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Abstract. We count all latin cubes of order n ≤ 6 and latin hypercubes of order n ≤ 5 and
dimension d ≤ 5. We classify these (hyper)cubes into isotopy classes and paratopy classes (main
classes). For the same values of n and d we classify all d-ary quasigroups of order n into isomorphism
classes and also count them according to the number of identity elements they possess (meaning
we have counted the d-ary loops). We also give an exact formula for the number of (isomorphism
classes of) d-ary quasigroups of order 3 for every d. Then we give a number of constructions for d-ary
quasigroups with a specific number of identity elements. In the process, we prove that no 3-ary loop
of order n can have exactly n−1 identity elements (but no such result holds in dimensions other than
3). Finally, we give some new examples of latin cuboids which cannot be extended to latin cubes.
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1. Basic definitions. Let [n] denote the set {1, 2, . . . , n} and let [n]d denote the
cartesian product [n]× [n]×· · ·× [n] of d copies of [n]. By a hypercube of order n and
dimension d we mean a d-dimensional array of nd cells where the cells are indexed by
[n]d and each cell contains an element of [n] (which we will call a symbol). Suppose
that H is such a hypercube and c is any cell of H. A line through c is the set of n
cells of H whose coordinates match those of c except possibly in the kth coordinate
(there is one line for each choice of k). A hyperplane through c is the set of nd−1

cells of H whose kth coordinate matches that of c (there is one hyperplane for each
choice of k). Any hyperplane in a d-dimensional hypercube can be considered to be
a (d−1)-dimensional hypercube, simply by dropping the common coordinate. We use
vector notation such as �v for an element of [n]d. In a hypercube H we denote the
symbol in the cell with coordinates �v = (v1, v2, . . . , vd) by H(�v) or H(v1, v2, . . . , vd).

We say that a hypercube H is latin if the n cells in any line of H contain each of
the symbols in [n] exactly once. We define Hd

n to be the set of latin hypercubes of order
n and dimension d. Given a hypercube L ∈ Hd

n and a cell �v = (v1, v2, . . . , vd) ∈ [n]d,
we can define d permutations of [n] corresponding to the lines through �v. Namely, for
each j ∈ [d] we define ρj(�v, L) to be the permutation

k �→ L(i1, . . . , ij−1, k, ij+1, . . . , id) for k ∈ [n].

If ρj
(
(1, 1, . . . , 1), L

)
is the identity permutation for each j ∈ [d], then we say that L

is reduced. We define Rd
n ⊆ Hd

n to be the set of reduced latin hypercubes of order n
and dimension d.

For some purposes it is easier to think of each hypercube H ∈ Hd
n as, instead,

a set TH ⊆ [n]d+1 where for each �v = (v1, v2, . . . , vd) ∈ [n]d there is a (d + 1)-
tuple 〈v1, v2, . . . , vd, H(�v)〉 in TH . (We adopt the convention of writing the tuples of a

∗Received by the editors June 6, 2007; accepted for publication (in revised form) September 12,
2007; published electronically April 18, 2008.

http://www.siam.org/journals/sidma/22-2/69387.html
†Department of Computer Science, Australian National University, Canberra, ACT 0200, Aus-

tralia (bdm@cs.anu.edu.au).
‡School of Mathematical Sciences, Monash University, Clayton, Vic 3800, Australia (ian.wanless@

sci.monash.edu.au).

719



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

720 BRENDAN D. MCKAY AND IAN M. WANLESS

hypercube inside angle brackets 〈 〉.) The latin property of the hypercube is equivalent
to saying that no two of its tuples differ in exactly one coordinate.

Some of the interest in latin hypercubes stems from coding theory, given that a
hypercube L ∈ Hd

n is equivalent to a maximum distance separable (MDS) code over
an alphabet of size n, with length d + 1 and minimum distance 2. See Laywine and
Mullen [16] for a good introduction to this area.

Another source of interest in latin hypercubes is in nonassociative algebra. A d-
ary quasigroup of order n is a function Q : [n]d → [n] such that Q(�u) �= Q(�v) whenever
�u and �v differ in exactly one coordinate. Such a quasigroup is clearly equivalent to a
latin hypercube L ∈ Hd

n, where L(�v) = Q(�v). Moreover L is reduced if and only if 1
is an identity element in the corresponding quasigroup Q. (An identity element of Q
is an x ∈ Q such that

Q(y, x, x, . . . , x) = Q(x, y, x, . . . , x) = · · · = Q(x, x, . . . , x, y) = y

for all y ∈ Q.) A quasigroup possessing an identity element is called a loop. One of
the aims of this paper is to count d-ary quasigroups and d-ary loops of order n (up
to isomorphism) for small d and n. We do this using the theory in section 2 and the
algorithm in section 3. For d > 2 it transpires that identity elements in d-ary loops
need not be unique. Hence, in section 5 we examine constructions for loops with
various numbers of identity elements.

A third source of applications for latin hypercubes is in the design of statistical
experiments. In this field the phrases “latin cube” and “latin hypercube” are used
for a broader class of objects than we are allowing in our definition. See [6] or [24]
in this regard. The statistical definition of latin hypercube seems unnatural in other
contexts since it does not have the property that each hyperplane is necessarily a
latin hypercube of one lower dimension. The confusion arising from these different
definitions is unfortunate, but we choose to follow, for example, [4] and [15] in our
use of “latin hypercube” and many papers (e.g., [8, 9, 14, 17, 22]) in our use of “latin
cube”. The alternative terminology “permutation (hyper)cube” was advocated in [6]
and used in [1, 3, 7, 11]. This terminology is better reserved for the higher dimensional
analogues of permutation matrices (that is, multidimensional arrays with all entries
0 or 1 such that each line contains a unique 1). Interestingly, (d+1)-dimensional
permutation hypercubes of order n are combinatorial objects essentially equivalent
to d-dimensional latin hypercubes of order n (both objects described in our preferred
terminology). This simple observation was made by Gupta [9], who used the phrase
“permutation cube” in our preferred sense.

In the cases d = 1, 2, 3 a latin hypercube of dimension d is a permutation, a
latin square and a latin cube, respectively. Much of the theory of latin hypercubes
is yet to be developed although some analogues of results for latin squares have been
investigated for latin cubes and occasionally for hypercubes in general. Completion
and embedding results have been obtained by Cruse [4], Kochol [14], and Lindner [17].
Fu [8] considered the range of values possible for the number of common entries shared
by distinct latin cubes. (In other terminology, this equates to studying the possible
sizes of trades in latin cubes.) A number of authors have considered sets of k mutually
orthogonal latin hypercubes. Here again several different definitions are possible;
see [6] and [16] for further information and references. The notions of intercalates,
transversals, and prolongation were generalized by Heinrich [11] from latin squares
to higher dimensions. The same generalization of transversals was used in [15] but
a different generalization of transversals was given by Beljavskaja and Murathudjaev
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[3]. Finally, strongly diagonal latin squares (also called Knut Vik designs) and totally
symmetric latin squares were generalized to higher dimensions by Alavi, Lick, and
Liu [1] and Bailey, Preece, and Zemroch [2], respectively.

