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Abstract. Cycle switches are the simplest changes which can be used to alter latin squares,
and as such have found many applications in the generation of latin squares. They also
provide the simplest examples of latin interchanges or trades in latin square designs.

In this paper we construct graphs in which the vertices are classes of latin squares.
Edges arise from switching cycles to move from one class to another. Such graphs are
constructed on sets of isotopy or main classes of latin squares for orders up to and
including eight. Variants considered are when (i) only intercalates may be switched, (ii) any
row cycle may be switched and (iii) all cycles may be switched.

The structure of these graphs reveals special roles played by N2, pan-Hamiltonian,
atomic, semi-symmetric and totally symmetric latin squares. In some of the graphs parity is
important because, for example, the odd latin squares may be disconnected from the even
latin squares.

An application of our results to the compact storage of large catalogues of latin squares
is discussed. We also prove lower bounds on the number of cycles in latin squares of both
even and odd orders and show these bounds are sharp for infinitely many orders.

1. Introduction

The idea behind this paper is to construct and study graphs which show how the
latin squares of a certain order are connected by cycle switches. In this section we
give a number of background definitions and references. Readers who are familiar
with terminology of latin squares and graphs may prefer to skip to the next
section, which will explain the specifics of the problem to be investigated.

A latin square of order n is a matrix of order n in which each one of n symbols
appears exactly once in each row and exactly once in each column. In this paper
we usually assume that the symbol set is ½n� ¼ f1; 2; . . . ; ng, so that it coincides
with the set of indices of the rows and columns. It is sometimes convenient to
think of a latin square of order n as a set of n2 triples of the form (row, column,
symbol). The latin property means that distinct triples never agree in more than
one coordinate. For each latin square there are six conjugate squares obtained by
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uniformly permuting the coordinates of each triple. The square itself is one of
these conjugates, obtained by applying the identity permutation to the triples. A
square is said to be totally symmetric if it is equal to all six of its conjugates. If a
square equals three (or six) of its conjugates then it is said to be semi-symmetric.
The three conjugates which equal a semi-symmetric (but not totally symmetric)
square are necessarily the square itself and the two squares obtained by cyclically
permuting its triples.

An isotopy of a latin square L is a permutation of its rows, permutation of its
columns and relabelling of its symbols. The resulting square is said to be isotopic
to L and the set of all squares isotopic to L is called an isotopy class. An isotopy
which maps L to itself is called an autotopy of L. The main class of L is the set of
squares which are isotopic to some conjugate of L. For orders up to seven, rep-
resentatives of the main classes of latin squares can be found in [4]. Throughout
this paper we shall refer to that catalogue using the notation Mo:n to denote the nth

main class of order o. For order 8 there are 283657 main classes and these can be
downloaded from, for example, [14]. The number of isotopy classes of each order
is also given in [4], although the number for order seven should be 564 not the
quoted 563, which repeats an earlier misprint in [5].

A latin rectangle with symbol set S is a matrix in which each symbol in S occurs
exactly once in each row and at most once in each column. A latin subrectangle is
a submatrix which is a latin rectangle. If R is a 2� n latin subrectangle of some
latin square and R is minimal in that it contains no 2� n0 latin subrectangle for
2 � n0 < n, then we say that R is a row cycle of length n.

Another way to think of row cycles is in terms of the permutation which maps
one row to another row. Suppose that r and s are two rows of a latin square. We
define a permutation q : ½n�7!½n� by qðLrjÞ ¼ Lsj for each j 2 ½n�. Each row cycle
between r and s corresponds to a cycle of the permutation q and vice versa. If c is
a cycle of q then we find the corresponding row cycle by taking all occurrences in r
and s of symbols which occur in c.

Column cycles and symbol cycles can be defined similarly to row cycles, and
the operations of conjugacy interchange these objects. A column cycle is a set of
entries which forms a row cycle when the square is transposed. A symbol cycle is a
set of entries which forms a row cycle when the square is conjugated to exchange
rows and symbols. Row cycles, column cycles and symbol cycles will collectively
be known as cycles.

A cycle which has length equal to the order of the square is said to be
Hamiltonian. A latin square is pan-Hamiltonian if every row cycle is Hamiltonian.
A latin square is atomic if all of its conjugates are pan-Hamiltonian. In other
words, a square is atomic if all of its cycles are Hamiltonian. This terminology
comes from [21], in which both pan-Hamiltonian and atomic squares are inves-
tigated in some detail. In that paper it is reported that for orders up to 10 the only
main classes of atomic squares are the cyclic group tables of prime orders. There is
one additional main class (M7:6) containing a pan-Hamiltonian latin square of
order 7 and 37 main classes containing pan-Hamiltonian latin squares of order 9.
It has since been shown in [16] that there are exactly 7 main classes of atomic
square of order 11 and that these contain 17 isotopy classes. Note that
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pan-Hamiltonian latin squares (and hence also atomic squares) of order n can
exist only if n is odd or n ¼ 2. An infinite family of pan-Hamiltonian latin squares
is constructed in [3].

Pan-Hamiltonicity is an isotopy invariant and the atomic property is a main
class invariant. The original interest in pan-Hamiltonian latin squares arose from
the fact that they contain no proper subsquares. In fact, they contain no non-
trivial latin subrectangles. Latin squares without proper subsquares are called N1
squares. A weaker property, labelled N2, is the absence of intercalates (subsquares
of order two). For more information on these concepts consult [6]. Note that, as
well as being subsquares, intercalates are row cycles, column cycles and symbol
cycles of length two.

Throughout this work, we will use basic terminology of graph theory which
can be found in any good book on the subject. In particular, components are
maximal connected subgraphs. The eccentricity of a vertex v is the maximum over
the distances from other vertices to v, the diameter is the maximum eccentricity
and the radius is the minimum eccentricity among the vertices. Vertices achieving
the radius are called central. A clique is a complete subgraph, and the clique
number is the order of the largest clique. The girth is the length of the shortest
cycle. A pendant vertex is a vertex of degree 1.

2. Cycle Switching

Any cycle in a latin square L can be switched to create a slightly different Latin
square L0. To switch a row cycle we move each entry in the cycle from the row it
inhabits in L to the same column of the other row of the cycle. Thus, if r and s are
the two rows involved and C is the set of columns involved in the cycle then the
result of the switching is defined by

L0ij ¼
Lsj if i ¼ r and j 2 C,
Lrj if i ¼ s and j 2 C,
Lij otherwise.

8
<

:

Switching a column cycle involving two columns c and d and a set of rows R is
similar, with the result being

L0ij ¼
Lid if j ¼ c and i 2 R,
Lic if j ¼ d and i 2 R,
Lij otherwise.

8
<

:

Switching a symbol cycle on two symbols r1 and r2 is achieved by replacing every
occurrence of r1 in the cycle by r2 and vice versa. Of course these three operations
are essentially the same thing, related by conjugacy of the square. Examples of
cycle switching are given in Fig. 1.

Other local perturbations for producing new latin squares from old are dis-
cussed in [1], [8], [12] and [19]. These methods are all strong enough to convert any
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latin square into any other latin square after a finite number of applications,
although in both [8] and [12] some of the intermediate stages are not latin squares.
To see that cycle switches do not have the capacity to perform arbitrary changes,
it is sufficient to consider that atomic squares can never be converted to non-
atomic squares by cycle switching. However, cycle switches do have the advantage
of conceptual and algorithmic simplicity. This paper is, in part, an effort to
investigate the price of this simplicity.

Since we will require them later (in Proposition 2), we now describe the
perturbations defined by Pittenger [19]. Suppose that in a latin square L we have
Lij ¼ Lkl ¼ a and x ¼ Lil 6¼ Lkj ¼ y for distinct symbols a; x; y, rows i; k and
columns j; l. We then attempt to form a new latin square L0 by the following
algorithm.

