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On Minc’s sixth Conjecture

IAN M. WANLESS*y

School of Mathematical Sciences, Monash University, Vic 3800, Australia

Communicated by W. Watkins

(Received in final form 12 February 2005)

Let �k
n denote the set of n� n binary matrices which have each row and column sum equal

to k. Minc’s Conjecture 6 asserts that minA2�k
n
perðð1=kÞAÞ is monotone decreasing in k.

Here, three special cases of this conjecture and also of the corresponding statement for the
maximum permanent in �k

n are proved. The three cases are for matrices which are sufficiently
(i) small, (ii) sparse or (iii) dense.
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1. Introduction

This note addresses Conjecture 6 in Minc’s well-known catalogue [6] of unsolved
problems on permanents, which is as follows.

CONJECTURE 1.1 For a fixed n,

min per
1

k
A

� �
: A 2 �k

n

� �

is monotone decreasing in k.

The original motivation for Conjecture 1.1 was probably its tangential relationship
with the famous van der Waerden conjecture. However, one might equally well ask
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whether the following is true:

CONJECTURE 1.2 For a fixed n,

max per
1

k
A

� �
: A 2 �k

n

� �

is monotone decreasing in k.

In this article three special cases of both questions are established.
Namely, Conjecture 1.1 is proved for

. k < oðn1=4Þ,

. k > n� oðn6=7Þ,

. n � 11,

and Conjecture 1.2 for

. k < Oðn1=3Þ,

. k > n� oðn6=7Þ,

. n � 11.

2. Sparse matrices

In this section, Conjectures 1.1 and 1.2 are proved for sufficiently sparse matrices.
Let �k

n denote the set of n� n matrices of non-negative integers which have
each row and column sum equal to k. Let q ¼ qðn, kÞ denote the probability that
a matrix chosen uniformly at random from �k

n actually lies in �k
n. If k ¼ oðn1=2Þ,

then by a result from [10],

 
ðk� 1Þk�1

kk�2

!n
� min

A2�k
n

perA �
k2n

q kn
n

� � ð1Þ

where q satisfies

1

q
¼ exp

ðk� 1Þ2

2
þ
ðk� 1Þ2k

6n
þ oð1Þ

� �
: ð2Þ

One can use this result to prove:

THEOREM 2.1 Conjecture 1.1 is true for k ¼ oðn1=4Þ.

Proof Define

Rk ¼
min per ð1=ðkþ 1ÞÞAð Þ : A 2 �kþ1

n

� �
min per ð1=kÞAð Þ : A 2 �k

n

� � :
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Suppose k ¼ oðn1=4Þ. Then by (1) and (2),

Rk �

�
k

kþ 1

�n
ðkþ 1Þ2n

q nkþn
n

� � kðk�2Þn

ðk� 1Þðk�1Þn

¼

 
kk�1ðkþ 1Þ

ðk� 1Þk�1

!n
n!ðnkÞ!

ðknþ nÞ!
exp

�
Oðk2Þ

�

¼

 
k2k�1

ðk� 1Þk�1
ðkþ 1Þk

!n

exp
�
oð

ffiffiffi
n

p
Þ
�

¼ exp �
n

2k2
þ o


 n

k2

�
 �
:

Hence Rk tends to zero, and the theorem is proved. g

It is worth remarking that the largest contribution to the error term in the above
calculation comes from (2). A significantly stronger result could be deduced if it were
first shown that the minimum permanent in �k

n is achieved by a matrix in �k
n (this is

Conjecture 24 in [7]).
The proof of the corresponding result for Conjecture 1.2 will make use of the

following simple lemma.

LEMMA 2.2 For integers d > c � 1,

d!c

c!d
�

�
d

c

�cd

:

This lemma is a one line corollary of an inequality in [4, p. 60] and can also easily
be proved with the aid of Stirling’s formula. The details have been omitted here,
opting instead to give intuition for why the result should be true. If p pebbles are
tossed independently and uniformly at random into b buckets, then the probability
that each bucket receives the same number of pebbles presumably decreases as b
increases (subject to the condition that b divides p). Applying this principle when
p¼ cd and either b¼ d or b¼ c gives that

ðp!=c!dÞ

dp
�

ðp!=d!cÞ

cp
,

which is equivalent to the inequality in the lemma.