The usual notions of isotopism, paratopism, and isomorphism generalize naturally
from latin squares to higher dimension. Let Sn be the symmetric group on [n] and let
Sc
n denote the direct product of c copies of Sn. Then the natural action of Sd+1

n on
[n]d+1 induces an action on Hd

n (where, as discussed above, we associate each H ∈ Hd
n

with a subset TH ⊆ [n]d+1). This action is called isotopism (or isotopy) and its orbits
are called isotopy classes. Define Δd+1

n to be the diagonal subgroup of Sd+1
n , that is,

Δd+1
n = {(g, g, . . . , g) ∈ Sd+1

n }. An important special case of isotopism is the action of
Δd+1

n on Hd
n. This action is called isomorphism and its orbits are called isomorphism

classes. If the hypercube is regarded as the table of values of a d-ary quasigroup
on [n], then isomorphisms of the hypercube correspond to standard isomorphisms of
the quasigroup.

A further group action on a hypercube is provided by permutation of the elements
of tuples. In this action, a permutation τ ∈ Sd+1 maps the tuple 〈v1, v2, . . . , vd+1〉 onto
the tuple 〈v1, v2, . . . , vd+1〉τ = 〈w1, w2, . . . , wd+1〉, where wiτ = vi for 1 ≤ i ≤ d+1.
Here, and elsewhere, we use the superscript notation for the image of an object under
a function; thus iτ means τ(i), and Lτ is the image of L obtained by applying τ to
each of its tuples. Such images are the conjugates (also called parastrophes) of L.

An arbitrary combination of a conjugacy and an isotopism is called a paratopism
(or paratopy). The set of all paratopisms corresponds to the wreath product Sn 
Sd+1

in its natural action on [n]d+1. The orbits of its action on the set of all hypercubes
are called paratopy classes, main classes or species.

The stabilizers of a latin hypercube L under isotopism, paratopism, and isomor-
phism are known respectively as the autotopism group, autoparatopism group, and
automorphism group of L. We use, respectively, Is(L), Par(L), and Aut(L) to denote
these groups. For example, Aut(L) = {σ ∈ Δd+1

n | Lσ = L}.
One of the main objectives of this paper is enumeration of latin hypercubes and

associated structures (such as d-ary quasigroups). The enumeration of latin squares
has a lengthy and well-known history for which we refer to the recent survey given
in [18]. Considerably less work has been done for higher dimensions.

To count latin hypercubes it suffices to count reduced latin hypercubes and then
apply the formula

(1) |Hd
n| = n! (n− 1)!d−1|Rd

n|.
One of the first works was by Gupta [9], who enumerated latin cubes by hand and

obtained the incorrect value |R3
4| = 58. The correct value |R3

4| = 64 was subsequently
obtained by Mullen and Weber [22] and much later by Jia and Qin [13], with both
pairs of researchers attempting to count and classify latin cubes of orders 1 up to 5.

Mullen and Weber [22] reported the numbers of reduced latin cubes of orders 1 up
to 5 to be 1, 1, 1, 64, 40246 and the numbers of isomorphism classes to be 1, 1, 1, 19, 1860.
They did not establish the number of isotopism classes for order 5 but found the num-
ber for orders 1 to 4, respectively, to be 1, 1, 1, 12. Zinoviev and Zinoviev [28] found
that there are five paratopy classes of latin cubes of order 4. Our computations
confirm the above numbers.

Apparently unaware of Mullen and Weber’s work two decades earlier, Jia and Qin
[13] attempted similar computations. They reported the same numbers of reduced
latin cubes but gave the numbers of isotopism classes to be 1, 1, 1, 15, 479. These last
two values are incorrect.
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A patent application by Ito [12] included values of |Rd
4| for d ≤ 5 that agree

with our computations (see Table 1) and also with the values found by Potapov and
Krotov [23]. Potapov and Krotov also proved that

3d+122d+1 ≤ |Hd
4| ≤ (3d+1 + 1)22d+1

for d ≥ 5.

2. Counting equivalence classes. The numbers of isotopy and paratopy classes
of latin hypercubes are related to the total number of latin hypercubes via the sizes
of the autotopism and autoparatopism groups. The exact relationship is specified in
the following lemma, whose proof is elementary.

Lemma 1. For any L ∈ Hd
n, the paratopy class of L contains

(a)
(d + 1)!

|Par(L)|/|Is(L)| isotopy classes,

(b)
(d + 1)!n!nd−1

|Par(L)| reduced latin hypercubes, and

(c)
(d + 1)! (n!)d+1

|Par(L)| latin hypercubes.

In the case of isomorphism classes, the natural setting is that of quasigroups and
loops. The procedure for counting isomorphism classes of ordinary quasigroups given
in [18, Theorem 4] applies equally well to the d-ary case, and the same proof applies
with obvious adaptions, so we state our first theorem without proof.

Let Id
n be a set containing one hypercube from each isotopy class of Hd

n, and let
Md

n be a set containing one hypercube from each paratopy class of Hd
n.

Define the cycle structure of a permutation γ to be the sequence (n1, n2, . . . ),
where ni is the number of cycles of length i in γ. If σ = (σ1, σ2, . . . , σd+1) is a
(d+1)-tuple of permutations, define ψ(σ) as follows:

(i) If σ1, σ2, . . . , σd+1 have the same cycle structure, (n1, n2, . . . ), then
ψ(σ) =

∏
i ni! i

ni .
(ii) Otherwise, ψ(σ) = 0.
Theorem 2. The number of isomorphism classes of d-ary quasigroups of order n

is

∑
L∈Id

n

1

|Is(L)|
∑

σ∈Is(L)

ψ(σ)d =
∑

L∈Md
n

(d + 1)!

|Par(L)|
∑

σ∈Is(L)

ψ(σ)d.

As pointed out by a referee, some of these results are true in a more general
setting. For some set X, let Fd

n(X) be the class of all functions from [n]d+1 to X. A
latin hypercube is such a function for X = {0, 1}, namely, the characteristic function
of the set of (d+1)-tuples it comprises. Isotopy, paratopy, and isomorphism are de-
fined for Fd

n(X) by permutations of the domain [n]d+1 in the same way as for latin
hypercubes. We then have, with essentially the same proofs, that Lemma 1(a) and
(c) and Theorem 2 are true for any subclass of Fd

n(X) which is closed under paratopy.
While counting d-ary quasigroups required no new theory, it turns out that count-

ing d-ary loops is less straightforward. The “obvious” extension of [18, Theorem 5] to
the d-ary case does not work, primarily due to the possibility that loops have more
than one identity element (see section 5 for examples). Therefore, we need to develop
a more complicated approach.
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We say that two cells �u and �v of L ∈ Hd
n are line-equivalent if ρj(�u, L) = ρj(�v, L)

for all j ∈ [d]. If x, y are both identity elements of a d-ary loop, then (x, x, . . . , x) is
line equivalent to (y, y, . . . , y).