Interchange the symbols a and x in row i:

Interchange the symbols y and a in row k:

Let c ¼ j:

Repeat

Let r be the row of L in which symbol x occurs in column c:

Let c be the column of L in which symbol y occurs in row r:

Interchange the symbols x and y in row r:

Until c 2 fj; lg:

If c ¼ j on termination then the above procedure fails to achieve our objective.
On the other hand, if c ¼ l when the procedure terminates then the result is a new
latin square L0. We say that L0 is reached from L by a Pittenger move. A particular
choice of i; j; k; l; a; x; y will be successful in creating a Pittenger move if and only if

Fig. 1. Examples of cycle switching.The other three squares are obtained from the top left
hand latin square by an intercalate switch i, a row cycle switch r and a symbol cycle switch
s. In each case the entries altered by the switch are marked with an asterisk
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the triples ði; l; xÞ and ðk; j; yÞ of L belong to the same symbol cycle. Pittenger
showed that by a sequence of his moves and/or symbol cycle switches it is possible
to convert any latin square into any other latin square of the same order.

In design theory terms, Pittenger moves and cycle switches are based on trades
(see e.g. [4] for a definition of this concept). The phrase latin interchange [8] is
sometimes used for trades in latin square designs. Cycles in some sense provide the
minimal examples of latin interchanges. If two entries must be swapped in a latin
square then completing a cycle switch represents the simplest way to then restore
the latin property. The entries which end up being changed form a trade, as do the
entries which replace them.

As might be expected, cycle switches have been used many times to build new
latin squares from old, and the terminology employed has varied considerably.
Norton [17] in a paper we will discuss in x3, dealt primarily with intercalates and
referred to ‘‘intercalate reversals’’. Parker [18] ‘‘turned’’ intercalates in an order
ten square without transversals to create a square with 5504 transversals and
12265168 orthogonal mates [16]. Elliott and Gibbons [9] used cycle switches,
which they referred to as ‘‘rotations’’, in a simulated annealing approach to
constructing N1 latin squares. Jacobson and Matthews [12] call the operation a
‘‘cycle swap’’, whereas Pittenger [19] calls a symbol cycle switch a ‘‘name-change’’.
It is obvious then, that cycle switching is useful when trying to enumerate latin
squares, or when trying to build, by local improvement, latin squares with special
properties.

A related application is to the storage of vast numbers of latin squares. Even
when restricted to special classes, the number of latin squares typically grows very
quickly with the order of the square, so catalogues can require vast storage
facilities. Instead of storing the entirety of each square, it is better to use an idea
we call chains. In a chain, we store only the first square and for subsequent
squares, we store instructions on how to make the square from its predecessor. In
the ideal case these instructions would just specify a single cycle switch, which can
be designated in significantly less space than it takes to store a new square.
Performing the cycle switch may also be faster than loading a new square. Of
course, there are new problems created by this approach, such as deciding on an
order for the catalogue which makes each square similar to its predecessor.
However, many construction methods will achieve this more or less automati-
cally. A second problem is that on average half the catalogue must be processed in
order to get to a random element. This can be alleviated by breaking the catalogue
into a number of smaller chains. The storage saving is still substantial, yet fewer
squares need to be generated in order to reach any given square. It would also be
possible to avoid both the problems just mentioned by using a more general data
structure. Instead of the path which underlies a chain, we could use a tree, with
the edges still corresponding to cycle switches. It should be easy to build a tree
with small radius to store a large number of latin squares.

With this motivation, we now embark on a study of graphs which model
how latin squares are related by cycle switches. We call such graphs switching
graphs. Our switching graphs use sets of latin squares as their vertices and have
an edge between two sets if a member of the first set can be turned into some
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member of the second set by a cycle switch. Since cycle switches can be
combined to produce any isotopy, but in general cannot be used to take
conjugates of a square, the most natural classes of squares to use as vertices are
the isotopy classes, although we do consider what happens when we use main
classes as vertices. We also vary the exact operations which are allowed to
produce an edge, considering three different possibilities. In x5 we study the
problem where only intercalates may be switched. In x6 we allow any row cycle
to be switched and in x7 we allow any cycle at all to be switched. For each of
the above options we construct switching graphs for all orders of latin squares
up to and including 8.

The graphs that we build in this paper are simple, meaning that we do not
allow loops or multiple edges, and undirected because cycle switches can always
be ‘‘undone’’. Using simple graphs was a matter of personal preference, but can
be justified by practical considerations given the size of graphs encountered.
Having said that, both loops and multiple edges would have a natural interpre-
tation in switching graphs, since it is quite common for cycle switching to preserve
the isotopy class of a latin square, or for two classes to be connected by several
distinct cycle switches. The former case arises fairly trivially whenever the cycle
being switched is Hamiltonian, but also arises in less trivial cases. Because of its
trivial nature, the switching of Hamiltonian cycles will not be considered in the
subsequent discussion. Sometimes, to emphasise this point, we will refer to the
switching of a non-Hamiltonian cycle as a non-trivial switching. Although we do
not put loops on our graphs we record in each instance the number of vertices
which would have loops if we did (considering only those loops resulting from
non-trivial switchings).

It should be clear that atomic latin squares will always result in isolated ver-
tices in our switching graphs, since there are no operations allowed on them which
might result in an edge. For the same reason, when switching just row cycles or
intercalates the pan-Hamiltonian and N2 squares respectively will give rise to
isolated vertices.

There is a more interesting way to get isolated vertices, which is to have legal
operations available but for none of them to reach a square outside the class being
considered. We say that such a class of squares (or any member thereof) is self-
switching; a label which depends on the context in terms of which operations are
allowed. The smallest example of self-switching squares are the non-group based
squares of order 5. There are only two main classes of order 5 and each contains a
single isotopy class. One of these classes contains the cyclic group table. Since 5 is
prime this class is atomic, from which it follows that any switching graph on order
5 squares must consist of just two isolated vertices. However, the non-group based
squares have four intercalates and must therefore be self-switching whatever cycle
switches are being allowed. So, for example, all four squares in Fig. 1 are isotopic
to each other. This is the only self-switching main class known to the author,
when the allowable operations include more than just the switching of interca-
lates. Hence for the remainder of the paper the phrase self-switching should be
understood in the context of intercalate switches. There are no self-switching
squares of order 6 or of orders lower than 5, but self-switching squares of orders 7
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and 8 will be found in x5. The following four squares are examples of self-
switching squares of order 9,

1 2 7 8 6 5 4 9 3

2 1 9 5 3 7 6 4 8

9 5 4 3 7 8 1 6 2

7 8 3 4 2 9 5 1 6

6 4 2 7 8 1 3 5 9

5 7 8 9 1 6 2 3 4

3 6 5 1 4 2 9 8 7

4 9 6 2 5 3 8 7 1

8 3 1 6 9 4 7 2 5

0

B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
A

1 2 7 9 6 8 3 4 5

2 1 8 7 9 5 4 6 3

7 9 3 5 8 4 1 2 6

8 7 6 4 3 9 2 5 1

9 6 4 8 7 1 5 3 2

5 8 9 3 2 7 6 1 4

3 4 1 2 5 6 8 7 9

6 3 5 1 4 2 7 9 8

4 5 2 6 1 3 9 8 7

0

B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
A

8 9 1 5 7 2 6 4 3

7 8 9 2 6 1 3 5 4

4 1 8 9 3 7 2 6 5

3 5 2 8 9 4 1 7 6

2 4 6 3 8 9 5 1 7

6 3 5 7 4 8 9 2 1

9 7 4 6 1 5 8 3 2

5 6 7 1 2 3 4 9 8

1 2 3 4 5 6 7 8 9

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

1 2 3 4 5 6 7 8 9

2 1 4 5 6 7 8 9 3

3 4 5 6 7 1 9 2 8

4 5 7 9 8 3 1 6 2

5 6 1 3 9 8 2 7 4

6 7 2 8 3 9 4 1 5

7 8 9 2 4 5 6 3 1

8 9 6 1 2 4 3 5 7

9 3 8 7 1 2 5 4 6

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

The first two squares are semi-symmetric and have trivial autotopy groups. Their
intercalates are shown in bold. The third square has a unique intercalate and an
autotopy of order 7 although it is not isotopic to any conjugate except itself. The
fourth square represents one of the ten main classes of self-switching squares of
order 9 which have a single intercalate and no non-trivial symmetry.

