √
3

6
e
√

3/6,
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f (n) = 1

35

√

37(3 − √
3 )

2π
e(

√
3−3)/6+εα+εβ x(n) y(n),

x(n) =
(

1 − 2εβ(3 + √
3 ) + √

3

3n

)n−β+1

×
(

1 + 3 + √
3 − 12εα

n(3 − √
3 ) − 3 − √

3 + 12εα

)n/2−α+1/2

×
(

1 + 1

n
− 12(ε2

β − 3ε2
α)

n(3 − √
3 )

(√
3n + √

3 + 6(εβ + εα)
)

)β−α

,

y(n) =

(
1 + 2φ1

n

)(
1 + φ2

n − β + 1/2

)

(
1 + φ3

n/2 − α

)(
1 + φ4

n

)

with 1
12 ≤ φi ≤ 1

11 for i = 1, . . . , 4 as given in (10).
Applying Lemma 7 to each term of x(n), yields

x(n) ≤ e1/2−εβ−εα+w(n)/n,

where w(n) is a rational function of εα, εβ, θ1, θ2, θ3 and n, and 46
100 ≤ θi ≤ 54

100 for
i = 1, . . . , 3 whenever n ≥ 85. Bounding εα, εβ, θ1, θ2, θ3 and n in the various terms of
w(n), we easily obtain w(n) ≤ 18. It follows that

w(n)

n
≤ 18

85

for n ≥ 85. Hence e1/2−εβ−εα+w(n)/n ≤ e121/170−εβ−εα .
We can bound y(n) by noting that

y(n) =
(
1 + 2φ1

n

)(
1 + φ2

n−β+1/2

)

(
1 + φ3

n/2−α

)(
1 + φ4

n

) ≤
(

1 + 2φ1

n

)(

1 + φ2

n − β + 1/2

)

for all n. For n ≥ 85 we have

y(n) ≤ 1003

1000
× 1004

1000
≤ 101

100
.

Therefore, when n ≥ 85,

f (n) ≤ 101

3500

√

37(3 − √
3 )

2π
e
√

3/6+18/85 ≤ 1. �

As a corollary of this result, we can infer that the upper bound in Conjecture 3 is true with
c2 = 3/4 (and the value c2 = 0.614 works for large n). This is also an upper bound for the
number of solutions to the toroidal n-queens problem.

The following theorem provides an exponential lower bound on the maximum number of
transversals in a Latin square of order n.
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Theorem 9 T (n) ≥ 15n/5 for all n ≥ 5.

Proof The examples in Section 4 confirm the result in the range 5 ≤ n ≤ 19 (with equality
when n = 5). So assume that n ≥ 20 and let s1 = s2 = s3 = 
 1

4 n� and s4 = n − 3s1. By
a theorem of Heinrich [13], there exists a Latin square L of order n containing four Latin
subsquares S1, S2, S3 and S4 of respective orders s1, s2, s3 and s4 such that each row, column
and symbol of L is used by exactly one of the Si . In particular, if we choose one transversal
in each of the Si then their union will be a transversal in L . By replacing, if necessary, Si

with another subsquare on the same symbols and in the same rows and columns, we may
assume that Si has T (si ) transversals for each i = 1, . . . , 4. Then, by induction on n,

T (n) ≥ T (s1)T (s2)T (s3)T (s4) ≥ (151/5)s1+s2+s3+s4 = 15n/5. �

Finding a lower bound of the form given in Conjecture 3 is still an open problem.
Note that [16] establishes exponential lower bounds on the toroidal n-queens problem

and hence exponential lower bounds on T (n). However, these bounds only apply when n is
a prime such that (n − 1)/2 is not a prime or when n is divisible by a prime congruent to
1 mod 4. In both cases Theorem 9 provides a better lower bound on T (n).

3 Transversals of finite groups

In this section, we investigate the number of transversals in a finite group G, by which we
mean transversals in the (unbordered) Cayley table LG of G. Consider the following five
propositions:

(i) LG has a transversal.
(ii) LG can be decomposed into disjoint transversals.

(iii) There exists a Latin square orthogonal to LG .
(iv) There is some ordering of the elements of G, say a1, a2, . . . , an ,

such that a1 a2 · · · an = ε, where ε denotes the identity element of G.
(v) The Sylow 2-subgroups of G are trivial or non-cyclic.

The following relationships are known.

Theorem 10 (i) ⇔ (ii) ⇔ (iii) ⇒ (iv) ⇔ (v).

Moreover, it is conjectured that all five statements are equivalent. Hall and Paige, who
made this conjecture, showed that it is true for all soluble groups, symmetric groups and
alternating groups (see [9, 27] for more details).