For 1 ≤ i ≤ d + 1, define L[i] to be the conjugate of L obtained by exchanging
the ith and (d+1)th elements of tuples. This includes the case L[d+1] = L. Also, for
h, s ∈ Sd+1

n we write hs = s−1hs.
Theorem 3. For L ∈ Hd

n, choose C(L) to be a set of cells that includes exactly
one cell from each line-equivalence class of cells of L. For each cell �v, define

N(�v, L) =
∣∣{h ∈ Is(L) | h(ρ1,ρ2,...,ρd,1) ∈ Δd+1

n

}∣∣,

where ρj = ρj(�v, L) for each j, and 1 is the identity of Sn.
Then the number of isomorphism classes of d-ary loops of order n is

(2)
∑
L∈Id

n

1

| Is(L)|
∑

�v∈C(L)

N(�v;L) =
∑

L∈Md
n

d !

|Par(L)|

d+1∑
t=1

∑
�v∈C(L[t])

N(�v;L[t]).

Proof. Let Ld
n consist of all the loops in Hd

n. Note that we do not require any
particular elements to be the identity elements. The number we seek is the number
of equivalence classes of Ld

n under Δd+1
n . By the Burnside–Frobenius lemma, this

is equal to the average number of loops fixed by an element of Δd+1
n . Our task is

therefore to find the number of pairs (M, g) for M ∈ Ld
n and g ∈ Δd+1

n , such that
Mg = M .

We start by seeking the number of such pairs where M is in the isotopy class of
some fixed L ∈ Hd

n. This isotopy class consists of all Lσ for σ ∈ Sd+1
n , with the caveat

that each hypercube appears for exactly |Is(L)| values of σ. Leaving that factor for
later, we need to find the number of pairs (σ, g) for σ ∈ Sd+1

n and g ∈ Δd+1
n , such

that Lσ is a loop and Lσg = Lσ. The last condition is equivalent to σgσ−1 ∈ Is(L).
Writing h for σgσ−1, our problem reduces to counting all pairs (σ, h) for σ ∈ Sd+1

n

and h ∈ Is(L) such that
(a) Lσ is a loop and
(b) hσ ∈ Δd+1

n .
We proceed by parameterizing those σ satisfying (a). This is analogous to re-

ducing a latin square, except that we do not require an identity element in the first
position, and, indeed, we must remember that there can be more than one identity
element.

• Choose a cell �v and a permutation δ ∈ Sn.
• Permute rows, columns, etc., so that the lines through cell �v are all the identity

permutation.
• Apply δ ∈ Sn to each of the d + 1 components.
The resulting loop has L(�v)δ as an identity element. Symbolically, we have

(3) σ = σ(�v, δ) = (ρ1(�v, L)δ, ρ2(�v, L)δ, . . . , ρd(�v, L)δ, δ).

It is easy to see that every σ satisfying (a) has this form. However, this parameteri-
sation has redundancies: σ(�u, δ′) = σ(�v, δ) if and only if �u is line-equivalent to �v and
δ′ = δ.

Finally, for each σ = σ(�v, δ), we need to know how many h ∈ Is(L) satisfy (b).
This does not depend on δ since hσ(�v,δ) ∈ Δd+1

n ⇔ hσ(�v,1) ∈ Δd+1
n .
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Table 1

Number of reduced latin hypercubes, isotopy classes of latin hypercubes, paratopy classes of
Latin hypercubes, and isomorphism classes of quasigroups for small orders n and dimensions d.

d n reduced isotopy classes paratopy classes quasigroups

2 2 1 1 1 1
2 3 1 1 1 5
2 4 4 2 2 35
2 5 56 2 2 1411
2 6 9408 22 12 1130531
2 7 16942080 564 147 12198455835
2 8 535281401856 1676267 283657 2697818331680661
3 2 1 1 1 1
3 3 1 1 1 11
3 4 64 12 5 2589
3 5 40246 59 15 23192922
3 6 95909896152 5678334 264248 1381105636226980
4 2 1 1 1 1
4 3 1 1 1 21
4 4 7132 328 26 1565243
4 5 31503556 5466 86 435509352937
5 2 1 1 1 1
5 3 1 1 1 43
5 4 201538000 2133586 4785 263347981121
5 5 50490811256 1501786 3102 16751644838639300
6 2 1 1 1 1
6 3 1 1 1 85

We can now derive the first expression in (2). For each L ∈ Id
n, the number

of pairs (σ, h) satisfying (a) and (b) can be found by testing, for one �v from each
line-equivalence class of cell, whether σ(�v, 1) satisfies (b). For each of those that
pass the test, we have n! choices of δ. Then we divide by |Is(L)| to account for the
number of times each hypercube appears as Lσ and by |Δd+1

n | = n! as required by
the Burnside–Frobenius lemma.

The summand of the outside summation in the first half of (2) is not invariant
under conjugacy, so converting to a sum over paratopy classes is not just a mat-
ter of applying some factors. However, the summand is invariant under conjugacies
that leave the (d+1)th position fixed. Therefore, we get all the information we need
from the conjugates L[1], L[2], . . . , L[d+1]. Each of these represents d! |Is(L)|/|Par(L)|
isotopy classes, so the second half of (2) is obtained.

In Table 1 we give the results of our enumeration of latin hypercubes, classified
according to various notions of equivalence. A more detailed count of hypercubes,
classified according to group sizes, is presented in the appendix. A representative of
each of the paratopy classes covered by Table 1 can be found in [21]. In Table 2 we
give the results of our enumeration of loops (up to isomorphism) according to the
number of identity elements they have. In section 5 we consider further the question
of how many identity elements a loop can have. To save space, we have omitted a
number of known values for d = 2 and n ∈ {9, 10, 11}; see [18, 20].

3. Construction method. To reduce the probability of error, all the compu-
tations were carried out independently by the two authors using slightly different
algorithms. We now describe the first algorithm used.

Let L ∈ Hd
n. For 1 ≤ k ≤ n, the kth hyperplane of L is L(k) ∈ Hd−1

n defined by
L(k)(i1, . . . , id−1) = L(i1, . . . , id−1, k) for all i1, . . . , id−1.
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Table 2

Counts of loops according to their number of identity elements.