THEOREM 2.3 Conjecture 1.2 is true for n � k3 � k.

Proof: Let n ¼ tkþ r for 0 � r < k and t � k2 � 1. By [9] it is known that
maxfperA : A 2 �k

ng � k!tr!. Also, by Brègman’s theorem [1], it is known that
maxfperA : A 2 �kþ1

n g � ðkþ 1Þ!n=ðkþ1Þ. Thus, if

Qk ¼
max per ð1=ðkþ 1ÞAÞð Þ : A 2 �kþ1

n

� �
max per ð1=kÞAð Þ : A 2 �k

n

� �
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then,

Qk �

�
k

kþ 1

�n
ðkþ 1Þ!n=ðkþ1Þ

k!tr!

¼

�
k

kþ 1

�r
ðkþ 1Þ!r=ðkþ1Þ

r!

�
k

kþ 1

�k
ðkþ 1Þ!k=ðkþ1Þ

k!

" #t

: ð3Þ

Now,

�
k

kþ 1

�kðkþ1Þ
ðkþ 1Þ!k

k!kþ1
¼

kk

k!

�
k

kþ 1

�k2

<
ekffiffiffiffiffiffiffiffi
2�k

p exp k2 log 1�
1

kþ 1

� �� �

<
1ffiffiffiffiffiffiffiffi
2�k

p exp kþ k2 �
1

kþ 1
�

1

ðkþ 1Þ2

� �� �

¼
1ffiffiffiffiffiffiffiffi
2�k

p exp

 k2 þ 2k

2k2 þ 4kþ 2

�

<

ffiffiffiffiffiffiffiffi
e

2�k

r
:

As this is less than 1 and t � k2 � 1 ¼ ðkþ 1Þðk� 1Þ it can be concluded that

�
k

kþ 1

�k
ðkþ 1Þ!k=ðkþ1Þ

k!

" #t

<

�
e

2�k

�ðk�1Þ=2

:

By inspecting (3), it is now obvious that Qk<1 when r¼ 0, so it may be
assumed that k > r � 1. In that case, one can use Lemma 2.2 and elementary calculus
to deduce that

�
k

kþ 1

�r
ðkþ 1Þ!r=ðkþ1Þ

r!
�

�
k

kþ 1

�r�
kþ 1

r

�r

¼

�
k

r

�r

< ek=e:

Therefore, by (3),

Qk � ek=e
�

e

2�k

�ðk�1Þ=2

< 1

for all k� 2. The result follows immediately. g

3. Dense matrices

This will be achieved using a result proved by Godsil and McKay [3] in the context
of extensions to Latin rectangles. They showed that when k ¼ n� r for
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0 � r ¼ oðn6=7Þ as n ! 1 then,

per
1

n� r
A

� �
¼

n!

nn
exp

�
r

2n
þ

r2

2n2
þ

r3

2n3
þ

r4

4n4
�

r5

2n5
�
13r6

6n6
þ fðAÞ þ o

1

n

� ��
ð4Þ

uniformly over A 2 �k
n. Here, f(A) is a function which is discussed below but which

obeys the uniform bound fðAÞ ¼ Oðk3=n3Þ. If r ¼ oðn2=3Þ, then fðAÞ ¼ oð1=nÞ so (4)
shows that Conjectures 1.1 and 1.2 are true for sufficiently dense matrices. Indeed
something stronger is true!

THEOREM 3.1 If k ¼ n� oðn2=3Þ then

min
A2�k

n

per
1

k
A

� �
> max

B2�kþ1
n

per
1

kþ 1
B

� �
:

In the next result G(M) is used to denote the usual bipartite graph associated with
a binary matrix M. The two vertex classes of G(M) correspond respectively to the
rows and columns of M, and each 1 in M corresponds to an edge in G(M).

Notation A � B is used for matrices A and B of the same dimensions, to denote the
fact that no entry in A exceeds the corresponding entry in B. Since the case of present
interest is when A and B are binary matrices, this is equivalent to saying that B can be
formed by changing some (or none) of the zeroes of A to ones. In other words G(A) is a
subgraph of G(B).