An immediate corollary of the proof that (i)⇔(ii) is that for any G the number of trans-
versals through a given entry of LG is independent of the entry chosen and hence that the
total number of transversals in G is divisible by the order of G (see Theorem 3.5 of [10]).
We also have the following simple results, in the spirit of Theorem 1:

Theorem 11 The number of transversals in any symmetric Latin square of order n is con-
gruent to n modulo 2.

Proof Let S be a symmetric Latin square of odd order n and let T denote the set of trans-
versals in S. The main diagonal of S must be a transversal, as can be seen by noting that each
symbol occurs an even number of times in off diagonal positions (in [9, p.31] this argument
is credited to Sade). Consider the action µ induced on T by transposition. That is, µ maps
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each entry (i, j, Si j ) of a transversal to ( j, i, S ji ), and this produces a new transversal since
Si j = S ji . Note that µ is an involution. Now, if i 	= j then no transversal may include both
the entries Si j and S ji since they contain the same symbol. Hence, the only fixed point of µ

is the main diagonal of S. Thus µ has an odd number of fixed points so |T | must be odd.
The case when n is even can be resolved by a similar argument to the above or by appealing

to Theorem 1. �

Corollary 12 Let G be a group of order n. If G is abelian or n is even then the number of
transversals in G is congruent to n modulo 2.

Corollary 12 cannot be generalised to non-abelian groups of odd order. We will see in
Section 4 that the non-abelian group of order 21 has an even number of transversals.

Theorem 13 If G is a group of order n 	≡ 1 mod 3 then the number of transversals in G is
divisible by 3.

Proof If n ≡ 0 mod 3 then the result is a trivial consequence of the number of transversals
being divisible by n. So we assume that n ≡ 2 mod 3.

Define a Latin square C = C(G) of order n by Cab = a−1b−1, where the rows, col-
umns and symbols of C are indexed by the elements of G. It is routine to check that C is
semi-symmetric and isotopic to LG .

Let ε be the identity element of G and let T be the set of transversals in C containing the
entry (ε, ε, ε). Consider the action µ on T induced by (231)-conjugation. Note that since
Cn is semisymmetric (231)-conjugation maps transversals to transversals. Also the entry
(ε, ε, ε) is the only fixed point of µ since ε is the unique solution of x = x−2 in G, given
that n 	≡ 0 mod 3. All other entries have an orbit of length 3 under µ, so if n ≡ 2 mod 3
then µ can have no fixed points in T . Thus every element of T has an orbit of length 3, so
|T | ≡ 0 mod 3. The number of transversals in C is n|T |. �

We will see below that the cyclic groups of small orders n ≡ 1 mod 3 have a number
of transversals which is not a multiple of three. Also Theorem 13 does not generalise to
non-group-based semi-symmetric squares. For example, here is a semi-symmetric square of
order 8 which has 16 transversals.

1 2 4 5 3 7 8 6
2 1 5 6 7 8 4 3
5 8 3 1 2 4 6 7
3 7 6 8 1 2 5 4
4 3 1 7 6 5 2 8
8 4 7 3 5 6 1 2
6 5 8 2 4 3 7 1
7 6 2 4 8 1 3 5

Let zn = tn/n denote the number of transversals through any given entry of the cyclic square
of order n. Since zn = 0 for all even n by Theorem 10, we shall assume for the remainder of
this section that n is odd.

The initial values of zn are known from [14, 22] and Y. P. Shieh (2006, Private Cor-
respondence). They are z1 = z3 = 1, z5 = 3, z7 = 19, z9 = 225, z11 = 3441,
z13 = 79259, z15 = 2424195, z17 = 94471089, z19 = 4613520889, z21 = 275148653115,
z23 = 19686730313955 and z25 = 1664382756757625. Interestingly, if we take these num-
bers modulo 8, we find that this sequence begins 1,1,3,3,1,1,3,3,1,1,3,3,1. We know from
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Table 1 Transversals in groups
of order n ≤ 23

n Number of transversals in groups of order n

3 3
4 0, 8
5 15
7 133
8 0, 384, 384, 384, 384
9 2025, 2241
11 37851
12 0, 198144, 76032, 46080, 0
13 1030367
15 36362925
16 0, 235765760, 237010944, 238190592, 244744192, 125599744,

121143296, 123371520, 123895808, 122191872, 121733120,
62881792, 62619648, 62357504

17 1606008513
19 87656896891
20 0, 697292390400, 140866560000, 0, 0
21 5778121715415, 826814671200
23 452794797220965

Theorem 11 that zn is always odd for odd n, but we will leave as an open question whether
there is any deeper pattern modulo 4 or 8. We also know from Theorem 13 that zn is divisible
by 3 when n ≡ 2 mod 3. The initial terms of {zn mod 3} are 1,1,0,1,0,0,2,0,0,1,0,0,2.