Number of identity elements
d n 1 2 3 4 5 6 Total

2 2 1 1
2 3 1 1
2 4 2 2
2 5 6 6
2 6 109 109
2 7 23746 23746
2 8 106228849 106228849
2 9 9365022303540 9365022303540
3 2 0 1 1
3 3 1 0 0 1
3 4 3 15 0 1 19
3 5 1826 32 1 0 1 1860
3 6 797971315 1422290 525 90 0 6 799394226
4 2 1 0 1
4 3 0 0 1 1
4 4 2213 0 0 0 2213
4 5 1349704 9 0 0 0 1349713
5 2 0 1 1
5 3 1 0 0 1
5 4 34140 66060918 0 524800 66619858
5 5 2122915806 805040 280 0 70 2123721196
6 2 1 0 1
6 3 1 0 0 1

Next we define an ordering on latin hypercubes. The hypercube L can be specified
by listing the symbols in each of the nd cells in a particular order:

Σ(L) =
[
L(1, 1, 1, . . . , 1), L(2, 1, 1, . . . , 1), . . . , L(n, 1, 1, . . . , 1),

L(1, 2, 1, . . . , 1), L(2, 2, 1, . . . , 1), . . . , L(n, 2, 1, . . . , 1),

L(1, 3, 1, . . . , 1), . . . ,

L(1, n, 1, . . . , 1), L(2, n, 1, . . . , 1), . . . , L(n, n, 1, . . . , 1),

L(1, 1, 2, . . . , 1), . . . ,

L(1, n, n, . . . , n), L(2, n, n, . . . , n), . . . , L(n, n, n, . . . , n)
]
.

The order of the cells (earlier indices varying faster) is important for what follows.
We call L isotopy-minimal if Σ(L) ≤ Σ(L′) for every L′ in the isotopy class of L.
Similarly, L is paratopy-minimal if Σ(L) ≤ Σ(L′) for every L′ in the paratopy class
of L. In each case, the comparison ≤ is lexicographic order. The following properties
follow easily from the definitions.

Lemma 4. Let L be a latin hypercube. Then the following hold.
(i) There is exactly one isotopy-minimal hypercube in each isotopy class and ex-

actly one paratopy-minimal hypercube in each paratopy class.
(ii) If L is paratopy-minimal, then L is isotopy-minimal.
(iii) If L is isotopy-minimal, then L is reduced.
(iv) If L is paratopy-minimal in Hd

n, then L(1) is paratopy-minimal in Hd−1
n .

The aim of the computation was to find all paratopy-minimal hypercubes L ∈ Hd
n.

As permitted by Lemma 4(iv), we took the paratopy-minimal hypercubes in Hd−1
n

as L(1). Then we extended L(1) to L in all possible ways such that L was reduced.
Finally, we rejected L if it was not paratopy-minimal.
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To check that L is paratopy-minimal, we verified that Σ(L) ≤ Σ(Lγ) for each
of the nd−1(d+1)!n! paratopisms γ that take L to a reduced hypercube. These
paratopisms have the form γ = γ(�v, δ, L) = σ(�v, δ)τ , where τ is one of the (d+1)!
conjugacies, and σ(�v, δ) is defined as in (3) with δ ∈ Sn such that L(�v)δ = 1. In this
case, the redundancy issue noted just after (3) does not occur: all these nd−1(d+1)!n!
paratopisms are different. To see this, note that the condition L(�v)δ = 1 implies that
σ(�v, δ) maps position �v onto position (1, 1, . . . , 1). If γ = γ(�v, δ, L) was found such
that Σ(Lγ) < Σ(L), thereby rejecting L as not paratopy-minimal, the next candidate
hypercube L′ was first tested with γ(�v, δ, L′). This often rejected L′ as well, giving a
useful speedup.

If the minimality test for L was passed, we had also found the autoparatopism
group: Par(L) consists of those γ for which Σ(Lγ) = Σ(L).

The second algorithm used to count |Hd
n| was similar to the first in that it gen-

erated a catalogue of paratopy class representatives by extending all paratopy class
representatives from Hd−1

n in all ways that produced a reduced hypercube. However,
the isomorphism testing was different. The reduced hypercubes were canonically la-
belled using nauty [19] in much the same way as latin squares were treated in [18].
Any hypercube was rejected if its canonical labelling was identical to that of a pre-
viously constructed hypercube. The autoparatopism group of each hypercube was
calculated by nauty while finding the canonical labelling.

It is clear that both these generation methods are quite crude, but the use of more
sophisticated techniques, such as applying a minimality test after each hyperplane is
added, would not help very much with these small values of n and d. In particular,
we do not think they would improve the efficiency enough to make hypercubes with
higher order and/or dimension enumerable with present computing power.

4. Number of quasigroups of order 3. In this section we count the d-ary
quasigroups of order n = 3, for arbitrary d. Before developing that result we need to
introduce a notion of linearity.

We say that H ∈ Hd
n is linear if there exist s ∈ [n] and ci ∈ [n] for i ∈ [d], such

that

(4) H(x1, x2, . . . , xd) ≡ s +

d∑
i=1

cixi (mod n)

for each (x1, x2, . . . , xd) ∈ [n]d. We say that a quasigroup/loop is linear if its cor-
responding hypercube is linear. For (4) to define a latin hypercube it is necessary
and sufficient that each ci should be relatively prime to n. Let φ denote Euler’s phi
function. It follows that there are exactly n(φ(n))d linear hypercubes in Hd

n, since we
have n choices for s and φ(n) choices for each ci.

For n ≤ 3 and arbitrary d it is easy to prove by induction on d that every
hypercube in Hd

n is linear. This conclusion also follows from the values of |Hd
n| as

given, for example, by Finizio and Lewis [7] or Laywine and Mullen [16, p. 224].
In our next theorem we will use the fact that each of the 2d3 hypercubes in Hd

3

is linear to count the d-ary quasigroups of order 3. Our result is phrased in terms of
the Jacobsthal sequence, which is defined by an = 1

3 (2n + (−1)n+1), or alternatively
by the recurrence

(5) an = an−1 + 2an−2 with a1 = a2 = 1.

This is sequence A001045 in Sloane’s On-Line Encyclopedia of Integer Sequences [25],
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which lists many combinatorial objects counted by the sequence. Here we extend that
list.

Theorem 5. Let Qd
3,g be the set of d-ary quasigroups of order 3 with an auto-

morphism group of order g. Then |Qd
3,2| = ad+1, |Qd

3,3| = |Qd
3,6| = ad, and |Qd

3,g| = 0

for g /∈ {2, 3, 6}. Hence |Qd
3| = ad+2.

Proof. First note that the result for |Qd
3| follows from the other results and (5),

since |Qd
3| =

∑
g |Qd

3,g|.
Let Hd

3,g be the set of d-dimensional hypercubes of order n for which the corre-

sponding quasigroup is in Qd
3,g. Clearly, |Qd

3,g| = |Hd
3,g| g/3! .

Consider the diagonal cells of an arbitrary H ∈ Hd
3. Specifically, for i ∈ {1, 2, 3}

define ui by 〈i, i, i, . . . , i, ui〉 ∈ H. Since H must be linear, we find that u2 − u1 ≡
u3 − u2 ≡ u1 − u3 (mod 3).

We now argue that uk = k if and only if H possesses an automorphism τ fixing
k and swapping the other two elements of {1, 2, 3}.

Certainly if H has such an automorphism, then it must map 〈k, k, . . . , k, uk〉 to
〈k, k, . . . , k, τ(uk)〉, from which we infer that uk = k, the only fixed point of τ .