We now explain the relevance of various graphical characteristics to our
problem. Clearly the components of the graph are important when we want to
convert one square into another by a sequence of switches. The diameter and
radius of a component tells us the number of switches which might be required for
such a transformation. This is of interest for the storage application cited earlier
in this section, as is the presence of a Hamiltonian path. More generally, we would
be interested in a path cover, which is a set of disjoint paths which between them
include every vertex. The minimum possible number of paths in a path cover tells
us the fewest chains which can be used in a catalogue of the vertices. The degree of
a vertex tells us how many essentially different squares can be produced by a
single switching. The relevance of 4-cycles will be explained in x3.

The smallest order for which there are distinct isotopy classes is order 4.
Here there are two main classes, each of which is also an isotopy class. The two
classes are connected by intercalate switches, so every switching graph using
order 4 squares consists of two connected vertices. As already mentioned, for
order 5 the situation is similar except that the two vertices are not connected.
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Thus order 6 is the smallest order for which switching graphs are interesting.
As order 8 involves some significant computation and higher orders are well
beyond reach, we will focus subsequent discussion on the orders 6, 7 and 8.

Our switching graphs have three parameters; namely, the order of the latin
squares, whether we use isotopy or main classes as vertices and what cycle
switches are allowed. We use the notation GxyðzÞ to denote a switching graph.
In this notation x 2 fi; r; ag records whether intercalates ðiÞ, row cycles ðrÞ or
all cycles ðaÞ are allowable switches, y 2 fi;mg says whether the vertices are
isotopy classes ðiÞ or main classes ðmÞ and z is the order of the squares
involved. It is worth making the following observations for general x, y and z.
In each case GxmðzÞ can be formed from GxiðzÞ by identifying the vertices of the
1, 2, 3 or 6 isotopy classes which form each main class. Also, because the set of
operations is being broadened at each step, GiyðzÞ is a subgraph of GryðzÞ which
in turn is a subgraph of GayðzÞ. From these observations a number of obvious
inequalities follow, which we illustrate using diameter as an example. The
diameter of GxmðzÞ cannot exceed that of GxiðzÞ, while the diameter of GayðzÞ
cannot exceed that of GryðzÞ which cannot exceed the diameter of GiyðzÞ.

Each GxyðzÞ was constructed by a program we shall call program A. The
input for program A was a set of representatives of the classes of latin squares
which form the vertices of the graph. For each of these squares, the program
identified all possible switches of the designated kind. The result of each switch
was tested using McKay’s nauty program [14] to see which vertex it belonged
to. In this way, a list of adjacencies was built up, and this formed the output of
program A. Once the graph was constructed it was analysed by program B to
count its cliques and cycles, find the number and diameter of components et
cetera. In most cases this analysis was straightforward. For example, we found
the eccentricity of each vertex by finding the depth of a breadth-first search tree
rooted at that vertex, and then calculated the diameter and radius of each
component from these eccentricities. The one graph which was too large for
this näive approach will be treated separately when it is encountered in x7.

One part of the analysis was carried out by a third program. Program C
was written to find a minimal path cover for the connected graph which it took
as its input. Essentially, it looked for a Hamiltonian cycle using a simple
algorithm based on that advocated in [2] for the travelling salesman problem.
However, before looking for such a cycle, various obstacles needed to be
treated. The simplest obstacles were the pendant vertices, which were tackled as
follows. Suppose there were p > 0 pendant vertices.

(1) If p was odd then an arbitrary pendant vertex v0 was removed.
(2) A matching was added to the remaining pendant vertices (if any).
(3) A Hamiltonian cycle C was located in the resulting graph.
(4) Any edges which were not in the original graph were removed from C.
(5) If p ¼ 1 then v0 was reattached to its original neighbour, v1, and an edge of C

involving v1 was dropped. For odd p > 1 we simply put v0 back in the graph as
a path of length zero.
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There was no guarantee that step (3) would succeed, but if it did the result was a
path cover achieving the trivial lower bound of dp=2e paths when p > 0. The case
when p ¼ 0 was handled simply by looking for a Hamiltonian cycle, from which
any edge could be dropped to yield a path cover of size 1. Applying this process to
each of the components of a graph produced a minimal path cover for the whole
graph, assuming that each search for a Hamiltonian cycle was successful. Occa-
sionally though, there were obstacles more complicated than pendant vertices.
Another obstacle encountered was a cycle in which, within any pair of consecutive
vertices, at least one vertex had degree two. We call such a subgraph a cycle
obstacle (see Fig. 2). Each cycle obstacle must contain an end-point of a path in
any path cover. Program C dealt with them by deleting an edge in the cycle
between a vertex of degree two and a vertex of higher degree, then treating the
resulting pendant vertex in the same way as other pendant vertices. Other
obstacles will be described when the graphs in which they were encountered are
discussed in sections x5 to 7.

3. Norton’s Work

Norton was among the first to use cycle switching. We devote this section to a
discussion of his seminal paper [17]. In it he coined the word ‘‘intercalate’’ to refer
to subsquares of order 2, and the phrase ‘‘generalized intercalate’’ for what would
nowadays be called latin subrectangles. He was aware that his intercalates and
generalized intercalates could be switched to change the structure of latin squares
and he exploited this in a highly dedicated attempt to enumerate the main classes
of order seven. Starting with any latin square of order 7 the idea was to switch its
intercalates, one at a time, and find all of the squares which could be generated in
this way. The process could then be iterated from the new squares. Eventually this
process must stop creating new main classes, at which point you have what
Norton called a family of species (species being another name for main classes).
Norton also defined a domain to be, in our terminology, the set of all main classes
reachable by cycle switching from a given main class. He points out that cyclic
group tables of prime order will be a domain on their own because, as we would
say, they are atomic. He also knew of the other pan-Hamiltonian isotopy class of
order 7, having found it while investigating squares orthogonal to the cyclic group

Fig. 2. A cycle obstacle of length six
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table. He therefore knew of the only N2 latin squares of order 7, which clearly
must be families on their own.

What he did next was to manually compute an entire family of 144 main
classes of latin squares containing intercalates. Together with the two N2 classes,
this massive effort came tantalisingly close to a complete catalogue, given that it
included 146 of the 147 main classes. A representative of the missing class, which
is M7:147, was first pointed out by Sade [20]. We shall refer to the following semi-
symmetric representative of M7:147 as Sade’s square:

1 2 4 5 6 7 3
2 1 7 3 4 5 6
7 4 5 1 3 6 2
3 5 2 6 1 4 7
4 6 3 2 7 1 5
5 7 6 4 2 3 1
6 3 1 7 5 2 4

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

ð1Þ

The unique intercalate of this square is shown in bold. The reason why Norton
missed Sade’s square is that it is a self-switching square belonging to a family of its
own, as we will see in x5. Norton recognised that M7:6 belongs to the same domain
as his large family, and acknowledged that switching cycles of length greater than
two may extend the domain further. With a few extra patient years of work he
would have discovered that the Sade square belongs to the same domain as the
other non-atomic squares. Of course the method cannot ever prove that a cata-
logue is complete, since it cannot rule out a separate undiscovered domain.