We now discuss the number of transversals in groups of small order. When n is congruent
to 2 mod 4 we know there can be no transversals by Theorem 10. For each other order n ≤ 23
the number of transversals in each group is given in Table 1. The groups are ordered according
to the catalogue of Thomas and Wood [25]. Bedford and Whitaker [3] offer an explanation
for why all the non-cyclic groups of order 8 have 384 transversals. The groups of order 4,
9 and 16 with the most transversals are the elementary abelian groups of those orders. For
order 12 the group with the most transversals is Z2 ⊕ Z6, and the “best” groups for orders
20 and 21 are Z2 ⊕ Z10 and Z21, respectively. The numbers of transversals in abelian groups
of order at most 16 and cyclic groups of order at most 21 were obtained by Shieh et al. [23].
The remaining values in Table 1 were computed by Shieh [22]. Shieh obtained one different
value (for n = 16) but agrees that it was incorrect. We did not check the values for cyclic
groups of order 21 to 25.

By Corollary 12, we know that in each case covered by Table 1 (except the non-abelian
group of order 21), the number of transversals must have the same parity as the order of the
square. It is remarkable, though that the groups of even order have a number of transversals
which is divisible by a high power of 2. Indeed, we now know that any 2-group of order
n ≤ 16 has a number of transversals which is divisible by 2n−1. It would be very interesting
to know if this is true for general n.

4 Latin squares of small order

By exhaustive computation, the transversals were counted in one representative of each of the
115618721533 isotopy classes of Latin square of order 9. Together with information about
the autotopy group of each representative, this allows us to calculate statistics for all squares
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of that order. The squares were generated using the program described in [18]. The counting
of transversals was performed twice with code written independently by the first and third
authors. Each computation took an aggregate of roughly 2 GHz years.

We found that the expected number of transversals in a random Latin square of order
9 is 4283420654079/20005839187, which is approximately 214. There are only three main
classes of order 9 which possess more than 1,000 transversals. They are Z3 × Z3, which has
2241, Z9 which has 2025 transversals and third square, L , which has 1620 transversals. Like
the two group-based squares, L is composed of nine disjoint order three subsquares and has
no intercalates (2 × 2 Latin subsquares).

The minimum number of transversals for any Latin square of order 9 is 68. In particular,
this confirms Conjecture 2 for n = 9. The following semi-symmetric square is a representa-
tive of the unique main class with the minimum number of transversals. It has 24 intercalates
and four subsquares of order 3. The latter are shown in bold.

2 1 3 6 7 8 9 5 4
1 3 2 5 4 9 6 7 8
3 2 1 4 9 5 7 8 6
9 5 4 3 2 1 8 6 7
8 4 6 2 5 7 1 9 3
4 7 9 8 3 6 5 1 2
5 8 7 9 6 2 3 4 1
6 9 8 7 1 4 2 3 5
7 6 5 1 8 3 4 2 9

As a by-product of our computation we also counted the intercalates in each Latin square
of order 9. We found that the expected number of intercalates in a random Latin square of
order 9 is 360629073747/20005839187 (which is approximately 18). This is corroborated
by Mckay and Wanless [19], where the same number was calculated by an entirely different
method. We also found that the maximum number of intercalates was 72, which is achieved
by the following semi-symmetric square (which has 801 transversals).

1 2 3 5 6 4 8 9 7
2 1 4 7 8 9 3 6 5
3 7 1 2 9 8 4 5 6
6 3 7 4 1 5 2 8 9
4 9 8 6 7 1 5 2 3
5 8 9 1 4 7 6 3 2
9 4 2 3 5 6 7 1 8
7 5 6 8 3 2 9 4 1
8 6 5 9 2 3 1 7 4

Table 2 lists the minimum and maximum number of transversals over all Latin squares of
order n for n ≤ 9, and the mean and standard deviation to two decimal places. The columns
on either side of T (n) provide the upper and lower bounds given by (8) and Theorem 9,
respectively.