So assume that uk = k and define τ : [3] → [3] by τ(x) ≡ −k − x (mod 3). Note
that τ fixes k and swaps the elements of [3]\{k}. Since H is linear we can assume the
existence of s, ci satisfying (4). Given that uk = k, this implies that k = s + k

∑
ci.

Now if we apply the isomorphism τ to a general element 〈x1, x2, . . . , xd, s +
∑

cixi〉
of H, it maps that element to

〈
−k − x1,−k − x2, . . . ,−k − xd,−k − s−

∑
cixi

〉
,

where all coordinates should be calculated mod 3. However, this is an element of H
since

s+
∑

ci(−k−xi) = s−k
∑

ci−
∑

cixi = s+(s−k)−
∑

cixi ≡ −k− s−
∑

cixi

mod 3. We conclude that τ is indeed an automorphism, as we contended.
At this point we separate into three cases. Define α ∈ [3] by α ≡ u2 − u1 ≡

u3 − u2 ≡ u1 − u3 (mod 3).

Case 1. α �= 1.
By the definition of α there exists a unique k ∈ {1, 2, 3} such that uk = k. This

means Aut(H) contains a unique transposition and hence |Aut(H)| = 2.
Case 2. α = 1 and there exists k ∈ {1, 2, 3} such that uk = k.
Since α = 1 we know uk = k for all k ∈ {1, 2, 3}. This means Aut(H) contains

three transpositions and hence |Aut(H)| = 6.
Case 3. α = 1 and there does not exist k ∈ {1, 2, 3} such that uk = k.
In this case Aut(H) contains no transpositions. However, by applying the per-

mutation π : uk → k to the symbols of H we obtain a hypercube H ′ to which Case
2 applies. That means that π is an automorphism of H ′, and hence also of H. We
deduce that |Aut(H)| = 3.

Moreover, there must be exactly twice as many hypercubes in Case 3 as there are
in Case 2. Any example from Case 2 can be turned into an example from Case 3 by
applying either (123) or (321) to its symbols. Exactly one of these permutations will
map an example from Case 3 to one from Case 2. It follows that |Hd

3,3| = 2|Hd
3,6| and

thus |Qd
3,3| = |Qd

3,6|.
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We now consider how a (d−1)-dimensional hypercube H can be embedded as the
first hyperplane of a d-dimensional hypercube H ′. Since our hypercubes are linear
there is only one choice to make, namely, whether cd = 1 or cd = 2. If H is in Case
2 or 3, then for either choice H ′ must fall into Case 1. On the other hand, if H is in
Case 1, then there is exactly one choice of cd so that H ′ is also in Case 1. Compiling
this information we get

|Hd
3,2| = 2

∣∣Hd−1
3,3 ∪Hd−1

3,6

∣∣ + |Hd−1
3,2 |,∣∣Hd

3,3 ∪Hd
3,6

∣∣ = |Hd−1
3,2 |

and hence

|Qd
3,2| = 2|Qd−1

3,3 | + |Qd−1
3,2 |,

|Qd
3,3| = |Qd−1

3,2 |.

The theorem now follows from (5) by induction on d.

5. Number of identity elements. It is well known that a binary quasigroup
can have at most one identity element but that d-ary quasigroups for d > 2 can have
multiple identity elements. In this section we investigate constructions which produce
quasigroups with a specific number of identity elements.

It is beyond the scope of this paper to provide a complete answer to the question of
for which n, d, and i there exists a quasigroup in Qd

n with exactly i identity elements.
We set the more modest goal of, at a minimum, constructing at least one quasigroup
in all cases for which Table 2 claims existence. Our methods and results represent a
step toward an eventual solution of the more general question. We begin with some
notation that will be used throughout this section.

Suppose A ∈ Qα
n and B ∈ Qβ

n. We define a new quasigroup in Qα+β−1
n , which we

call the composition of A and B and write as A �B, by

(A �B)(x1, . . . , xα+β−1) = A
(
B(x1, . . . , xβ), xβ+1, . . . , xα+β−1

)
.

Also, for any quasigroup A and positive integer c we define Ac inductively by A1 = A
and Ac = Ac−1 � A for c > 1. In particular, if Zn denotes the quasigroup in Q2

n

defined by Zn(x, y) ≡ x + y (mod n), then (Zn)c is the quasigroup in Qc+1
n which is

evaluated simply by adding coordinates modulo n.
The next lemma makes some observations about the number of identity elements

in compositions. The (entirely elementary) proof will be omitted. In part 3, the
meaning of total loop is a loop in which every element is an identity element.

Lemma 6.

1. (Zn)c ∈ Qc+1
n has gcd(n, c) identity elements.

2. If x is an identity element in both A and B, then x is an identity element in
A �B. The converse is false, as can easily be seen by considering observa-
tion 1.

3. Suppose A is a total loop. Then x is an identity element in A �B if and only
if x is an identity element in B.

The following result proves, among other things, existence of total loops in many
cases.
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Theorem 7. Suppose that n, d, i are positive integers satisfying
1. n �∈ {3, 7},
2. d ≥ 3 and d is odd,
3. i ≡ n (mod 2) or i = 2.

Then there exists a loop in Qd
n with exactly i identity elements.

Proof. For any odd d > 1 and any n �∈ {3, 7} Teirlinck [26] showed the existence
in Qd

n of a 2-idempotent quasigroup, namely, a quasigroup in which each subset of
cardinality 1 or 2 is a subquasigroup. It is easy to see that every 2-idempotent
quasigroup is a total loop, proving the case i = n.

Suppose i ≡ n (mod 2). In a 2-idempotent quasigroup, we can replace each of
the subquasigroups on the pairs {i + 1, i + 2}, {i + 3, i + 4}, . . . , {n − 1, n} by the
other possible subquasigroup on the same two elements. Doing so results in a new
quasigroup in which none of i + 1, . . . , n is an identity element. However, no tuple
containing any element less than i + 1 has been altered, so the elements 1, . . . , i are
all still identity elements.

It remains to show the i = 2 case. Again we start with a 2-idempotent quasigroup.
Suppose after replacing the subquasigroup on the elements {1, 2} by the other possible
subquasigroup on those elements, we arrive at a quasigroup Q. Now define Q′ by

Q′(�x) =

⎧⎪⎨
⎪⎩

1 if Q(�x) = 2,

2 if Q(�x) = 1,

Q(�x) otherwise.

Then Q′ will be a quasigroup in which 1 and 2 are identity elements. However, if
x �∈ {1, 2}, then Q′(1, x, x, . . . , x) = 2 so x is not an identity element.

Teirlinck left open the case of existence when n = 7, but it is easy to check
by computer that no total loop (and hence no 2-idempotent quasigroup) exists in
Q3

7. Despite this, we will show that a total loop exists in Qd
7 for all sufficiently large

d. Also, total loops (unlike 2-idempotent quasigroups) can exist in even dimensions.
Consider S ∈ Q3

7 given by

S = [5671234.6237415.7364152.1743526.2415763.3152647.4526371.