Despite narrowly failing to find a complete set of main classes, Norton’s work
does provide significant insight into the structure of latin squares. He made some
basic observations which proved useful in writing our programs as well as providing
a lot of data with which to corroborate the results. He noted that switching
Hamiltonian cycles never changes the isotopy class, aswe have already seen.He also
argued that if a pair of rows, say, splits into just two cycles then we only need to try
switching one of those cycles since switching the other will give an isotopic result.

Norton also pointed out a natural way for 4-cycles to arise in switching graphs.
Suppose that a square L1 contains two disjoint cycles c and c0 which can be switched.
Suppose further, that switching c produces a square L2, switching c0 produces a
square L3 and switching c then c0 produces a square L4. Since c and c0 are disjoint we
must also get L4 if we start with L1 and switch c0 then c. If L1, L2, L3 and L4 represent
distinct vertices then the result will be a 4-cycle on those four vertices. The point is
that disjoint cycles can be switched independently. The final result will not depend
on the order in which switching took place, but the intermediate stages may.

4. Parity

In this section we introduce ideas which will allow us to prove that many
switching graphs are disconnected for a fundamental reason.
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The notion of the parity for permutations is well understood. If we write any
permutation as a product of transpositions then the number, modulo 2, of factors
in this product is defined to be the parity of the permutation. Since latin squares
are a 2-dimensional analogue of permutations, it is natural to define their parity.

A given row, say row r, of a latin square L defines a permutation rr : ½n�7!½n�
by rrðjÞ ¼ Lrj. We say that rr is a row permutation and that it is the permutation
corresponding to row r. Similarly, there is a permutation rc : ½n�7!½n� corre-
sponding to each column c defined by rcðiÞ ¼ Lic. There is also a permutation
rs : ½n�7!½n� corresponding to each symbol s defined by rsðiÞ ¼ j where Lij ¼ s.

The row parity of a latin square L is the sum, modulo 2, of the parities of the
permutations corresponding to the rows of L. Similarly, the column parity of L is
the sum, modulo 2, of the parities of the permutations corresponding to the
columns of L and the symbol parity of L is the sum, modulo 2, of the parities of the
permutations corresponding to the symbols of L. As conjugation permutes rows,
columns and symbols it naturally permutes the row, column and symbol parities
as well. For example, the column parity of L is the row parity of the transpose of
L.

The row and column parities have been studied in pursuit of what is known as
the Alon-Tarsi conjecture. One statement of this conjecture (see [4, p.108]) asserts
that for each even order the number of latin squares with even row parity differs
from the number of latin squares with odd row parity. It is known that for odd
orders these two numbers are equal. Fundamental to the Alon-Tarsi conjecture is
the observation that row, column and symbol parities are isotopy invariants for
squares of even order, but not for squares of odd order. More generally we have:

Proposition 1. Switching a row cycle of length l reverses the column and symbol
parities if and only if l is odd, but never changes the row parity. Switching a column
cycle of length l leaves the column parity unchanged and reverses the row and symbol
parities if and only if l is odd. Switching a symbol cycle of length l leaves the symbol
parity unchanged and reverses the row and column parities if and only if l is odd.

Proof. We prove only the first statement, as the other two will then follow by
conjugacy. Suppose that R is a row cycle of length l between the rows r1 and r2.
To switch R we multiply the row permutation corresponding to r1 by some per-
mutation r and multiply the row permutation corresponding to r2 by the inverse
permutation r�1. Since r and r�1 have the same parity we either change the parity
of both rows or leave them both the same. Either way, the row parity is
unchanged. Now, each of the l columns and l symbols involved in R has its
corresponding permutation multiplied by a single transposition when R is swit-
ched. Hence the column and symbol parities both change by l modulo 2. (

There is another relationship between these three parities, other than the fact
that conjugacy interchanges them. The following result was first proved by
Janssen [13], and could also be deduced from results of Huang and Rota [11]. The
proof that we outline is original and has a switching flavour appropriate to this
work.
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Proposition 2. Let pr, pc and ps be respectively the row, column and symbol parity
of a latin square of order n. Then

pr þ pc þ ps �
n
2

� �

mod 2: ð2Þ

Proof. We first argue that (2) holds for one latin square of order n, namely the
square T defined by Tij � �i� j mod n. Note that T is a totally symmetric form
of the cyclic group table. Since T is totally symmetric pr ¼ pc ¼ ps and every row
permutation of T is an involution. Any latin square of order n has to have exactly
n fixed points among its row permutations, corresponding to the appearance in
each column i of the symbol i. Hence there are n2 � n entries of T involved in
transpositions in row permutations, and we have

pr þ pc þ ps � 3
n2 � n

2
� n

2

� �
mod 2:

This agrees with (2). Notice also that Proposition 1 guarantees that (2) is pre-
served by cycle switches. If (2) is shown to be preserved by Pittenger moves it will
follow that (2) must hold for all latin squares of order n. Suppose that we have a
Pittenger move P which involves t iterations of the repeat/until loop in the
algorithm given in x2. A similar argument to Proposition 1 shows that P always
reverses the symbol parity; reverses the row parity if and only if t is odd and
reverses the column parity if and only if t is even. Hence (2) is unchanged by P . (

A latin square with respective row, column and symbol parities pr, pc and ps

will be referred to as an ðprpcpsÞ-parity square. Proposition 2 tells us that for most
orders there are four classes of latin squares according to their parity.

Proposition 3. Let Pn be the set of parities of squares of order n. Then, provided
n ¼ 3 or n � 5,

Pn ¼
fð000Þ; ð011Þ; ð101Þ; ð110Þg if n � 0,1 mod 4,
fð111Þ; ð100Þ; ð010Þ; ð001Þg if n � 2,3 mod 4.

�

ð3Þ

Proof. Proposition 2 tells us that Pn is a subset of the set given in (3) for all n. For
odd n � 3 it follows from Proposition 1 that all four possibilities will be achieved
within each isotopy class of order n. For orders n � 6, we can then use [5, Thm
1.5.1], which says that there exists an order n square with a subsquare of order 3.
Since there are four different possibilities for the parity of the subsquare the same
must be true for the whole square. (

For order 2 and order 4 it is easily established that the only possible parities
are (111) and (000) respectively. Since all the squares concerned are group based,
[5, Thm 4.2.2] tells us that this in fact an example of a more general statement.
We call L an equal parity square if the row, column and symbol parities of L are
all equal.
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Proposition 4. If L is a latin square of even order and L is isotopic to at least 2 of its
conjugates other than itself, then L is an equal parity square.

Proof. Since L is of even order, the parities are isotopy invariant. Also, the
condition on conjugates means there must be an isotopy which, in effect, cyclically
permutes the roles of rows, columns and symbols. The only parities which are
invariant under cyclic permutation are (000) and (111). (

In fact the idea of conjugacy yields the following directly:

Proposition 5. For any order of latin squares the numbers of squares with parities
(001), (010) and (100) are equal. Likewise the numbers of squares with parities
(011), (101) and (110) are equal.