In Table 3 we list, for 10 ≤ n ≤ 21, the bounds from (8) and Theorems 6 and 9, together
with our best guess at the value of T (n). When n 	≡ 2 mod 4 we have used the group
with the highest number of transversals (see Table 1). It is commonly suspected that T (10)

is achieved by one of Parker’s turn-squares, which has 5,504 transversals and 12265168
orthogonal mates (see [4, 17]). None of the several billion squares encountered in [18],
which included every square with a non-trivial symmetry, had more than 5,504 transversals.
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Table 2 Transversals in Latin
squares of order n ≤ 9

n Min Mean Std dev Lower bound T (n) Upper bound

2 0 0 0 – 0 0
3 3 3 0 – 3 3
4 0 2 3.46 – 8 8
5 3 4.29 3.71 15 15 25
6 0 6.86 5.19 26 32 96
7 3 20.41 6.00 45 133 420
8 0 61.05 8.66 77 384 2106
9 68 214.11 15.79 131 2241 12304

Table 3 Estimates of T (n) for
10 ≤ n ≤ 21

n Lower bound T (n) guess Upper bound

10 225 5504 75000
11 387 37851 528647
12 665 198144 3965268
13 1143 1030367 32837805
14 1964 3477504 300019037
15 3375 36362925 2762962210
16 5801 244744192 28218998328
17 9971 1606008513 300502249052
18 17137 6434611200 3410036886841
19 29455 87656896891 41327486367018
20 50625 697292390400 512073756609248
21 87013 5778121715415 6803898881738477

A turn-square is obtained by starting with the Cayley table of a group (typically a group
of the form Z2 ⊕ Zm for some m) and “turning” some of the intercalates (that is, replacing
them by the other possible intercalate on the same symbols). A turn-square based on a group
Z2 ⊕ H can be specified by giving the Cayley table for H and marking the entries which
will be “turned”. For example, the turn-squares defined by

0 1 2
1 2 0
2 0 1

and

0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3

achieve T (6) = 32 and 5,504 transversals, respectively. The entries to be turned have been
marked in bold.

In Table 4, we give data on the number of transversals in all possible turn-squares formed
by turning intercalates in the Cayley table of Z14. These turn-squares were classified into
main classes and grouped according to their turn number, which we define to be the fewest
number of intercalates which can be turned to reach that main class, starting from Z14. For
each possible turn number t , Table 4 gives the number of main classes with turn number t then
the minimum and maximum number of transversals over the set of main classes with turn
number t . We found that no such square had more than 3477504 transversals. The following
square is from the unique main class achieving this number.
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Table 4 Transversals in
turn-squares of order 14

Turns Main classes Min transversals Max transversals

0 1 0 0
1 1 1695744 1695744
2 3 2260992 2826240
3 19 2479104 3477504
4 147 2703360 3375104
5 1127 2779136 3216384
6 7721 2652160 3205120
7 41735 2758656 3207168
8 160144 2776064 3145728
9 296010 2801664 3062784
10 105295 2904064 3035136
11 1325 2930688 3035136

0 1 2 3 4 5 6
1 2 3 4 5 6 0
2 3 4 5 6 0 1
3 4 5 6 0 1 2
4 5 6 0 1 2 3
5 6 0 1 2 3 4
6 0 1 2 3 4 5

For order 18 it is hard to test a large number of turn-squares and there are two abelian
groups which make promising candidates for the initial square. Thus our “guess” for the
value of T (18) is quite likely to be incorrect, but at least it should be of roughly the right
order. The given value is achieved by starting with Z2 ⊕ Z9 and turning three intercalates in
the same pattern as for n = 10 and n = 14.

Parker’s original motivation for studying turn-squares with many transversals was his
search for a triple of MOLS of order 10 (the latest evidence [18] suggests that such a triple
is highly unlikely to exist). As mentioned above, the turn-square of order 10 with the most
transversals has numerous orthogonal mates. However, for order 14 (and possibly for order
18) the turn-square with the most transversals has no orthogonal mates. This can be deduced
from a Theorem due to Mann (see Theorem 12.3.2 in [9]), which implies for odd q that a
turn-square has no mate if it was formed from Z2 ⊕ Zq by turning no more than (q − 1)/2
intercalates.

Mann’s theorem implies that for n = 14 the 24 main classes of turn-squares with turn
number at most 3 have no orthogonal mates. With the aid of a randomised hill-climbing
algorithm we established that the 613504 main classes with turn number at least 4 all have
mates. No pair of MOLS that we found during this search possessed more than 26 common
transversals or more than six disjoint common transversals. In particular, we did not find a
pair of MOLS that could be extended to a triple.

5 Concluding remarks

Many questions remain in addition to Conjectures 2 and 3. For a given n, which square of
order n achieves the most transversals? Is it an abelian group table (and if so, which one?)
when n 	≡ 2 mod 4 and a turn-square otherwise? Do 2-groups of order n have a number of
transversals which is divisible by 2n−1? Is there a pattern to zn mod 8 (see Section 3)?
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It seems likely that neither Theorem 8 nor Theorem 9 is near the true value of T (n),
leaving room for much further improvement.

Note added in proof
We have found that upper and lower bounds on T (n) and estimates of its growth rate have been studied in

[6, 7, 8, 16]. These results prove the upper bound in Vardi’s conjecture (with a worse constant than ours), but

only apply to cyclic Latin squares.
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