6237415.2345671.3471526.7514263.4652137.1726354.5163742.

7364152.3471526.6712345.4125637.1536274.5243761.2657413.

1743526.7514263.4125637.3456712.5267341.2631475.6372154.

2415763.4652137.1536274.5267341.7123456.6374512.3741625.

3152647.1726354.5243761.2631475.6374512.4567123.7415236.

4526371.5163742.2657413.6372154.3741625.7415236.1234567].

It is easy to check that (Z7)
3 � S is a total loop in Q6

7. By composing this total loop
with itself we can then produce total loops in Q6+5k

7 for any integer k ≥ 0.
Theorem 8. For each odd n > 3 there exists a D such that Qd

n contains a total
loop for all d ≥ D.

Proof. We first show that for n = 7 we can choose D = 25. For arbitrary positive
integers k, c we have shown above the existence of a total loop T ∈ Q5k+1

7 and also
noted in Lemma 6 that (Z7)

7c is a total loop in Q7c+1
7 . Forming T � (Z7)

7c then
produces a total loop in Q7c+5k+1

7 . Every integer exceeding 24 can be written in the
form 7c + 5k + 1 for nonnegative integers c, k. (See, for example, Theorem 3.15.1 in
[27].)
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The argument for odd n �∈ {3, 7} is similar, but we use a total loop T ∈ Q2k+1
n

instead (whose existence is guaranteed by Theorem 7). Using T � (Zn)nc gives a total
loop in Qnc+2k+1

n . Since n is odd, every integer exceeding n− 1 can be written in the
form nc + 2k + 1 for nonnegative integers c, k. Thus we may take D = n.

Next we consider quasigroups in which there is (only) one element which is not an
identity element. It seems plausible, given the data from Table 2, that the following is
the only general restriction on how many identity elements there can be in a ternary
quasigroup.

Lemma 9. A 3-ary quasigroup of order n cannot have exactly n − 1 identity
elements.

Proof. Let Q be a 3-ary quasigroup of order n on the symbols [n] in which every
x ∈ [n] \ {u} is an identity element. Take an arbitrary v ∈ [n] \ {u}. Then there
exists x ∈ [n] such that 〈v, x, u, v〉 ∈ Q. If x �= u this contradicts the fact that
〈v, x, x, v〉 ∈ Q since x is an identity element. We conclude that 〈v, u, u, v〉 ∈ Q, and
a similar argument shows that 〈u, v, u, v〉 ∈ Q and 〈u, u, v, v〉 ∈ Q. Finally, there is
some x ∈ [n] such that 〈x, u, u, u〉 ∈ Q. If x �= u this contradicts 〈x, u, u, x〉 ∈ Q, so
we must have 〈u, u, u, u〉 ∈ Q. We have shown that u is an identity element, so if Q
has at least n− 1 identity elements then it must have n identity elements.

The data in Table 2 are consistent with a generalization of Lemma 9 to some
higher dimensions. However, no such generalization is possible.

Lemma 10. For every d > 3 there exists an n and a Q ∈ Qd
n such that Q has

exactly n− 1 identity elements.
Proof. We first show that 5-ary quasigroups can have exactly n − 1 identity

elements. Let

E = [78123456.85274163.12385674.27816345.34567812.41638527.56741238.63452781.

85274163.56781234.27416385.78123456.41638527.12345678.63852741.34567812.

12385674.27416385.34567812.81634527.56741238.63852741.78123456.45278163.

27816345.38527416.81634527.12345678.63452781.74163852.45278163.56781234.

34567812.41638527.56741238.63452781.78123456.85274163.12385674.27816345.

41638527.72143658.63852741.34567812.85274163.56781234.27416385.18325476.

56741238.63852741.78123456.45278163.12385674.27416385.34567812.81634527.

63452781.14365872.45278163.56781234.27816345.38527416.81634527.72143658]

Now Q ∈ Q5
8 defined by Q = (Z8)

2 � E has exactly seven identity elements (the
element 8 is not an identity element, since Q(1, 8, 8, 8, 8) = 7). By Theorem 7, there
is a total loop T ∈ Q2k+1

8 for all k ≥ 1. Then by Lemma 6, T � Q is a loop in Q2k+5
8

with exactly seven identity elements. Thus we have the required example whenever
the dimension is odd.

For any even d, (Z2)
d−1 provides a (rather trivial) example. By Lemma 6, it is a

d-ary quasigroup of order 2 with one identity element.
Our next result shows among other things that the n = 2 examples used to prove

Lemma 10 are the only linear examples of order n quasigroups with n − 1 identity
elements.

Lemma 11. The number of identity elements in a linear d-ary loop of order n
divides n.
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Proof. Suppose L is a linear d-ary loop of order n, defined by (4). Since L is a
loop it possesses at least one identity element, say, ι. Then 〈y, ι, ι, . . . , ι, y〉 ∈ L for all
y ∈ [n] which implies that

(6) s + ι

d∑
i=2

ci + c1y ≡ y (mod n).

As (6) must hold for all y we conclude that c1 = 1. A similar argument shows that
cj = 1 for all j ∈ [d]. Hence (6) reduces to s+ (d− 1)ι ≡ 0 (mod n). This recurrence
either has no solution for ι (impossible since we know L has an identity element), or
its number of solutions is a divisor of n. It is obvious that each solution will yield a
(different) identity element.

Having considered loops with a high number of identity elements, we turn briefly
to the other end of the spectrum. It is a trivial matter for any n ≥ 3 and d ≥ 2 to
create a linear quasigroup with no identity elements. For example, take ci = −1 for
all i in (4), and consider the proof of Lemma 11 above. Building quasigroups with a
unique identity element is also easy.

Theorem 12. For all n ≥ 4 and d ≥ 2 there exists a loop in Qd
n with a unique

identity element.
Proof. The result for d = 2 is well known. For d = 3 and odd n we can use (Zn)2,

by Lemma 6.

Suppose n is even and n > 2. Let Z ′
n = Z

(τ,τ,τ)
n be the binary quasigroup

isomorphic to Zn by applying the transposition τ = (1 n
2 ) uniformly to the triples.

Now consider Q = Zn � Z ′
n. The element n is an identity element of Zn, Z ′

n and hence
also of Q, by Lemma 6. For x �∈ {n

2 , n}, we have Q(x, n, x) ≡ Z ′
n(x, n) + x ≡ 2x �≡ n

(mod n), so x is not an identity element. Moreover, n
2 is not an identity element

either, since Q(n2 ,
n
2 , n) = Z ′(n2 ,

n
2 ) = 2 �= n.