At this stage we are not in a position to say how the number of (100)-parity
squares relates to the number of (111)-parity squares or how the number of (011)-
parity squares relates to the number of (000)-parity squares. To do so would
require resolution of the Alon-Tarsi conjecture. However, loosely speaking we
would expect them to be roughly equal since in each case switching an odd length
row cycle in a square of one type creates a square of the other. Hence our next
result predicts that many switching graphs will fragment into large disconnected
pieces with roughly the same number of vertices. Formally, we define a type to be
a set of vertices in a graph such that no edge joins a vertex in the set to a vertex not
in the set.

Proposition 6. Let n � 6 be an even integer. Then in GiiðnÞ the vertices are of four
types corresponding to the parities given in Proposition 3. In GimðnÞ the vertices are
of two types with the discrimination based on whether or not the squares have equal
parity. In GriðnÞ the squares form two types of vertices according to their row parity.

Proof. This result follows directly from Proposition 1, by noting that an inter-
calate is a cycle of length 2, so switching it does not effect any parities. The reason
GimðnÞ has only two types rather than four is that the non equal parity squares
coalesce into one type when main classes are formed by merging isotopy classes.(

Of course there is nothing to say that vertices of a particular type must be
connected. Indeed we have already seen classes of squares, such as atomic squares
or self-switching squares, which give rise to isolated vertices. In fact, since N2

squares are known [4, p.106] to exist for all orders except 2 and 4, we have:

Proposition 7. Suppose that G ¼ GiiðnÞ or G ¼ GimðnÞ. Then G is connected if and
only if n � 4.

Conjecture 1. Proposition 7 holds for G ¼ GriðnÞ as well.

Note that Proposition 6 proves Conjecture 1 for even orders. For odd orders
it would be sufficient, but not necessary, to prove the conjecture in [21] that pan-
Hamiltonian latin squares exist for all odd orders. For G ¼ GaiðnÞ and
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G ¼ GamðnÞ we only know that G is disconnected for all orders � 5 for which an
atomic square exists. The set of orders for which atomic squares exist is known
[21] to properly include the primes and be properly included (with the exception of
n ¼ 2) in the odd numbers. However it seems plausible that GaiðnÞ and GamðnÞ are
connected for all even n. Certainly they are for even n � 8 as we shall see in x7. A
relevant piece of evidence is this:

Proposition 8. Let L be a latin square of even order n. Then L has at least
1
4nð3n� 4Þ row cycles, 1

4nð3n� 4Þ column cycles and 1
4nð3n� 4Þ symbol cycles.

Proof. By conjugacy,it is sufficient to prove the statement for row cycles. Suppose
that e of the permutations corresponding to rows are even and the remaining
n� e are odd. Since n is even, a full cycle on n points is odd, so that Hamiltonian
row cycles can only occur between rows of different parities. It follows that there
are at least

n
2

� �
þ e

2

� �
þ n� e

2

� �

row cycles. This quantity is minimised at e ¼ n=2, where it is equal to the required
bound. (

We next give a construction which shows that the bounds in Proposition 8 are
achieved when n ¼ 2p where p is an odd prime. Let h ¼ f1; 2; . . . ; pg and
H ¼ fp þ 1; p þ 2; . . . ; 2pg. We use ðxÞS to denote that symbol in a set S which is
congruent to x modulo p.

Let L be the latin square defined in four blocks as follows. The entry Lij in row
i and column j satisfies

Lij ¼

ð1� i� jÞh if i; j 2 h,
ðiþ j� 1ÞH if i 2 h and j 2 H ,
ði� jþ 1ÞH if i 2 H and j 2 h,
ð1� iþ jÞh if i; j 2 H .

8
>><

>>:

It is routine to check from this definition that L is semi-symmetric and hence has
the same number of row, column and symbol cycles. Also, since each of the four
blocks of L is isotopic to the cyclic group of order p we know that any pair of rows
chosen both from h or both from H will decompose into two cycles of length p. It
suffices then, to show that for a 2 h and b 2 H the row cycle between rows a and b
is Hamiltonian.

Suppose we start in column c 2 h of row a at ð1� a� cÞh and trace out the
cycle from there. In row b we find ðb� cþ 1ÞH , which takes us to column
ð2� aþ b� cÞH of row a. In this column of row b the symbol is ð3� a� cÞh. So
when we return to the first block we are in column c� 2, two places to the left of
where we started. Iterating this process and noting that p is odd, we see that in
following the row cycle we will visit every other column before returning to
column c. This shows the validity of our construction.
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Note that the bounds in Proposition 8 are achieved for orders other that those
demonstrated by this construction. For example, two of the three main classes of
N2 squares of order 8, as given by Denniston [7], achieve all three bounds. The
third N2 main class achieves any two of the bounds but not the third.

The corresponding bound for odd orders is of course n
2

� �
, which is achieved

by the atomic squares. Even bearing in mind that we ignore one cycle if a pair
of rows does not split into at least three cycles, it would appear that a square
of even order will have at least 1

4nðn� 2Þ useful row switches available, where
an odd order square may have none. Similar statements hold for the column
and symbol cycles. So, a first reaction might be to expect GaiðnÞ and GamðnÞ to
have high minimum degree and to be connected. However, Proposition 6 shows
that the abundance of row switches is not in itself enough to ensure connect-
edness. Indeed, an abundance of switches need not even ensure high degrees.
Our next result shows this clearly, by considering the squares with the most
switches of all. Heinrich and Wallis [10] proved that the only squares achieving
the trivial upper bound of 1

4n
2ðn� 1Þ on the number of intercalates belong to

the main class of Ed , the Cayley table of the elementary abelian 2-group of
order n ¼ 2d , for some positive integer d. Every cycle in Ed is an intercalate.

Proposition 9. Let n ¼ 2d for some integer d � 2. Then the vertex corresponding to
Ed has degree 1 in GxyðnÞ for each xy 2 fii; im; ri; ai; amg.

Proof. The case d ¼ 2 was covered in x2. If d > 2 then Ed contains two disjoint
copies of E2. Switching an intercalate in one of these copies will produce some
square B which does not satisfy the quadrangle criterion [5] and hence does not
belong to the main class of Ed . It follows that the degree of Ed in any of the
switching graphs is at least one. However, the autotopy group of Ed acts transi-
tively on the intercalates in Ed , so switching any intercalate produces a square
isotopic to B.

To see this, note that the autotopy group of Ed is the semi-direct product of
T � T by the general linear group GLðd; 2Þ. Here T is the translation group, so
that T � T acts transitively on the cells of Ed . The stabiliser of a cell c is GLðd; 2Þ
which acts transitively on the rows not containing c. It follows that the autotopy
group of Ed acts transitively on the intercalates and hence the degree of Ed is
exactly one. (

5. Intercalate Switches

We begin our case studies with the graphs formed when intercalate switches
are the only allowable moves, which are summarised in Table 1. This is the first
of three tables in which we give the following graphical parameters: Number of
vertices, number of edges, number of loops, number of components, number of
isolated vertices, number of pendant vertices, minimum cardinality of a path
cover, minimum degree, maximum degree, diameter, radius, clique number,
number of maximum cliques, number of 3-cycles and number of 4-cycles. Note
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that we adopt a few conventions for our tables. Firstly, although we cite the
number of loops, these were never actually added to the graph and hence are
not counted in any other field. In particular, the loops are not counted in the
number of edges, nor in the degrees of vertices. Similarly, multiple copies of an
edge were never included in any graph. Secondly, for a graph that is discon-
nected the diameter and radius are fairly meaningless. Rather than quoting a
value of 1 we provide instead the largest values which these parameters attain
for a component of the graph. Values of radius and diameter which have been
determined by this rule are marked with stars (�) in the tables.