The function f(A) in (4) can be written as

fðAÞ ¼ "4ðAÞ

�
1

4n4
�

r

n5
þ

6r2

4n6
�

r3

n7
þ
"4ðAÞ

32n8

�
þ "5ðAÞ

�
1

5n5
�

r

n6
þ
2r2

n7

�

þ "6ðAÞ

�
1

6n6
�

r

n7

�
þ
"7ðAÞ

7n7

where "i(A) denotes the number of a certain type of walk of length 2i in GðJ� AÞ,
where J denotes the all 1 matrix of the same order as A (see [3] for the full definition
of "i). Now suppose that A � B so that GðJ� BÞ is a subgraph of GðJ� AÞ, it follows
from the definition that "iðAÞ � "iðBÞ. So by inspection, fðAÞ � fðBÞ for r ¼ oðnÞ and
the next result follows immediately.

THEOREM 3.2 If k ¼ n� oðn6=7Þ and A � B where A 2 �k
n and B 2 �kþ1

n then

per
1

k
A

� �
> per

1

kþ 1
B

� �
: ð5Þ

If k<n then every A 2 �k
n has some B 2 �kþ1

n satisfying A � B. Likewise,
every B 2 �kþ1

n has some A 2 �k
n satisfying A � B. In particular these statements
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hold if A minimises the permanent in �k
n or B maximises the permanent

in �kþ1
n . Thus,

COROLLARY 3.3 Conjectures 1.1 and 1.2 are both true when k ¼ n� oðn6=7Þ.

The above approach will not work for sparse matrices. By way of example,
let P denote the permutation matrix corresponding to the full cycle permutation
ð1 2 3 . . . nÞ for some n� 9. Define circulant matrices A ¼ P0 þ P1 and
B ¼ P0 þ P1 þ P2. Then, by [6, p. 46],

per
1

2
A

� �
¼ 21�n and per

1

3
B

� �
¼

1þ
ffiffiffi
5

p

6

� �n

þ
1�

ffiffiffi
5

p

6

� �n

þ
2

3n
:

Hence (5) fails to hold, even though A � B.

4. Small matrices

The enumeration of Latin squares of orders up to 11 by the author and McKay [5]
involved finding the permanent of one representative of every equivalence class
(modulo transposition and permutation of the rows and columns) in �k

n for
1 � k � n � 11. These permanents were found in the process of solving a much
harder problem equivalent to finding the number of ways each representative can
be written as a sum of permutation matrices. As a result of these exhaustive compu-
tations it can be reported that both Conjectures 1.1 and 1.2 hold for n � 11. The precise
values of the extremal permanents are given in tables 1 and 2.

In tables 1 and 2 a prime ð
0
Þ is used to mark values which are not achieved by

any circulant matrix in the appropriate class. For n � 11, this answers Problems 11
and 12 from [7] which ask when the extremal values of the permanent in
�k

n are achieved by circulant matrices. It is known [8] that the maximum permanent
is only rarely achieved by a circulant, at least when considering sufficiently sparse
or sufficiently dense matrices. No such information is known about the minimum
permanent.

Finally, it is noted that two of the values reported in table 1 confirm particular
cases of Conjecture 5 in [6]. This conjecture, due to Ryser, states that if �k

v contains

Table 1. Minimum values of perðAÞ for A 2 �k
n for n � 11.

k n¼ 2 3 4 5 6 7 8 9 10 11

1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2
3 – 6 9 120 17 24 33 420 600 830

4 – – 24 44 80 144 2480 4400 7640 13160

5 – – – 120 265 5780 1249 2681 5713 12105
6 – – – – 720 1854 4738 120000 302400 75510
7 – – – – – 5040 14833 433860 1261170 364503
8 – – – – – – 40320 133496 439792 14417880

9 – – – – – – – 362880 1334961 48907400

10 – – – – – – – – 3628800 14684570
11 – – – – – – – – – 39916800
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incidence matrices of ðv, k, �Þ-configurations, then the permanent takes its minimum in
�k

v at one of these incidence matrices. Both �5
11 and �6

11 contain such incidence
matrices, which do indeed (uniquely) minimise the permanent over these sets. The
next smallest test cases for Ryser’s conjecture are �4

13 and �7
13.

For a progress report on all of Minc’s open problems, see [2].
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