We have thus shown the theorem for d ≤ 3. From these base cases the theorem
now follows for d > 3 and n �= 7 by composition with a total loop whose existence is
guaranteed by Theorem 7. For n = 7, we use the base cases (Z7)

c for c ∈ [6], each
of which has a unique identity element, by Lemma 6. By composing these with the
total loops from Q5k+1

7 , we generate all the required examples for n = 7.
We now describe examples of quasigroups with each of the possible number of

identity elements shown in Table 2.
If n ≤ 3, then part 1 of Lemma 6 provides the examples we need. So we can

assume henceforth that n ∈ {4, 5, 6}. In particular this means there exists a total
loop in Q3

n, by Theorem 7, and a loop with a unique identity element in Qd
n for all

d ≥ 2, by Theorem 12. This provides the required examples for d = 4, except that we
need a quasigroup in Q4

5 with two identity elements. Let

Qa = [12345.23451.34512.45123.51234],

Qb = [12345.25413.34251.41532.53124],

Qc = [12345.25413.34521.43152.51234].

Then the quasigroup Q(x1, x2, x3, x4) = Qc

(
Qa(x1, x2), Qb(x3, x4)

)
, has two identity

elements, as required.
By composition with a total loop we will obtain all required examples for d = 5

as soon as we find the examples for d = 3. Moreover, most of the examples needed for
d = 3 can be found by applying Theorems 7 and 12. Only one case remains, namely,
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we need an example in Q3
6 with three identity elements. In fact, we give examples of

all possible numbers of identity elements in Q3
6. Let

Q0 = [124653.213546.431265.652134.546312.365421],

Q1 = [123456.214365.632514.351642.465231.546123],

Q2 = [123456.214365.635214.356142.542631.461523],

Q3 = [123456.214365.632541.351624.546132.465213],

Q4 = [123456.214365.632514.351642.546231.465123],

Q6 = [123456.214365.632541.351624.546213.465132].

For each i ∈ {0, 1, 2, 3, 4, 6}, the quasigroup Qi � Q0 has exactly i identity elements.

6. Incompletable latin cuboids. A natural method of building latin hyper-
cubes is to add hyperplanes one at a time, as we did in section 3. We call the in-
termediate objects thereby created latin hypercuboids. In the three-dimensional case,
Kochol [14] used the name “latin parallelepipeds.”

There is celebrated result due to Marshall Hall [10] that every latin rectangle is
completable to a latin square. However, the equivalent statement is not true in higher
dimensions. Kochol [14] proved that for any k and n satisfying 1

2n < k ≤ n− 2 there
is an n × n × k latin cuboid which cannot be completed to an n × n × n latin cube.
Although he did not say so, it is simple to use such examples to create noncompletable
n× n× · · · × n× k latin hypercuboids in higher dimensions.

It is an open question how “thin” a noncompletable latin hypercuboid can be.
In acknowledging that his theorem is not best possible, Kochol [14] alluded to an
example of a noncompletable 5 × 5 × 2 latin cuboid, although it seems this example
might never have been published. Below we give examples of noncompletable 5×5×2,
6 × 6 × 2, 7 × 7 × 3, and 8 × 8 × 4 latin cuboids. In the latter two cases it remains
open whether there are thinner examples. The 5 × 5 × 2 cubiod cannot be extended
even to three layers, while the other examples can be extended to n×n× (n−2) latin
cuboids, but no further.

[12345.21453.34521.45132.53214.

21453.13542.52134.34215.45321],

[123456.214365.345612.436521.561234.652143.

214365.125643.456231.362154.643512.531426],

[1632745.6173452.2356174.5264317.3417526.7541263.4725631.

2147653.7456231.3715462.6523174.4362715.1634527.5271346.

3715426.1624573.6243751.4176235.2531647.5467312.7352164],

[14257638.68421375.26875413.57368241.85643127.31784562.43512786.72136854.

26813457.47286531.38564172.71635824.13758246.62341785.54127368.85472613.

31462785.14738256.62147538.83251467.78524613.57816324.25673841.46385172.

42175863.86354712.51628347.35742186.27486531.14563278.78231654.63817425].

These examples show that Kochol’s theorem is not best possible for n ∈ {5, 6, 7, 8}
and hence leave wide open the question of what the best result might be in general.
Cutler and Öhman [5] showed for all a ≤ m that every (2mk)×(2mk)×a latin cuboid
can be extended by one layer provided k is sufficiently large.
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Appendix. In Tables 3, 4, and 5 we present the number of paratopy classes of
latin hypercubes L with each combination of the parameters d, n, I, P/I, where d is
the dimension, n is the order, I = |Is(L)|, and P = |Par(L)|. Lemma 1 explains how
to compute the numbers of hypercubes, reduced hypercubes, and isotopy classes of
hypercubes.

A representative of each of these paratopy classes can be found in [21].

Table 3

Counts of paratopy classes by I = |Is(L)| and P/I = |Par(L)|/|Is(L)| (part 1).

d n I P/I count d n I P/I count d n I P/I count

3 2 8 24 1 3 6 3 3 1 3 6 16 6 3
total 1 3 4 337 16 8 24

3 3 54 24 1 3 6 1 16 24 5
total 1 3 8 5 18 1 67

3 4 16 24 1 4 1 14855 18 2 54
64 8 1 4 2 3898 18 4 28
128 4 1 4 3 1 18 6 2
128 24 1 4 4 1121 18 8 10
384 24 1 4 6 12 20 1 1

total 5 4 8 179 20 2 1
3 5 3 4 5 4 24 4 20 4 2

4 4 1 5 4 1 24 1 67
4 24 1 6 1 1302 24 2 75
6 24 1 6 2 739 24 4 17
10 4 1 6 4 244 24 6 1
10 8 1 6 6 1 24 8 10
12 4 1 6 8 13 27 1 5
20 24 1 8 1 1118 27 2 11
60 24 1 8 2 831 27 4 6
100 8 1 8 3 1 27 8 3
500 24 1 8 4 220 36 1 23

total 15 8 6 6 36 2 26
3 6 1 1 75916 8 8 65 36 4 8

1 2 17193 9 1 137 36 6 1
1 3 29 9 2 90 36 8 6
1 4 3049 9 4 30 48 1 2
1 6 7 9 6 1 48 2 9
1 8 309 9 8 13 48 4 8
1 12 2 10 2 1 48 6 1
1 24 3 10 8 3 48 8 3
2 1 115256 12 1 316 54 1 6
2 2 16921 12 2 208 54 2 6
2 3 8 12 4 53 54 4 5
2 4 2768 12 6 1 54 8 4
2 6 15 12 8 7 54 24 1
2 8 127 16 1 22 72 1 9
3 1 4460 16 2 65 72 2 14
3 2 1688 16 4 28 72 4 4



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

734 BRENDAN D. MCKAY AND IAN M. WANLESS

Table 4

Counts of paratopy classes by I = |Is(L)| and P/I = |Par(L)|/|Is(L)| (part 2).