The only acyclic graph which we encountered in this work is Gimð6Þ, which is a
linear forest. As Norton [17] reported, it has four components (we knew from
Proposition 6, that it would have at least two). These turn out to be paths of
lengths 0, 1, 3 and 4, as can be seen from the solid lines in Fig. 3. The path of
length 3 contains all the non equal-parity squares of order 6, while the other three
paths contain equal parity squares.

The graph Giið6Þ will be shown by the solid lines in Fig. 5. It has six com-
ponents (two more than the lower bound derived from Proposition 6), and con-
tains three 4-cycles. Like Gimð6Þ its largest component has diameter 4.

The graph Gimð7Þ is of historical interest, given the work of Norton
discussed in x3. It has four components, three of which are isolated vertices.
The three isolated vertices correspond to the cyclic square, the other pan-
Hamiltonian square of order 7 and the Sade square, which are respectively
M7:7, M7:6 and M7:147. Note that the Sade square is self-switching, while the

Table 1. Summary of intercalate switching graphs

Order 6 Order 7 Order 8

main isotopy main isotopy main isotopy

Vertices 12 22 147 564 283657 1676267
Edges 8 18 455 2487 1953563 11679069
Loops 6 12 30 60 5365 20008

Components 4 6 4 6 11 32
Isolated
vertices

1 1 3 4 7 15

Pendant
vertices

6 10 7 11 46 167

Path cover 4 8 7 10 31 109
Min degree 0 0 0 0 0 0
Max degree 2 4 14 19 45 49

Radius 2� 2� 5� 5� 9� 10�

Diameter 4� 4� 9� 9� 15� 15�

Clique num 2 2 4 4 5 4
Max cliques 8 18 4 8 27 2089

Girth Forest 4 3 3 3 3
3-cycles 0 0 81 262 28277 109654
4-cycles 0 3 928 6375 6007654 35409032
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other two squares are N2. The family with 144 vertices which Norton enu-
merated, has diameter 9. Norton’s paper [17] contains a wealth of data with
which to verify the accuracy of our program. The number of loops, and
minimum and maximum degree of Gimð7Þ were checked in this way and found
to concur once multiple edges had been removed from Norton’s data.

Moving to Giið7Þ we find that there are 6 components. Four of these are
isolated vertices corresponding to the N2 squares. A fifth component is an isolated
edge which involves the two isotopy classes which correspond to Sade’s square
(1). Again there is a giant component of diameter 9, this time with 558 vertices.

Proposition 6 predicts that Gimð8Þ will have two types of vertices. The non
equal-parity squares form a single component of order 207323. The equal-
parity squares form ten components, with almost all the vertices belonging to a
component of order 76322. Seven of the remaining components are isolated
vertices, which correspond to the three N2 main classes identified by Denniston
[7] and to the following four self-switching squares:

S1 ¼

1 2 4 3 6 5 8 7
2 1 5 7 3 8 4 6
4 5 3 1 2 7 6 8
3 7 1 4 8 6 2 5
6 3 2 8 5 1 7 4
5 8 7 6 1 4 3 2
8 4 6 2 7 3 5 1
7 6 8 5 4 2 1 3

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

; S2 ¼

1 2 4 3 6 5 8 7
2 1 5 6 7 8 4 3
4 8 3 1 2 7 5 6
3 7 1 5 4 2 6 8
6 3 7 4 8 1 2 5
5 4 8 7 1 6 3 2
8 5 6 2 3 4 7 1
7 6 2 8 5 3 1 4

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

;

ð4Þ

2

1

8

7

4

10

3
9

6

5

12

11

Fig. 3. The vertices of this graph are the main classes of order 6, numbered according to
the catalogue in [4]. Solid edges represent intercalate switches and hence belong to the
graph Gimð6Þ. The dotted lines indicate longer cycle switches between vertices that are not
connected by an intercalate switch. Hence the dotted lines together with the solid lines show
the edges of Gamð6Þ. The larger vertices are those for which a non-trivial switching takes the
main class to itself. If there is such a switching which involves an intercalate switch the
vertex is filled in, otherwise it is hollow
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S3 ¼

1 2 4 5 6 7 8 3
2 1 5 3 7 8 6 4
8 4 3 1 2 5 7 6
3 8 2 4 1 6 5 7
4 3 6 7 5 1 2 8
5 7 8 6 3 4 1 2
6 5 7 8 4 2 3 1
7 6 1 2 8 3 4 5

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

; S4 ¼

1 2 3 4 5 6 7 8
2 1 4 5 6 7 8 3
3 8 5 1 7 2 4 6
4 6 7 8 3 5 2 1
5 7 1 6 4 8 3 2
6 5 2 7 8 3 1 4
7 3 8 2 1 4 6 5
8 4 6 3 2 1 5 7

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

:

Squares S1, S2 and S3 are semi-symmetric (in fact S1 is totally symmetric). S4 has
no non-trivial symmetry, but flipping its unique intercalate produces a square
isotopic to the transpose of S4. The numbers of intercalates in S1 to S4 are 4, 1, 4
and 1 respectively. The mean number of intercalates for order 8 squares is
approximately 14.0697 (see [15]).

The remaining two components are small. There is an isolated edge based on
two more semi-symmetric squares. One of these is

1 2 3 4 5 6 7 8
2 1 4 5 6 7 8 3
3 8 1 2 7 4 6 5
4 3 6 1 2 8 5 7
5 4 8 7 1 2 3 6
6 5 7 3 8 1 2 4
7 6 5 8 4 3 1 2
8 7 2 6 3 5 4 1

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

:

This square has seven intercalates all of which involve the entry in the top left
corner. If any of these intercalates is switched the resulting square is also semi-
symmetric, and has a unique intercalate.

Finally, there is a component which is a path of length 2, based on three latin
squares, each of which has just two intercalates. The middle square of the path is
as follows,

1 2 7 5 4 3 6 8
2 1 6 8 5 7 4 3
7 5 3 4 6 8 1 2
6 8 4 3 1 2 5 7
3 7 5 1 2 6 8 4
4 6 8 2 3 5 7 1
8 3 1 6 7 4 2 5
5 4 2 7 8 1 3 6

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

ð5Þ

and the two ends of the path can be found by flipping either one of the two
intercalates, which are shown in bold. Flipping both intercalates produces a
square isotopic to the one given in (5).

A minimal path cover for Gimð8Þ has 31 paths. The nine small components
require one path each. The component of order 76322 requires 15 paths, since it
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contains 29 pendant vertices and one more obstacle comprising a vertex whose four
neighbours have degrees 1, 2, 2 and 10. The component of order 207323 requires 7
paths, since it contains 13 pendant vertices and a cycle obstacle of length 4.

Next we consider Giið8Þ, a graph on the 1676267 isotopy classes of order 8.
Proposition 6 predicts four different types of vertices. The (011)-parity squares form
a single componentwith 411313 vertices. This component has radius 10, diameter 15
andmaximumdegree 36. The (101)-parity squares and the (110)-parity squares each
form components which are isomorphic to the (011)-parity component. The iso-
morphisms are provided by mapping each square to a particular conjugate of itself,
and for that reason we call these components conjugate components.

There are 32 components in all. The equal-parity squares account for 29 of
them with 15 of those being isolated vertices. The Denniston N2 squares con-
tribute 14 isolated vertices, and the remaining one comes from the totally sym-
metric self-switching square S1 given in (4). There are seven isolated edges; two of
which are conjugates based on the isolated edge in Gimð8Þ and the remaining five
are based on S2, S3 and S4. Each of S2 and S3 contributes one isolated edge
between the square itself and its distinct conjugate. Meanwhile, since flipping the
unique intercalate in S4 yields a square isotopic to the transpose of S4, the six
conjugates of S4 contribute three isolated edges in Giið8Þ. There are also six
conjugate components of order three derived from the component of Gimð8Þ given
in (5). This makes a total of 28 small components, using 47 vertices between them.