d n I P/I count d n I P/I count d n I P/I count

3 6 72 8 3 4 4 256 12 1 5 2 32 720 1
(cont) 81 8 1 512 8 2 total 1

108 1 7 512 10 1 5 3 486 720 1
108 2 2 512 12 2 total 1
108 4 1 512 120 1 5 4 16 72 1
108 8 2 1536 120 1 64 1 1909
120 2 1 total 26 64 2 1574
120 8 1 4 5 1 1 3 64 3 9
144 2 3 1 2 5 64 4 572
144 4 2 1 6 3 64 6 61
144 8 3 2 2 2 64 8 164
162 2 1 2 4 1 64 10 9
216 1 2 2 6 1 64 12 88
216 2 2 2 12 1 64 16 51
216 8 1 3 1 24 64 20 1
324 2 1 3 2 7 64 24 5
324 4 1 3 6 3 64 36 8
432 2 1 4 6 1 64 48 22
432 24 1 5 2 9 64 60 1
648 2 1 5 4 4 64 72 5
720 8 1 10 2 1 64 120 4
1296 8 1 10 4 2 64 720 3

total 264248 10 6 2 128 1 16
4 2 16 120 1 10 12 1 128 2 24

total 1 12 2 1 128 4 54
4 3 162 120 1 12 6 1 128 6 8

total 1 20 2 2 128 8 13
4 4 32 8 2 20 12 1 128 12 15

32 10 1 25 8 2 128 16 12
32 12 3 50 4 1 128 36 2
32 120 2 50 8 2 128 48 14
64 4 3 50 12 2 128 60 1
64 12 2 100 8 1 128 720 2
64 24 2 100 12 1 256 1 4
128 8 1 500 12 1 256 2 26
256 4 1 2500 120 1 256 4 24
256 8 1 total 86 256 6 8
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Table 5

Counts of paratopy classes by I = |Is(L)| and P/I = |Par(L)|/|Is(L)| (part 3).

d n I P/I count d n I P/I count d n I P/I count

5 4 256 8 18 5 5 2 8 1 5 5 25 6 9
(cont) 256 12 6 2 9 1 25 8 81

256 16 6 2 12 3 25 12 4
256 24 1 2 18 10 25 16 5
256 36 2 2 36 6 50 4 4
256 48 7 3 1 1128 50 6 1
512 4 2 3 2 378 50 8 13
512 12 1 3 3 31 50 12 3
512 16 2 3 4 55 50 16 5
1024 4 3 3 6 39 50 18 2
1024 8 2 4 2 2 50 36 1
1024 12 3 4 3 1 60 36 1
1024 16 3 4 4 1 100 4 3
1024 48 2 4 6 2 100 6 2
1024 72 1 4 18 3 100 8 8
2048 4 4 4 36 3 100 12 1
2048 12 2 4 72 1 100 16 1
2048 16 2 5 2 468 100 36 1
2048 36 1 5 4 18 125 8 2
2048 48 4 5 6 26 125 12 2
2048 60 1 5 12 2 125 24 2
2048 720 1 6 18 2 125 48 1
6144 720 1 6 36 3 250 8 1

total 4785 10 2 14 250 12 3
5 5 1 1 337 10 4 14 250 16 3

1 2 105 10 6 10 250 36 1
1 3 72 10 8 4 250 48 2
1 4 28 10 12 5 500 12 1
1 6 40 10 36 1 500 16 2
1 12 4 12 2 2 500 36 1
1 18 3 12 3 1 500 48 1
1 36 4 12 4 1 2500 48 1
2 1 3 12 6 1 2500 72 1
2 2 6 20 2 2 12500 720 1
2 3 7 20 12 1 total 3102
2 4 7 20 72 1
2 6 5 25 4 70
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Budapest, 1974.

[7] N. J. Finizio and J. T. Lewis, Enumeration of maximal codes, Congr. Numer., 102 (1994),
pp. 139–145.

[8] H.-L. Fu, On Latin cubes with prescribed intersections, Ars Combin., 23 (1987), pp. 171–176.
[9] H. Gupta, On permutation cubes and Latin cubes, Indian J. Pure Appl. Math., 5 (1974),

pp. 1003–1021.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

736 BRENDAN D. MCKAY AND IAN M. WANLESS

[10] M. Hall, An existence theorem for Latin squares, Bull. Amer. Math. Soc., 51 (1945), pp. 387–
388.

[11] K. Heinrich, Prolongation in m-dimensional permutation cubes, in Algebraic and Geometric
Combinatorics, North-Holland Math. Stud. 65, North–Holland, Amsterdam, 1982, pp. 229–
238.

[12] T. Ito, Creation Method of Table, Creation Apparatus, Creation Program and Program Storage
Medium, U.S. Patent application 20040243621, Dec. 2, 2004.

[13] X. W. Jia and Z. P. Qin, The number of Latin cubes and their isotopy classes, J. Huazhong
Univ. Sci. Tech., 27 (1999), pp. 104–106 (in Chinese).

[14] M. Kochol, Relatively narrow Latin parallelepipeds that cannot be extended to a Latin cube,
Ars Combin., 40 (1995), pp. 247–260.

[15] C. F. Laywine and G. L. Mullen, Latin cubes and hypercubes of prime order, Fibonacci
Quart., 23 (1985), pp. 139–145.

[16] C. F. Laywine and G. L. Mullen, Discrete Mathematics Using Latin Squares, John Wiley,
New York, 1998.

[17] C. C. Lindner, A finite partial idempotent Latin cube can be embedded in a finite idempotent
Latin cube, J. Combin. Theory Ser. A, 21 (1976), pp. 104–109.

[18] B. D. McKay, A. Meynert, and W. Myrvold, Small Latin squares, quasigroups and loops,
J. Combin. Des., 15 (2007), pp. 98–119.

[19] B. D. McKay, nauty Graph Isomorphism Software, http://cs.anu.edu.au/∼bdm/nauty.
[20] B. D. McKay and I. M. Wanless, On the number of Latin squares, Ann. Comb., 9 (2005),

pp. 335–344.
[21] B. D. McKay and I. M. Wanless, Latin Cubes and Hypercubes, http://cs.anu.edu.au/∼bdm/

data/latincubes.html.
[22] G. L. Mullen and R. E. Weber, Latin cubes of order ≤ 5, Discrete Math., 32 (1980), pp. 291–

297.
[23] V. N. Potapov and D. S. Krotov, Asymptotics for the number of n-quasigroups of order 4,

Siberian Math. J., 47 (2006), pp. 720–731.
[24] D. A. Preece, S. C. Pearce, and J. R. Kerr, Orthogonal designs for three-dimensional

experiments, Biometrika, 60 (1973), pp. 349–358.
[25] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://www.research.att.

com/∼njas/sequences/.
[26] L. Teirlinck, Generalized idempotent orthogonal arrays, in Coding Theory and Design Theory,

Part II, IMA Vol. Math. Appl. 21, Springer, New York, 1990, pp. 368–378.
[27] H. S. Wilf, Generatingfunctionology, 2nd ed., Academic Press, San Diego, 1994.
[28] V. A. Zinoviev and D. Z. Zinoviev, Binary extended perfect codes of length 16 obtained by

the generalized concatenated construction, Probl. Inf. Transm., 38 (2002), pp. 296–322.