The remaining 442281 vertices form a single component with radius 10 and
diameter 15. Its maximum degree is 49, which is achieved uniquely by the fol-
lowing square:

1 3 4 2 6 5 7 8
4 2 1 3 7 8 6 5
2 4 3 1 5 7 8 6
3 1 2 4 8 6 5 7
6 8 5 7 3 1 2 4
5 7 8 6 1 4 3 2
7 5 6 8 4 2 1 3
8 6 7 5 2 3 4 1

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

ð6Þ

This square has 52 intercalates and the obvious 4 subsquares of order 4. It has the
most intercalates of any square of order 8 with a trivial autotopy group. However,
it is semi-symmetric and isotopic to its transpose as well, so that it is isotopic to all
its conjugates.

The component of order 442281 has 72 pendant vertices, so we know that any
path cover contains at least 36 paths, but in fact the minimal path cover has 42
paths. There are 7 obstacles which account for this fact, the most complicated of
which is shown in Figure 4. The other six are comprised of 3 cycle obstacles of
length 6 (of the type pictured in Fig. 2) and 3 cycle obstacles of length 4. The
subgraph shown in Fig. 4 cannot contain fewer than 7 endpoints of paths in any
path cover (where an isolated vertex is interpreted as a path of length zero, with
two endpoints). Since it contains two pendant vertices, this shows that a path
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cover must contain at least d12ð72� 2þ 7þ 6Þe ¼ 42 paths. A path cover with this
many paths was found by program C.

Each of the components of order 411313 contains two cycle obstacles of length
4 and a cycle obstacle of length 3 which is connected to the rest of the component
by a single edge. There are also 23 pendant vertices. This means that any path
cover must contain at least 13 paths, and a cover of this size was found by
program C. Since there are 28 components of Giið8Þ which are themselves paths,
plus the four large components, we see that the minimal path cover for Giið8Þ has
42þ 3� 13þ 28 ¼ 109 paths.

6. Row Cycle Switches

Next we consider graphs formed when the allowable operations are the switching
of any row cycle. Naturally, these graphs are isomorphic to the graphs obtained
by allowing just column cycle switches, or just symbol cycle switches. Since row
cycles are a conjugacy dependent concept it does not make sense to use main
classes as vertices in this section. If we did use main classes as vertices then we
would in effect be allowing all cycle switches, which is the case treated in the next
section. Also note that all intercalates are row cycles, so the allowed operations
here are a proper superset of the operations allowed in the previous section.
Therefore the graphs in this section have the corresponding graphs in the previous
section as subgraphs.

Table 2 summarises the properties of the graphs formed by taking the isotopic
classes of orders 6, 7 and 8 as the vertices.

For order six there are two components as illustrated in Fig. 5. This is our first
graph achieving the lower bound prescribed by Proposition 6. The 14 vertices with
odd row parity form a component with diameter 4 and radius 2. The odd row parity
representative ofM6:5 is the unique central vertex.The 8 verticeswith even rowparity
form a component with diameter 5 and radius 3. The smaller component contains a
Hamiltonian path, but the larger component requires 3 paths to cover it.

Fig. 4. Subgraph which creates obstacles to a path cover of the component of Giið8Þ of
order 442281. Vertices on the dotted circle have some neighbours not shown, but vertices
inside the circle have all their adjacencies given explicitly
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For order seven the graph has three components. Two of these are isolated
vertices corresponding to the two pan-Hamiltonian squares of this order. The
remaining 562 vertices form a single component with diameter 6, radius 4 and
maximum degree 29. This contains a unique clique of order 6, which is based
around two squares from each of M7:9 and M7:14 and one each from M7:15 and
M7:60. Interestingly each of these squares possesses a subsquare of order 3 which is
invariant under the row cycle switches which give rise to the clique. In Grið7Þ these
six isotopy classes clearly induce K6, but in Giið7Þ they induce K2;4.

For order eight the graph again achieves the lower bound of two components
given by Proposition 6. The smaller of the two has 822626 vertices of odd row-
parity which include the vertices from two of the three components of order

Table 2. Summary of row cycle switching graphs

Order 6 Order 7 Order 8
isotopy isotopy isotopy

Vertices 22 564 1676267
Edges 29 4121 23349579
Loops 12 131 27404

Components 2 3 2
Isolated
vertices

0 2 0

Pendant
vertices

3 2 1

Path cover 4 3 2
Min degree 1 0 1
Max degree 5 29 65

Radius 3� 4� 7�

Diameter 5� 6� 11�

Clique num 3 6 7
Max cliques 2 1 1

Girth 3 3 3
3-cycles 2 2240 7786904
4-cycles 9 20689 117996116

345

5 4 3

11 10

76 8

6

6

1

2

12

4 9
9 9

5
3

Fig. 5. The vertices of this graph are the isotopy classes of order 6, but numbered ac-
cording to the catalogue of main classes in [4]. Solid edges represent intercalate switches,
that is, the edges of Giið6Þ. The dotted lines indicate the edges gained by allowing row cycle
switches. The dotted edges together with the solid edges form Grið6Þ. The larger vertices are
those for which a non-trivial switching takes the isotopy class to itself (in each case where
such a switching exists, it can be chosen to be an intercalate switching)
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411313 in Giið8Þ. This component has minimum degree 3, maximum degree 55,
diameter 9 and contains a Hamiltonian cycle. The 853641 vertices of even row-
parity form the second component. It has diameter 11, minimum degree 1,
maximum degree 65 and contains a Hamiltonian path. The maximum degree is
achieved uniquely by a close relative, call it R, of the square which maximised the
degree in Giið8Þ. R can be formed by switching the intercalate which forms the four
corners of the square given in (6). Like the original square, this R is semi-sym-
metric and isotopic to all its conjugates, despite having a trivial autotopy group. It
has fewer subsquares than the square in (6), with only 45 intercalates.

Three of the seven vertices in the unique maximum clique of Grið8Þ contain
squares which, like R, are semi-symmetric, isotopic to their transpose and have
trivial autotopy group. One of these squares is

X ¼

2a 1 3b 4 5c 7d 8 6
1a 2 4b 3 6c 5 7 8
3 4 1 2 7 8 6 5
4 3 2 1 8 6d 5 7
5 6 8 7 1 2 3 4
8e 5 7 6 2f 4 1 3
6 7 5 8 4f 3 2 1
7e 8 6 5 3 1 4 2

0

B
B
B
B
B
B
B
B
B
B
@
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C
C
C
C
C
C
C
C
C
C
A

ð7Þ:

Note that X has four subsquares of order 4. Representatives of the other six
vertices in the clique can be reached by switching the row cycles a; b; c; d; e; f . Two
entries from each of these row cycles have be labelled with the appropriate sub-
script in (7). In particular, these row cycles all lie inside one of the subsquares of
X , which means that every square involved in the clique has four subsquares of
order four. Just as for Grið7Þ, the vertices involved in the maximum clique induce a
complete bipartite graph in the intercalate switching graph. Here, the seven ver-
tices induce K3;4 in Giið8Þ.

7. All Cycle Switches

Finally we consider graphs formed when the allowable operations are switches of
any row, column or symbol cycle. The allowed operations here are a proper
superset of the operations allowed in the previous two sections. Therefore the
graphs in the previous sections are subgraphs of the corresponding graph in this
section.

Taking the main classes of order 6 gives the graph as shown by taking all the
edges (whether dotted or unbroken) in Fig. 3. The graph is connected with diameter
4 and radius 2. Vertex M6:5 is the unique central vertex and also the unique vertex of
maximum degree, which is 5. Note also that this graph has aHamiltonian path. For
example, take the vertices labelled 12,6,1,2,5,11,10,4,3,9,8,7 in that order.

If instead we take the isotopy classes of order 6 as vertices then both the
minimum degree and the radius increase by one and the graph stays connected.
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Looking next at Gam (7) and Gai (7) we find that in both graphs there are two
components, but one of them is the isolated vertex corresponding to the cyclic
group. Hence Norton would have found an exhaustive list of order 7 main classes
if he had considered cycle switches more general than his intercalate reversals. He
was aware of this possibility, but understandably daunted by the amount of work
it would have involved.

Starting with Sade’s square as given in (1), we can produce 145 more main
classes of order 7 by the following sequence of switching operations:

r23 c47 r253 r17 r67 c47 r12 r27 c46 r26 r37 r17 s452 r15
r12 s36 s17 r23 s46 s17 r13 r26 r15 c15 c37 r56 s37 r14
r16 r27 r46 s12 r34 c45 r13 r12 r56 c35 c37 r46 s23 c67
c57 r566 r45 c15 r34 c172 r15 c13 r27 c45 r26 r24 r23 c253
r26 r57 r12 s35 r27 c35 r352 r15 r25 s23 r26 r12 r35 r45
r16 s12 s352 s12 r12 s34 s13 r143 c37 s34 r565 r16 r14 r17
c13 c15 r462 r472 r12 r352 r474 r16 r12 r16 c15 r234 r23 s23
r17 s34 r15 r27 r26 c123 c26 r23 r343 r37 c35 r45 r46 s47
s27 r37 r46 s37 r47 r16 s13 s16 c23 r23 r57 r37 r47 c24
s36 c16 r67 s47 r36 c56 r45 r67 s47 c35 s27 s16 r12 r13
r15 r14 r45 c37 s27

Here rxyz denotes the row cycle between rows x and y starting in column z.
Likewise, cxyz is the column cycle between columns x and y starting in row z, and
sxyz is the symbol cycle between symbols x and y starting in column z. For the
majority of cycles the value of z is 1, in which case it has been omitted.

Table 3. Summary of graphs formed by switching all cycles

Order 6 Order 7 Order 8

main isotopy main isotopy main isotopy

Vertices 12 22 147 564 283657 1676267
Edges 17 51 1197 7260 7781572 46673268
Loops 7 12 97 227 17962 41241

Components 1 1 2 2 1 1
Isolated
vertices

0 0 1 1 0 0

Pendant
vertices

1 0 2 0 1 1

Path cover 1 1 2 2 1 1
Min degree 1 2 0 0 1 1
Max degree 5 7 32 47 95 108

Radius 2 3 3� 3� 5 6
Diameter 4 4 5� 5� 10 10

Clique num 3 4 7 7 8 9
Max cliques 2 6 1 3 97 1

Girth 3 3 3 3 3 3
3-cycles 2 26 1878 9583 5207986 29874415
4-cycles 5 57 20751 126186 90242587 518456141
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Finally we come the order 8 squares. In bothGamð8Þ andGaið8Þ the unique vertex
of minimum degree is E3, the elementary abelian 2-group. In both graphs it has
degree 1 as predicted by Proposition 9, and the maximum eccentricity, which is 10.

Gaið8Þ is connected, and large enough that calculating the eccentricity of every
vertex was not feasible using the straightforward algorithm which worked on all
other graphs in this paper. However, it was still feasible to calculate the eccen-
tricities of some vertices, so the radius and diameter were established as follows.
We first computed that the eccentricity of E3 is 10, and the only two vertices at
distance 10 from it correspond to the square A and its transpose, where

A ¼

1 2 3 4 5 6 7 8
2 1 4 5 6 7 8 3
3 8 1 2 7 4 6 5
4 3 6 1 2 8 5 7
5 4 8 7 1 2 3 6
6 5 7 3 8 1 2 4
7 6 5 8 4 3 1 2
8 7 2 6 3 5 4 1

0

B
B
B
B
B
B
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B
B
@

1
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C
C
C
C
C
C
C
C
A

:

A is semi-symmetric, and has an autotopy group of order 42. We next found the
1951 vertices V which are at distance 5 from both A and E3. It turns out that the
minimum eccentricity of a vertex in V is 6. Hence the radius of Gaið8Þ is 6, since
every vertex outside V is at distance at least 6 from either A or E3. Next we selected
v 2 V , as represented by the semi-symmetric square:

1 2 4 5 3 7 8 6
2 1 3 6 7 5 4 8
5 3 2 1 6 8 7 4
3 7 8 4 1 2 6 5
4 6 1 8 5 3 2 7
8 4 5 7 2 6 1 3
6 5 7 2 8 4 3 1
7 8 6 3 4 1 5 2

0

B
B
B
B
B
B
B
B
B
@
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C
C
C
C
C
C
C
C
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Our v was one of the 1729 vertices in V which are central in Gaið8Þ. Let U be the
set of vertices at distance 6 from v. The maximum eccentricity of the 131 vertices
in U turned out to be 10. Since any two vertices outside of U could be joined to
each other by a path of length at most 10 going via v, we conclude that the
diameter of Gaið8Þ is 10.

The clique number of Gaið8Þ is 9 and there is a unique clique of that order. It
turns out to include 3 of the vertices of the maximum clique in Giið8Þ, including
the vertex represented by the square X given in (7). As they did for Grið7Þ and
Grið8Þ, the vertices involved in the maximum clique induce a complete bipartite
graph in the corresponding intercalate switching graph. Here, the nine vertices
induce K1;8 in Giið8Þ, with X as the central vertex in the star. Another similarity
with Grið8Þ is that all the squares involved in the clique possess four subsquares of
order 4.
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Finally we note that program C found Hamiltonian paths in both Gamð8Þ and
Gaið8Þ (for the larger graph, we assisted the program by using the path cover of
Grið8Þ as the starting point). Hence it is possible to generate all the main or
isotopy classes of order 8 in a single chain starting from E3.

8. Concluding Remarks

In each of the even order graphs formed by intercalate switching the non equal-
parity squares achieved the lower bound given in Proposition 6 but the equal
parity squares were much more disconnected. Proposition 4 goes part way to
explaining this behaviour, since the more symmetric squares are all equal-parity
squares. However, the effect may also be partly an artifact of the small orders
considered. A sample of 100000 randomly generated N2 squares of order 10
showed that the four possible parities were roughly equally represented. This
means that all four types of vertices in Giið10Þ contain many disconnected com-
ponents.

The cycle switches considered in this paper allow a substantial reduction in
storage requirements for catalogues of latin squares because they allow a latin
square transformation to be specified in very few bits of information. The precise
details will depend on the application. However, we have found that it is possible
to generate representatives of all the order 8 main or isotopy classes in a chain of
switches from a single starting square. The same is true for order 7 squares except
for the cyclic main class, which is atomic and hence cannot be switched to any
other class. If rapid random access is required for, say, the 1676267 isotopy classes
of order 8, then switching from a central vertex will never require more than 6
switches.

References

1. Asratyan, A.S., Mirumyan, A.N.: Transformations of latin squares (Russian). Diskret.
Mat. 2, 21–28 (1990)

2. Bondy J.A., Murty, U.S.R.: Graph theory with applications. American Elsevier, New
York, 1976

3. Bryant, D., Maenhaut, B.M., Wanless I.M.: A family of perfect factorisations of
complete bipartite graphs. J. Combin. Theory Ser. A 98, 328–342 (2002)

4. Colbourn, C.J., Dinitz, J.H. (eds).: The CRC handbook of combinatorial designs. Boca
Raton: CRC Press, 1996
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